Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The role of leucine-rich repeat kinase 2 (LRRK2) in Parkinson's disease

Abstract

Parkinson's disease, like many common age-related conditions, is now recognized to have a substantial genetic component. Here, I discuss how mutations in a large complex gene — leucine-rich repeat kinase 2 (LRRK2) — affect protein function, and I review recent evidence that LRRK2 mutations affect pathways that involve other proteins that have been implicated in Parkinson's disease, specifically α-synuclein and tau. These concepts can be used to understand disease processes and to develop therapeutic opportunities for the treatment of Parkinson's disease.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Domains and mutations of LRRK2.
Figure 2: LRRK2, α-synuclein and tau.

References

  1. Lees, A. J., Hardy, J. & Revesz, T. Parkinson's disease. Lancet 373, 2055–2066 (2009).

    CAS  Article  PubMed  Google Scholar 

  2. Gasser, T. Molecular pathogenesis of Parkinson disease: insights from genetic studies. Expert Rev. Mol. Med. 11, e22 (2009).

    Article  PubMed  Google Scholar 

  3. Satake, W. et al. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson's disease. Nature Genet. 41, 1303–1307 (2009).

    CAS  Article  PubMed  Google Scholar 

  4. Simon-Sanchez, J. et al. Genome-wide association study reveals genetic risk underlying Parkinson's disease. Nature Genet. 41, 1308–1312 (2009).

    CAS  Article  PubMed  Google Scholar 

  5. Paisan-Ruiz, C. et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron 44, 595–600 (2004).

    CAS  Article  PubMed  Google Scholar 

  6. Zimprich, A. et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44, 601–607 (2004).

    CAS  Article  PubMed  Google Scholar 

  7. Greggio, E. et al. The Parkinson disease-associated leucine-rich repeat kinase 2 (LRRK2) is a dimer that undergoes intramolecular autophosphorylation. J. Biol. Chem. 283, 16906–16914 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Greggio, E. et al. The Parkinson's disease kinase LRRK2 autophosphorylates its GTPase domain at multiple sites. Biochem. Biophys. Res. Commun. 389, 449–454 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Kamikawaji, S., Ito, G. & Iwatsubo, T. Identification of the autophosphorylation sites of LRRK2. Biochemistry 48, 10963–10975 (2009).

    CAS  Article  PubMed  Google Scholar 

  10. Klein, C. L. et al. Homo- and heterodimerization of ROCO kinases: LRRK2 kinase inhibition by the LRRK2 ROCO fragment. J. Neurochem. 111, 703–715 (2009).

    CAS  Article  PubMed  Google Scholar 

  11. Berger, Z., Smith, K. A. & Lavoie, M. J. Membrane localization of LRRK2 is associated with increased formation of the highly active LRRK2 dimer and changes in its phosphorylation. Biochemistry 49, 5511–5523 (2010).

    CAS  Article  PubMed  Google Scholar 

  12. Gloeckner, C. J. et al. Phosphopeptide analysis reveals two discrete clusters of phosphorylation in the N-terminus and the Roc domain of the Parkinson-disease associated protein kinase LRRK2. J. Proteome Res. 9, 1738–1745 (2010).

    CAS  Article  PubMed  Google Scholar 

  13. Dzamko, N. et al. Inhibition of LRRK2 kinase activity leads to dephosphorylation of Ser(910)/Ser(935), disruption of 14-3-3 binding and altered cytoplasmic localization. Biochem. J. 430, 405–413 (2010).

    CAS  Article  PubMed  Google Scholar 

  14. Gehrke, S., Imai, Y., Sokol, N. & Lu, B. Pathogenic LRRK2 negatively regulates microRNA-mediated translational repression. Nature 466, 637–641 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Li, Y. et al. Mutant LRRK2(R1441G) BAC transgenic mice recapitulate cardinal features of Parkinson's disease. Nature Neurosci. 12, 1826–1828 (2009).

    Google Scholar 

  16. Lin, X. et al. Leucine-rich repeat kinase 2 regulates the progression of neuropathology induced by Parkinson's-disease-related mutant α-synuclein. Neuron 64, 807–827 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Tong, Y. et al. Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of α-synuclein, and apoptotic cell death in aged mice. Proc. Natl Acad. Sci. USA 107, 9879–9884 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Lee, B. D. et al. Inhibitors of leucine-rich repeat kinase-2 protect against models of Parkinson's disease. Nature Med. 16, 998–1000 (2010).

    CAS  Article  PubMed  Google Scholar 

  19. Li, X. et al. Enhanced striatal dopamine transmission and motor performance with LRRK2 overexpression in mice is eliminated by familial Parkinson's disease mutation G2019S. J. Neurosci. 30, 1788–1797 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Melrose, H. L. et al. Impaired dopaminergic neurotransmission and microtubule-associated protein tau alterations in human LRRK2 transgenic mice. Neurobiol. Dis. 40, 503–517 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Galter, D. et al. LRRK2 expression linked to dopamine-innervated areas. Ann. Neurol. 59, 714–719 (2006).

    CAS  Article  PubMed  Google Scholar 

  22. Guo, L. et al. The Parkinson's disease-associated protein, leucine-rich repeat kinase 2 (LRRK2), is an authentic GTPase that stimulates kinase activity. Exp. Cell Res. 313, 3658–3670 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Lewis, P. A. et al. The R1441C mutation of LRRK2 disrupts GTP hydrolysis. Biochem. Biophys. Res. Commun. 357, 1668–1671 (2007).

    Article  Google Scholar 

  24. Greggio, E. et al. Kinase activity is required for the toxic effects of mutant LRRK2/dardarin. Neurobiol. Dis. 23, 329–341 (2006).

    CAS  Article  PubMed  Google Scholar 

  25. Jaleel, M. et al. LRRK2 phosphorylates moesin at threonine-558: characterization of how Parkinson's disease mutants affect kinase activity. Biochem. J. 405, 307–317 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Nichols, R. J. et al. 14-3-3 binding to LRRK2 is disrupted by multiple Parkinson's disease-associated mutations and regulates cytoplasmic localization. Biochem. J. 430, 393–404 (2010).

    CAS  Article  PubMed  Google Scholar 

  27. West, A. B. et al. Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc. Natl Acad. Sci. USA 102, 16842–16847 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Imai, Y. et al. Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila. EMBO J. 27, 2432–2443 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Greggio, E. & Cookson, M. R. Leucine-rich repeat kinase 2 mutations and Parkinson's disease: three questions. ASN Neuro 1, e00002 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lu, B. et al. Expression, purification and preliminary biochemical studies of the N-terminal domain of leucine-rich repeat kinase 2. Biochim. Biophys. Acta 1804, 1780–1784 (2010).

    CAS  Article  PubMed  Google Scholar 

  31. Sen, S., Webber, P. J. & West, A. B. Dependence of leucine-rich repeat kinase 2 (LRRK2) kinase activity on dimerization. J. Biol. Chem. 284, 36346–36356 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Liu, M., Dobson, B., Glicksman, M. A., Yue, Z. & Stein, R. L. Kinetic mechanistic studies of wild-type leucine-rich repeat kinase 2: characterization of the kinase and GTPase activities. Biochemistry 49, 2008–2017 (2010).

    CAS  Article  PubMed  Google Scholar 

  33. Smith, W. W. et al. Kinase activity of mutant LRRK2 mediates neuronal toxicity. Nature Neurosci. 9, 1231–1233 (2006).

    CAS  Article  PubMed  Google Scholar 

  34. Cookson, M. R., Hardy, J. & Lewis, P. A. Genetic neuropathology of Parkinson's disease. Int. J. Clin. Exp. Pathol. 1, 217–231 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Gandhi, P. N., Wang, X., Zhu, X., Chen, S. G. & Wilson-Delfosse, A. L. The Roc domain of leucine-rich repeat kinase 2 is sufficient for interaction with microtubules. J. Neurosci. Res. 86, 1711–1720 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Gillardon, F. Leucine-rich repeat kinase 2 phosphorylates brain tubulin-β isoforms and modulates microtubule stability-a point of convergence in parkinsonian neurodegeneration? J. Neurochem. 110, 1514–1522 (2009).

    CAS  Article  PubMed  Google Scholar 

  37. Sancho, R. M., Law, B. M. & Harvey, K. Mutations in the LRRK2 Roc-COR tandem domain link Parkinson's disease to Wnt signalling pathways. Hum. Mol. Genet. 18, 3955–3968 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Ding, X. & Goldberg, M. S. Regulation of LRRK2 stability by the E3 ubiquitin ligase CHIP. PLoS ONE 4, e5949 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ko, H. S. et al. CHIP regulates leucine-rich repeat kinase-2 ubiquitination, degradation, and toxicity. Proc. Natl Acad. Sci. USA 106, 2897–2902 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Hsu, C. H. et al. MKK6 binds and regulates expression of Parkinson's disease-related protein LRRK2. J. Neurochem. 112, 1593–1604 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Jorgensen, N. D. et al. The WD40 domain is required for LRRK2 neurotoxicity. PLoS ONE 4, e8463 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  42. MacLeod, D. et al. The familial Parkinsonism gene LRRK2 regulates neurite process morphology. Neuron 52, 587–593 (2006).

    CAS  Article  PubMed  Google Scholar 

  43. Parisiadou, L. et al. Phosphorylation of ezrin/radixin/moesin proteins by LRRK2 promotes the rearrangement of actin cytoskeleton in neuronal morphogenesis. J. Neurosci. 29, 13971–13980 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Plowey, E. D., Cherra, S. J., Liu, Y. J. & Chu, C. T. Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY2015Y cells. J. Neurochem. 105, 1048–1056 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Sakaguchi-Nakashima, A., Meir, J. Y., Jin, Y., Matsumoto, K. & Hisamoto, N. LRK-1, a C. elegans PARK8-related kinase, regulates axonal-dendritic polarity of SV proteins. Curr. Biol. 17, 592–598 (2007).

    CAS  Article  PubMed  Google Scholar 

  46. Samann, J. et al. Caenorhabditits elegans LRK-1 and PINK-1 act antagonistically in stress response and neurite outgrowth. J. Biol. Chem. 284, 16482–16491 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tain, L. S. et al. Rapamycin activation of 4E-BP prevents parkinsonian dopaminergic neuron loss. Nature Neurosci. 12, 1129–1135 (2009).

    CAS  Article  PubMed  Google Scholar 

  48. Kapahi, P. et al. With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab. 11, 453–465 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Hands, S. L., Proud, C. G. & Wyttenbach, A. mTOR's role in ageing: protein synthesis or autophagy? Aging 1, 586–597 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Kumar, A. et al. The Parkinson's disease associated LRRK2 exhibits weaker in vitro phosphorylation of 4E-BP compared to autophosphorylation. PLoS ONE 5, e8730 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wider, C., Dickson, D. W. & Wszolek, Z. K. Leucine-rich repeat kinase 2 gene-associated disease: redefining genotype-phenotype correlation. Neurodegener. Dis. 7, 175–179 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Taymans, J. M. & Cookson, M. R. Mechanisms in dominant parkinsonism: the toxic triangle of LRRK2, α-synuclein, and tau. Bioessays 32, 227–235 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Cookson, M. R. α-Synuclein and neuronal cell death. Mol. Neurodegener. 4, 9 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Auluck, P. K., Caraveo, G. & Lindquist, S. α-Synuclein: membrane interactions and toxicity in Parkinson's disease. Annu. Rev. Cell Dev. Biol. 26, 211–233 (2010).

    CAS  Article  PubMed  Google Scholar 

  55. Biskup, S. et al. Localization of LRRK2 to membranous and vesicular structures in mammalian brain. Ann. Neurol. 60, 557–569 (2006).

    CAS  Article  PubMed  Google Scholar 

  56. Rajput, A. et al. Parkinsonism, Lrrk2 G2019S, and tau neuropathology. Neurology 67, 1506–1508 (2006).

    CAS  Article  PubMed  Google Scholar 

  57. Matenia, D. & Mandelkow, E. M. The tau of MARK: a polarized view of the cytoskeleton. Trends Biochem. Sci. 34, 332–342 (2009).

    CAS  Article  PubMed  Google Scholar 

  58. Burre, J. et al. α-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 329, 1663–1667 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. Conde, C. & Caceres, A. Microtubule assembly, organization and dynamics in axons and dendrites. Nature Rev. Neurosci. 10, 319–332 (2009).

    CAS  Article  Google Scholar 

  60. Kubo, M. et al. LRRK2 is expressed in B-2 but not in B-1 B cells, and downregulated by cellular activation. J. Neuroimmunol. 20 Aug 2010 (doi:10.1016/j.jneuroim.2010.07.021).

    CAS  Article  PubMed  Google Scholar 

  61. Nichols, R. J. et al. Substrate specificity and inhibitors of LRRK2, a protein kinase mutated in Parkinson's disease. Biochem. J. 424, 47–60 (2009).

    CAS  Article  PubMed  Google Scholar 

  62. Haugarvoll, K. & Wszolek, Z. K. Clinical features of LRRK2 parkinsonism. Parkinsonism Relat. Disord. 15 (Suppl. 3), S205–S208 (2009).

    Article  PubMed  Google Scholar 

  63. Funayama, M. et al. A new locus for Parkinson's disease (PARK8) maps to chromosome 12p11.2-q13.1. Ann. Neurol. 51, 296–301 (2002).

    CAS  Article  PubMed  Google Scholar 

  64. Funayama, M. et al. An LRRK2 mutation as a cause for the parkinsonism in the original PARK8 family. Ann. Neurol. 57, 918–921 (2005).

    CAS  Article  PubMed  Google Scholar 

  65. Di Fonzo, A. et al. A frequent LRRK2 gene mutation associated with autosomal dominant Parkinson's disease. Lancet 365, 412–415 (2005).

    CAS  Article  PubMed  Google Scholar 

  66. Gilks, W. P. et al. A common LRRK2 mutation in idiopathic Parkinson's disease. Lancet 365, 415–416 (2005).

    CAS  PubMed  Google Scholar 

  67. Kachergus, J. et al. Identification of a novel LRRK2 mutation linked to autosomal dominant parkinsonism: evidence of a common founder across European populations. Am. J. Hum. Genet. 76, 672–680 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. Lesage, S. et al. LRRK2 G2019S as a cause of Parkinson's disease in North African Arabs. N. Engl. J. Med. 354, 2422–2423 (2006).

    Article  Google Scholar 

  69. Nichols, W. C. et al. Genetic screening for a single common LRRK2 mutation in familial Parkinson's disease. Lancet 365, 410–412 (2005).

    CAS  PubMed  Google Scholar 

  70. Ozelius, L. J. et al. LRRK2 G2019S as a cause of Parkinson's disease in Ashkenazi Jews. N. Engl. J. Med. 354, 2424–2425 (2006).

    Article  Google Scholar 

  71. Ishihara, L. et al. Clinical features of Parkinson disease patients with homozygous leucine-rich repeat kinase 2 G2019S mutations. Arch. Neurol. 63, 1250–1254 (2006).

    Article  PubMed  Google Scholar 

  72. Kumari, U. & Tan, E. K. LRRK2 in Parkinson's disease: genetic and clinical studies from patients. FEBS J. 276, 6455–6463 (2009).

    CAS  Article  PubMed  Google Scholar 

  73. Halliday, G. M. & McCann, H. The progression of pathology in Parkinson's disease. Ann. NY Acad. Sci. 1184, 188–195 (2010).

    Article  PubMed  Google Scholar 

  74. Braak, H. et al. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol. Aging 24, 197–211 (2003).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank E. Greggio and J.-M. Taymans for critically reading the manuscript. This research was supported by the Intramural Research Program of the National Institutes of Health (NIH), National Institute on Aging.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Online Mendelian Inheritance in Man website

PDGene website

PDOnline research website

Mark R. Cookson's homepage

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cookson, M. The role of leucine-rich repeat kinase 2 (LRRK2) in Parkinson's disease. Nat Rev Neurosci 11, 791–797 (2010). https://doi.org/10.1038/nrn2935

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2935

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing