Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The crucial role of pulsatile activity of the HPA axis for continuous dynamic equilibration

Abstract

The classical concept of hypothalamus–pituitary–adrenal (HPA) homeostasis comprises a feedback system within which circulating levels of glucocorticoid hormones maintain the brain and body in an optimal steady state. However, studies involving new techniques for investigating the real-time dynamics of both glucocorticoid hormones and glucocorticoid receptor function paint a different picture — namely, of continuous dynamic equilibration throughout this neuroendocrine system. This dynamic state is dictated by feedforward and feedback regulatory loops and by stochastic interactions at the level of DNA binding. We propose that this continuous oscillatory activity is crucial for optimal responsiveness of glucocorticoid-sensitive neural processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Plasticity in the glucocorticoid ultradian secretory profile.
Figure 2: Stress responsiveness during the ultradian rhythm.
Figure 3: GR action during ultradian glucocorticoid treatment.
Figure 4: A model of GR intranuclear recycling activity.
Figure 5: Pulsatile responses and regulation of the clock gene Period 1 in rat hippocampus.

Similar content being viewed by others

References

  1. Bernard, C. Leçons sur les Phénomènes de la Vie Communs aux Animaux et aux Végétaux (J.-B. Baillière, Paris, 1878) (in French).

  2. Cannon, W. Organisation for physiological homeostasis. Physiol. Rev. 9, 399–431 (1929).

    Article  Google Scholar 

  3. Rosenblueth, A., Wiener, N. & Bigelow, J. Behaviour, purpose and teleology. Philos. Sci. 10, 18–24 (1943).

    Article  Google Scholar 

  4. Selye, H. Stress (Acta Medical Publisher, Montreal, 1950).

    Google Scholar 

  5. Sterling, P. & Eyer, J. in Handbook of Life Stress, Cognition and Health (eds Fisher, S. & Reason, J.) 629–639 (Wiley, New York, 1988).

    Google Scholar 

  6. McEwen, B. S. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol. Rev. 87, 873–904 (2007).

    Article  PubMed  Google Scholar 

  7. Keller-Wood, M. E. & Dallman, M. F. Corticosteroid inhibition of ACTH secretion. Endocr. Rev. 5, 1–24 (1984).

    Article  CAS  PubMed  Google Scholar 

  8. Reppert, S. M. & Weaver, D. R. Coordination of circadian timing in mammals. Nature 418, 935–941 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. de Kloet, E. R. & Sarabdjitsingh, R. A. Everything has rhythm: focus on glucocorticoid pulsatility. Endocrinology 149, 3241–3243 (2008).

    Article  PubMed  Google Scholar 

  10. Sarabdjitsingh, R. A. et al. Disrupted corticosterone pulsatile patterns attenuate responsiveness to glucocorticoid signaling in rat brain. Endocrinology 151, 1177–1186 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Lightman, S. L. Patterns of exposure to glucocorticoid receptor ligand. Biochem. Soc. Trans. 34, 1117–1118 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Lightman, S. L. et al. The significance of glucocorticoid pulsatility. Eur. J. Pharmacol. 583, 255–262 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Veldhuis, J. D., Iranmanesh, A., Lizarralde, G. & Johnson, M. L. Amplitude modulation of a burstlike mode of cortisol secretion subserves the circadian glucocorticoid rhythm. Am. J. Physiol. 257, e6–e14 (1989).

    CAS  PubMed  Google Scholar 

  14. Seale, J. V., Wood, S. A., Atkinson, H. C., Lightman, S. L. & Harbuz, M. S. Organizational role for testosterone and estrogen on adult hypothalamic-pituitary-adrenal axis activity in the male rat. Endocrinology 146, 1973–1982 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Evuarherhe, O. et al. Organizational role for pubertal androgens on adult hypothalamic-pituitary-adrenal sensitivity to testosterone in the male rat. J. Physiol. 587, 2977–2985 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Seale, J. V. et al. Gonadectomy reverses the sexually diergic patterns of circadian and stress-induced hypothalamic-pituitary-adrenal axis activity in male and female rats. J. Neuroendocrinol. 16, 516–524 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Windle, R. J. et al. Increased corticosterone pulse frequency during adjuvant-induced arthritis and its relationship to alterations in stress responsiveness. J. Neuroendocrinol. 13, 905–911 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Harbuz, M. S. et al. Differential effects of psychological and immunological challenge on the hypothalamo-pituitary-adrenal axis function in adjuvant-induced arthritis. Ann. NY Acad. Sci. 876, 43–52 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Windle, R. J., Wood, S. A., Lightman, S. L. & Ingram, C. D. The pulsatile characteristics of hypothalamo-pituitary-adrenal activity in female Lewis and Fischer 344 rats and its relationship to differential stress responses. Endocrinology 139, 4044–4052 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Mershon, J. L., Sehlhorst, C. S., Rebar, R. W. & Liu, J. H. Evidence of a corticotropin-releasing hormone pulse generator in the macaque hypothalamus. Endocrinology 130, 2991–2996 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Ixart, G., Barbanel, G., Nouguier-Soule, J. & Assenmacher, I. A quantitative study of the pulsatile parameters of CRH-41 secretion in unanesthetized free-moving rats. Exp. Brain Res. 87, 153–158 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Engler, D. et al. Studies of the regulation of the hypothalamic-pituitary-adrenal axis in sheep with hypothalamic-pituitary disconnection. II. Evidence for in vivo ultradian hypersecretion of proopiomelanocortin peptides by the isolated anterior and intermediate pituitary. Endocrinology 127, 1956–1966 (1990).

    Article  CAS  PubMed  Google Scholar 

  23. Mindell, D. Between Human and Machine: Feedback, Control and Computing Before Cybernetics (Johns Hopkins Univ. Press, Baltimore, 2002).

    Google Scholar 

  24. Papaikonomou, E. Rat adrenocortical dynamics. J. Physiol. 265, 119–131 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dallman, M. F. et al. Regulation of ACTH secretion: variations on a theme of B. Recent Prog. Horm. Res. 43, 113–173 (1987).

    CAS  PubMed  Google Scholar 

  26. Henley, D. E. et al. Hypothalamic-pituitary-adrenal axis activation in obstructive sleep apnea: the effect of continuous positive airway pressure therapy. J. Clin. Endocrinol. Metab. 94, 4234–4242 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Russell, G. M. et al. Rapid glucocorticoid receptor-mediated inhibition of hypothalamic-pituitary-adrenal ultradian activity in healthy males. J. Neurosci. 30, 6106–6115 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Walker, J. J., Terry, J. R. & Lightman, S. L. Origin of ultradian pulsatility in the hypothalamic-pituitary-adrenal axis. Proc. Biol. Sci. 277, 1627–1633 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Windle, R. J., Wood, S. A., Shanks, N., Lightman, S. L. & Ingram, C. D. Ultradian rhythm of basal corticosterone release in the female rat: dynamic interaction with the response to acute stress. Endocrinology 139, 443–450 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Ulrich-Lai, Y. M., Arnhold, M. M. & Engeland, W. C. Adrenal splanchnic innervation contributes to the diurnal rhythm of plasma corticosterone in rats by modulating adrenal sensitivity to ACTH. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290, R1128–R1135 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Son, G. H. et al. Adrenal peripheral clock controls the autonomous circadian rhythm of glucocorticoid by causing rhythmic steroid production. Proc. Natl Acad. Sci. USA 105, 20970–20975 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cameron, A. et al. Temperature-responsive release of cortisol from its binding globulin: a protein thermocouple. J. Clin. Endocrinol. Metab. 14 July 2010 (doi:10.1210/jc.2010–0942).

  33. Ballard, P. L. Delivery and transport of glucocorticoids to target cells. Monogr. Endocrinol. 12, 25–48 (1979).

    Article  CAS  PubMed  Google Scholar 

  34. Sarabdjitsingh, R. A. et al. Variations in stress responsiveness over the ultradian glucocorticoid cycle. Endocrinology (in the press).

  35. Haller, J., Halasz, J., Mikics, E., Kruk, M. R. & Makara, G. B. Ultradian corticosterone rhythm and the propensity to behave aggressively in male rats. J. Neuroendocrinol. 12, 937–940 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Young, E. A., Abelson, J. & Lightman, S. L. Cortisol pulsatility and its role in stress regulation and health. Front. Neuroendocrinol. 25, 69–76 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Pariante, C. M. & Lightman, S. L. The HPA axis in major depression: classical theories and new developments. Trends Neurosci. 31, 464–468 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Pariante, C. M. & Miller, A. H. Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment. Biol. Psychiatry 49, 391–404 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Young, E. A., Carlson, N. E. & Brown, M. B. Twenty-four-hour ACTH and cortisol pulsatility in depressed women. Neuropsychopharmacology 25, 267–276 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Sonino, N. & Fava, G. A. Psychiatric disorders associated with Cushing's syndrome. Epidemiology, pathophysiology and treatment. CNS Drugs 15, 361–373 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Koob, G. F. & Le Moal, M. Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology 24, 97–129 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Goldbeter, A., Dupont, G. & Halloy, J. The frequency encoding of pulsatility. Novartis Found. Symp. 227, 19–36 (2000).

    CAS  PubMed  Google Scholar 

  43. Goldbeter, A. Biochemical Oscillations and Cellular Rhythms: The Molecular Basis of Periodic and Chaotic Behaviour (Cambridge Univ. Press, Cambridge, UK, 1996).

    Book  Google Scholar 

  44. Darmon, M., Brachet, P. & Da Silva, L. H. Chemotactic signals induce cell differentiation in Dictyostelium discoideum. Proc. Natl Acad. Sci. USA 72, 3163–3166 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cai, L., Dalal, C. K. & Elowitz, M. B. Frequency-modulated nuclear localization bursts coordinate gene regulation. Nature 455, 485–490 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Matthews, D. R., Naylor, B. A. & Jones, R. G. Pulsatile insulin has greater hypoglycemic effect than continuous delivery. Diabetes 37, 617–621 (1983).

    Article  Google Scholar 

  47. Wildt, L. et al. Frequency and amplitude of gonadotropin-releasing hormone stimulation and gonadotropin secretion in the rhesus monkey. Endocrinology 109, 376–385 (1981).

    Article  CAS  PubMed  Google Scholar 

  48. Belchetz, P. E., Plant, T. M., Nakai, Y., Keogh, E. J. & Knobil, E. Hypophysial responses to continuous and intermittent delivery of hypopthalamic gonadotropin-releasing hormone. Science 202, 631–633 (1978).

    Article  CAS  PubMed  Google Scholar 

  49. Tannenbaum, G. S. & Martin, J. B. Evidence for an endogenous ultradian rhythm governing growth hormone secretion in the rat. Endocrinology 98, 562–570 (1976).

    Article  CAS  PubMed  Google Scholar 

  50. Waxman, D. J., Ram, P. A., Pampori, N. A. & Shapiro, B. H. Growth hormone regulation of male-specific rat liver P450s 2A2 and 3A2: induction by intermittent growth hormone pulses in male but not female rats rendered growth hormone deficient by neonatal monosodium glutamate. Mol. Pharmacol. 48, 790–797 (1995).

    CAS  PubMed  Google Scholar 

  51. Norstedt, G. & Palmiter, R. Secretory rhythm of growth hormone regulates sexual differentiation of mouse liver. Cell 36, 805–812 (1984).

    Article  CAS  PubMed  Google Scholar 

  52. Kitchener, P., Di Blasi, F., Borrelli, E. & Piazza, P. V. Differences between brain structures in nuclear translocation and DNA binding of the glucocorticoid receptor during stress and the circadian cycle. Eur. J. Neurosci. 19, 1837–1846 (2004).

    Article  PubMed  Google Scholar 

  53. Revest, J. M. et al. The MAPK pathway and Egr-1 mediate stress-related behavioral effects of glucocorticoids. Nature Neurosci. 8, 664–672 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Conway-Campbell, B. L., Knight, D. M., Pooley, J. R., Hager, G. L. & Lightman, S. L. Intranuclear activation of glucocorticoid receptors defines a novel mechanism for continuous cellular responsiveness during glucocorticoid pulsatility. 90th Meeting of the Endocrine Society (San Francisco, California) Abstract 1–67 (2008).

  55. Stavreva, D. A. et al. Ultradian hormone stimulation induces glucocorticoid receptor-mediated pulses of gene transcription. Nature Cell Biol. 11, 1093–1102 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Stavreva, D. A., Muller, W. G., Hager, G. L., Smith, C. L. & McNally, J. G. Rapid glucocorticoid receptor exchange at a promoter is coupled to transcription and regulated by chaperones and proteasomes. Mol. Cell. Biol. 24, 2682–2697 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yang, J., Liu, J. & DeFranco, D. B. Subnuclear trafficking of glucocorticoid receptors in vitro: chromatin recycling and nuclear export. J. Cell Biol. 137, 523–538 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Carrigan, A. et al. An active nuclear retention signal in the glucocorticoid receptor functions as a strong inducer of transcriptional activation. J. Biol. Chem. 282, 10963–10971 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Wang, X., Pongrac, J. L. & DeFranco, D. B. Glucocorticoid receptors in hippocampal neurons that do not engage proteasomes escape from hormone-dependent down-regulation but maintain transactivation activity. Mol. Endocrinol. 16, 1987–1998 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Deroo, B. J. et al. Proteasomal inhibition enhances glucocorticoid receptor transactivation and alters its subnuclear trafficking. Mol. Cell. Biol. 22, 4113–4123 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kinyamu, H. K. & Archer, T. K. Proteasome activity modulates chromatin modifications and RNA polymerase II phosphorylation to enhance glucocorticoid receptor-mediated transcription. Mol. Cell. Biol. 27, 4891–4904 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Conway-Campbell, B. L. et al. Proteasome-dependent down-regulation of activated nuclear hippocampal glucocorticoid receptors determines dynamic responses to corticosterone. Endocrinology 148, 5470–5477 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Breuner, C. W. & Orchinik, M. Plasma binding proteins as mediators of corticosteroid action in vertebrates. J. Endocrinol. 175, 99–112 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Droste, S. K. et al. Corticosterone levels in the brain show a distinct ultradian rhythm but a delayed response to forced swim stress. Endocrinology 149, 3244–3253 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Reul, J. M. & de Kloet, E. R. Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology 117, 2505–2511 (1985).

    Article  CAS  PubMed  Google Scholar 

  66. de Kloet, E. R., Vreugdenhil, E., Oitzl, M. S. & Joels, M. Brain corticosteroid receptor balance in health and disease. Endocr. Rev. 19, 269–301 (1998).

    CAS  PubMed  Google Scholar 

  67. Yamamoto, S. et al. Expression of the Per1 gene in the hamster: brain atlas and circadian characteristics in the suprachiasmatic nucleus. J. Comp. Neurol. 430, 518–532 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Hastings, M. H. et al. Expression of clock gene products in the suprachiasmatic nucleus in relation to circadian behaviour. Novartis Found. Symp. 253, 203–217; discussion 102–109, 218–222, 281–284 (2003).

    CAS  PubMed  Google Scholar 

  69. Conway-Campbell, B. L. et al. Glucocorticoid ultradian rhythmicity directs cyclical gene pulsing of the hippocampal CLOCK gene Period 1. J. Neuroendocrinol. 23 Jul 2010 (doi:10.1111/j.1365–28262010.02051.x).

  70. Koyanagi, S. et al. Chronic treatment with prednisolone represses the circadian oscillation of clock gene expression in mouse peripheral tissues. Mol. Endocrinol. 20, 573–583 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Bremner, J. D. et al. Hippocampal volume reduction in major depression. Am. J. Psychiatry 157, 115–118 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Quirin, M., Gillath, O., Pruessner, J. C. & Eggert, L. D. Adult attachment insecurity and hippocampal cell density. Soc. Cogn. Affect Neurosci. 5, 39–47 (2010).

    Article  PubMed  Google Scholar 

  73. Deuschle, M. et al. Diurnal activity and pulsatility of the hypothalamus-pituitary-adrenal system in male depressed patients and healthy controls. J. Clin. Endocrinol. Metab. 82, 234–238 (1997).

    Article  CAS  PubMed  Google Scholar 

  74. Joëls, M. & Baram, T. Z. The neuro-symphony of stress. Nature Rev. Neurosci. 10, 459–466 (2009).

    Article  Google Scholar 

  75. Spiga, F. & Lightman, S. L. Dose-dependent effects of corticosterone on nuclear glucocorticoid receptors and their binding to DNA in the brain and pituitary of the rat. Brain Res. 1293, 101–107 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. John, S. et al. Interaction of the glucocorticoid receptor with the chromatin landscape. Mol. Cell 29, 611–624 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Reul, J. M. & Chandramohan, Y. Epigenetic mechanisms in stress-related memory formation. Psychoneuroendocrinology 32, S21–S25 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Reul, J. M., Hesketh, S. A., Collins, A. & Mecinas, M. G. Epigenetic mechanisms in the dentate gyrus act as a molecular switch in hippocampus-associated memory formation. Epigenetics 4, 434–439 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. George, C. L. et al. The pattern dependent effects of glucocorticoid exposure on prefrontal cortex transcriptional output. 92nd annual meeting of the Endocrine Society (Abstr.) P1–626 (San Diego, California, 2010).

    Google Scholar 

  80. Meijer, O. C. Coregulator proteins and corticosteroid action in the brain. J. Neuroendocrinol. 14, 499–505 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Meijer, O. C., van der, L. S., Lachize, S., Steenbergen, P. J. & de Kloet, E. R. Steroid receptor coregulator diversity: what can it mean for the stressed brain? Neuroscience 138, 891–899 (2005).

    Article  PubMed  Google Scholar 

  82. Krauskopf, B., Osinga, H. M. & Galan-vioque, J. Numerical Continuation Methods For Dynamic Systems: Path Following and Boundary Value Problems (Springer, Berlin, 2007).

    Book  Google Scholar 

  83. Henley, D. E. et al. Development of an automated blood sampling system for use in humans. J. Med. Eng. Technol. 33, 199–208 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge funding from the Wellcome Trust (Programme Grant 089647/Z/09/Z), the Biotechnology and Biological Sciences Research Council and the Neuroendocrine Charitable Trust.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (figure)

Schematic of the automated infusion and ABS system. (PDF 295 kb)

Related links

Related links

FURTHER INFORMATION

Stafford L. Lightman's homepage

Glossary

Allostatic load

The physiological costs of chronic exposure to a fluctuating or heightened neural or neuroendocrine response that results from repeated or chronic stress.

Circadian cycle

The regular cycling of biological processes in an organism over a 24-hour period that occurs regardless of the zeitgeber.

Frequency encoding

The encoding of the information in a system by the frequency of the input.

Heteronuclear RNA

The immediate transcript of a gene, which is subsequently processed into mRNA.

Numerical continuation

A method of computing approximate solutions of a system of parameterized nonlinear equations.

Portal blood

The blood in the portal venous system that connects the hypothalamus and the anterior pituitary.

Stress

A condition that disturbs the physiological (or psychological) homeostasis of an animal.

Thermocouple

A temperature sensor.

Ultradian rhythm

A rhythm with a shorter period than a circadian rhythm — that is, with a frequency greater than one cycle in 24 hours.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lightman, S., Conway-Campbell, B. The crucial role of pulsatile activity of the HPA axis for continuous dynamic equilibration. Nat Rev Neurosci 11, 710–718 (2010). https://doi.org/10.1038/nrn2914

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2914

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing