Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The habenula: from stress evasion to value-based decision-making

Key Points

  • The habenula is a phylogenetically old brain structure that is present in virtually all vertebrate species. It receives inputs from the limbic system and the basal ganglia and sends outputs to midbrain areas that are involved in the release of dopamine (the substantia nigra pars compacta and ventral tegmental area) and serotonin (the median and dorsal raphe nuclei).

  • Having co-evolved with the pineal gland, which regulates circadian and seasonal rhythmicity, the habenula has a role in the control of sleep and sleep-like behaviour. It may help to minimize energy expenditure by suppressing body movements during sleep-like states.

  • Neurons in the lateral habenula encode negative reward prediction errors and provide dopamine neurons with reward-related signals by (indirectly) inhibiting them. Thus, the lateral habenula may have a role in reinforcement learning.

  • Lateral habenula neurons are excited by sensory stimuli that predict aversive outcomes as well as by the aversive outcomes themselves. By sending such negative value signals through dopamine neurons, the lateral habenula may contribute to the suppression of body movements that lead to aversive outcomes.

  • Stress resulting from prolonged exposure to aversive stimuli may cause hyperactivity of lateral habenula neurons and immune responses in the medial habenula. These responses may lead to a general suppression of motor activity and other behavioural changes through modulation of the activity of dopamine and serotonin neurons.

  • Dysfunctions of the habenula may contribute to various psychiatric disorders, including major depression and schizophrenia. In patients with depression and in animal models of depression, neural activity is abnormally increased in the habenula and in areas that receive inputs from the habenula.

  • It is speculated that the habenula evolved as a general motor controller devoted to circadian control of behaviour and that it has subsequently acquired the ability to control value-based decision-making as more brain areas formed connections to, and received projections from, the habenula.

Abstract

Surviving in a world with hidden rewards and dangers requires choosing the appropriate behaviours. Recent discoveries indicate that the habenula plays a prominent part in such behavioural choice through its effects on neuromodulator systems, in particular the dopamine and serotonin systems. By inhibiting dopamine-releasing neurons, habenula activation leads to the suppression of motor behaviour when an animal fails to obtain a reward or anticipates an aversive outcome. Moreover, the habenula is involved in behavioural responses to pain, stress, anxiety, sleep and reward, and its dysfunction is associated with depression, schizophrenia and drug-induced psychosis. As a highly conserved structure in the brain, the habenula provides a fundamental mechanism for both survival and decision-making.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Anatomy of the habenula.
Figure 2: Proposed common mechanisms for the diverse functions of the habenula.
Figure 3: Role of the habenula in value-based decision-making.
Figure 4: The lateral habenula–dopamine system for modulation of saccadic eye movements.
Figure 5: The lateral habenula encodes motivational values.

References

  1. Concha, M. L. & Wilson, S. W. Asymmetry in the epithalamus of vertebrates. J. Anat. 199, 63–84 (2001).

    CAS  PubMed  Article  Google Scholar 

  2. Aizawa, H. et al. Laterotopic representation of left-right information onto the dorso-ventral axis of a zebrafish midbrain target nucleus. Curr. Biol. 15, 238–243 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. Dadda, M., Domenichini, A., Piffer, L., Argenton, F. & Bisazza, A. Early differences in epithalamic left–right asymmetry influence lateralization and personality of adult zebrafish. Behav. Brain Res. 206, 208–215 (2010).

    PubMed  Article  Google Scholar 

  4. Guglielmotti, V. & Cristino, L. The interplay between the pineal complex and the habenular nuclei in lower vertebrates in the context of the evolution of cerebral asymmetry. Brain Res. Bull. 69, 475–488 (2006).

    CAS  PubMed  Article  Google Scholar 

  5. Ronnekleiv, O. K. & Moller, M. Brain-pineal nervous connections in the rat: an ultrastructure study following habenular lesion. Exp. Brain Res. 37, 551–562 (1979).

    CAS  PubMed  Article  Google Scholar 

  6. Herkenham, M. & Nauta, W. J. Afferent connections of the habenular nuclei in the rat. A horseradish peroxidase study, with a note on the fiber-of-passage problem. J. Comp. Neurol. 173, 123–146 (1977).

    CAS  PubMed  Article  Google Scholar 

  7. Herkenham, M. & Nauta, W. J. Efferent connections of the habenular nuclei in the rat. J. Comp. Neurol. 187, 19–47 (1979). Together with a companion paper (reference 6) this comprehensive anatomical study on the rat habenula provides detailed axonal projection patterns to and from the lateral and medial habenula.

    CAS  PubMed  Article  Google Scholar 

  8. Jhou, T. C., Geisler, S., Marinelli, M., Degarmo, B. A. & Zahm, D. S. The mesopontine rostromedial tegmental nucleus: a structure targeted by the lateral habenula that projects to the ventral tegmental area of Tsai and substantia nigra compacta. J. Comp. Neurol. 513, 566–596 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  9. Groenewegen, H. J., Ahlenius, S., Haber, S. N., Kowall, N. W. & Nauta, W. J. Cytoarchitecture, fiber connections, and some histochemical aspects of the interpeduncular nucleus in the rat. J. Comp. Neurol. 249, 65–102 (1986).

    CAS  PubMed  Article  Google Scholar 

  10. Sutherland, R. J. The dorsal diencephalic conduction system: a review of the anatomy and functions of the habenular complex. Neurosci. Biobehav. Rev. 6, 1–13 (1982).

    CAS  PubMed  Article  Google Scholar 

  11. Lecourtier, L. & Kelly, P. H. A conductor hidden in the orchestra? Role of the habenular complex in monoamine transmission and cognition. Neurosci. Biobehav. Rev. 31, 658–672 (2007).

    CAS  PubMed  Article  Google Scholar 

  12. Morris, J. S., Smith, K. A., Cowen, P. J., Friston, K. J. & Dolan, R. J. Covariation of activity in habenula and dorsal raphe nuclei following tryptophan depletion. Neuroimage 10, 163–172 (1999). During transient depressive relapses that were induced by tryptophan depletion in volunteer patients, neural activity assessed by positron emission tomography increased in the habenula and the dorsal raphe. A linear correlation between habenula and raphe activity was observed in patients who experienced strong depressive mood.

    CAS  PubMed  Article  Google Scholar 

  13. Ullsperger, M. & von Cramon, D. Y. Error monitoring using external feedback: specific roles of the habenular complex, the reward system, and the cingulate motor area revealed by functional magnetic resonance imaging. J. Neurosci. 23, 4308–4314 (2003). Functional MRI carried out on human subjects while they performed a dynamically adaptive motion prediction task showed that negative feedback activated the rostral cingulate motor area, inferior anterior insula and habenula.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. Geisler, S. & Trimble, M. The lateral habenula: no longer neglected. CNS Spectr. 13, 484–489 (2008).

    PubMed  Article  Google Scholar 

  15. Haun, F., Eckenrode, T. C. & Murray, M. Habenula and thalamus cell transplants restore normal sleep behaviors disrupted by denervation of the interpeduncular nucleus. J. Neurosci. 12, 3282–3290 (1992). Lesions of the fasciculus retroflexus (habenula output) in rats markedly decreased the muscle atonia component of REM sleep and reduced the duration of sleep episodes. Transplants of fetal habenula cells in the lesioned rats restored the normal frequency of REM atonia.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. Valjakka, A. et al. The fasciculus retroflexus controls the integrity of REM sleep by supporting the generation of hippocampal theta rhythm and rapid eye movements in rats. Brain Res. Bull. 47, 171–184 (1998).

    CAS  PubMed  Article  Google Scholar 

  17. Eckenrode, T. C., Murray, M. & Haun, F. Habenula and thalamus cell transplants mediate different specific patterns of innervation in the interpeduncular nucleus. J. Neurosci. 12, 3272–3281 (1992).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. Guilding, C. & Piggins, H. D. Challenging the omnipotence of the suprachiasmatic timekeeper: are circadian oscillators present throughout the mammalian brain? Eur. J. Neurosci. 25, 3195–3216 (2007).

    PubMed  Article  Google Scholar 

  19. Zhao, H. & Rusak, B. Circadian firing-rate rhythms and light responses of rat habenular nucleus neurons in vivo and in vitro. Neuroscience 132, 519–528 (2005). Cells in the lateral and medial habenula were activated or suppressed by retinal illumination and showed higher activity during the day than during the night. Cells in the lateral habenula, but not the medial habenula, maintained the circadian rhythmicity even in slice preparation.

    CAS  PubMed  Article  Google Scholar 

  20. Herkenham, M. Anesthetics and the habenulo-interpeduncular system: selective sparing of metabolic activity. Brain Res. 210, 461–466 (1981).

    CAS  PubMed  Article  Google Scholar 

  21. van Nieuwenhuijzen, P. S., McGregor, I. S. & Hunt, G. E. The distribution of g-hydroxybutyrate-induced Fos expression in rat brain: comparison with baclofen. Neuroscience 158, 441–455 (2009).

    CAS  PubMed  Article  Google Scholar 

  22. Abulafia, R., Zalkind, V. & Devor, M. Cerebral activity during the anesthesia-like state induced by mesopontine microinjection of pentobarbital. J. Neurosci. 29, 7053–7064 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. Allada, R. An emerging link between general anesthesia and sleep. Proc. Natl Acad. Sci. USA 105, 2257–2258 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. Kilduff, T. S., Sharp, F. R. & Heller, H. C. [14C]2-deoxyglucose uptake in ground squirrel brain during hibernation. J. Neurosci. 2, 143–157 (1982).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. Yu, E. Z., Hallenbeck, J. M., Cai, D. & McCarron, R. M. Elevated arylalkylamine-N.-acetyltransferase (AA-NAT) gene expression in medial habenular and suprachiasmatic nuclei of hibernating ground squirrels. Brain Res. Mol. Brain Res. 102, 9–17 (2002).

    CAS  PubMed  Article  Google Scholar 

  26. Sugama, S. & Conti, B. Interleukin-18 and stress. Brain Res. Rev. 58, 85–95 (2008).

    CAS  PubMed  Article  Google Scholar 

  27. Kubota, T., Fang, J., Brown, R. A. & Krueger, J. M. Interleukin-18 promotes sleep in rabbits and rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281, R828–R838 (2001).

    CAS  PubMed  Article  Google Scholar 

  28. Pavel, S. & Eisner, C. A GABAergic habenulo–raphe pathway mediates both serotoninergic and hypnogenic effects of vasotocin in cats. Brain Res. Bull. 13, 623–627 (1984).

    CAS  PubMed  Article  Google Scholar 

  29. Vetrivelan, R., Fuller, P. M., Tong, Q. & Lu, J. Medullary circuitry regulating rapid eye movement sleep and motor atonia. J. Neurosci. 29, 9361–9369 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Holstege, G. The mesopontine rostromedial tegmental nucleus and the emotional motor system: role in basic survival behavior. J. Comp. Neurol. 513, 559–565 (2009).

    PubMed  Article  Google Scholar 

  31. Brainard, G. C. et al. Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor. J. Neurosci. 21, 6405–6412 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. Semm, P., Schneider, T. & Vollrath, L. Morphological and electrophysiological evidence for habenular influence on the guinea-pig pineal gland. J. Neural Transm. 50, 247–266 (1981).

    CAS  PubMed  Article  Google Scholar 

  33. Hattar, S. et al. Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J. Comp. Neurol. 497, 326–349 (2006).

    PubMed  PubMed Central  Article  Google Scholar 

  34. Imeri, L. & Opp, M. R. How (and why) the immune system makes us sleep. Nature Rev. Neurosci. 10, 199–210 (2009).

    CAS  Article  Google Scholar 

  35. Siegel, J. M. Sleep viewed as a state of adaptive inactivity. Nature Rev. Neurosci. 10, 747–753 (2009).

    CAS  Article  Google Scholar 

  36. Lee, E. H. & Huang, S. L. Role of lateral habenula in the regulation of exploratory behavior and its relationship to stress in rats. Behav. Brain Res. 30, 265–271 (1988).

    CAS  PubMed  Article  Google Scholar 

  37. Lecourtier, L. & Kelly, P. H. Bilateral lesions of the habenula induce attentional disturbances in rats. Neuropsychopharmacology 30, 484–496 (2005).

    PubMed  Article  Google Scholar 

  38. Selby, G. in Handbook of Clinical Neurology, Vol. 6 (eds. Vinken, P. J. & Bruyn, G. W.) 173–211 (North Holland Publishing Company, Amsterdam, 1968).

    Google Scholar 

  39. Christoph, G. R., Leonzio, R. J. & Wilcox, K. S. Stimulation of the lateral habenula inhibits dopamine-containing neurons in the substantia nigra and ventral tegmental area of the rat. J. Neurosci. 6, 613–619 (1986).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. Ji, H. & Shepard, P. D. Lateral habenula stimulation inhibits rat midbrain dopamine neurons through a GABA(A) receptor-mediated mechanism. J. Neurosci. 27, 6923–6930 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. Matsumoto, M. & Hikosaka, O. Lateral habenula as a source of negative reward signals in dopamine neurons. Nature 447, 1111–1115 (2007).

    CAS  PubMed  Article  Google Scholar 

  42. Nishikawa, T., Fage, D. & Scatton, B. Evidence for, and nature of, the tonic inhibitory influence of habenulointerpeduncular pathways upon cerebral dopaminergic transmission in the rat. Brain Res. 373, 324–336 (1986).

    CAS  PubMed  Article  Google Scholar 

  43. Schultz, W. Predictive reward signal of dopamine neurons. J. Neurophysiol. 80, 1–27 (1998).

    CAS  PubMed  Article  Google Scholar 

  44. Hikosaka, O. Basal ganglia mechanisms of reward-oriented eye movement. Ann. N. Y. Acad. Sci. 1104, 229–249 (2007).

    CAS  PubMed  Article  Google Scholar 

  45. Hong, S. & Hikosaka, O. The globus pallidus sends reward-related signals to the lateral habenula. Neuron 60, 720–729 (2008). In the monkey, during the performance of a saccade task with positionally biased reward outcomes, neurons that project to the lateral habenula were found mainly in the dorsal and ventral borders of the internal segment of the globus pallidus. A majority of them were excited by the no-reward-predicting target and inhibited by the reward-predicting target, similarly to lateral habenula neurons.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Rajakumar, N., Elisevich, K. & Flumerfelt, B. A. Compartmental origin of the striato-entopeduncular projection in the rat. J. Comp. Neurol. 331, 286–296 (1993).

    CAS  PubMed  Article  Google Scholar 

  47. Kim, U. Topographic commissural and descending projections of the habenula in the rat. J. Comp. Neurol. 513, 173–187 (2009).

    PubMed  Article  Google Scholar 

  48. Kaufling, J., Veinante, P., Pawlowski, S. A., Freund-Mercier, M. J. & Barrot, M. Afferents to the GABAergic tail of the ventral tegmental area in the rat. J. Comp. Neurol. 513, 597–621 (2009).

    PubMed  Article  Google Scholar 

  49. Dafny, N. & Qiao, J. T. Habenular neuron responses to noxious input are modified by dorsal raphe stimulation. Neurol. Res. 12, 117–121 (1990).

    CAS  PubMed  Article  Google Scholar 

  50. Matsumoto, N., Yahata, F., Kawarada, K., Kamata, K. & Suzuki, T. A. Tooth pulp stimulation induces c-fos expression in the lateral habenular nucleus of the cat. Neuroreport 5, 2397–2400 (1994).

    CAS  PubMed  Article  Google Scholar 

  51. Mahieux, G. & Benabid, A. L. Naloxone-reversible analgesia induced by electrical stimulation of the habenula in the rat. Brain Res. 406, 118–129 (1987).

    CAS  PubMed  Article  Google Scholar 

  52. Cohen, S. R. & Melzack, R. The habenula and pain: repeated electrical stimulation produces prolonged analgesia but lesions have no effect on formalin pain or morphine analgesia. Behav. Brain Res. 54, 171–178 (1993).

    CAS  PubMed  Article  Google Scholar 

  53. Matsumoto, M. & Hikosaka, O. Representation of negative motivational value in the primate lateral habenula. Nature Neurosci. 12, 77–84 (2009).

    CAS  PubMed  Article  Google Scholar 

  54. Jhou, T. C., Fields, H. L., Baxter, M. G., Saper, C. B. & Holland, P. C. The rostromedial tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine neurons, encodes aversive stimuli and inhibits motor responses. Neuron 61, 786–800 (2009). GABAergic neurons in the rostromedial tegmental nucleus, which receive inputs from the lateral habenula and project to midbrain dopamine neurons, showed phasic activation and/or Fos induction after aversive stimuli and inhibitions after rewards or reward-predicting stimuli. Lesions of this nucleus markedly reduced passive fear behaviours.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. Nielson, H. C. & McIver, A. H. Cold stress and habenular lesion effects on rat behaviors. J. Appl. Physiol. 21, 655–660 (1966).

    CAS  PubMed  Article  Google Scholar 

  56. Rausch, L. J. & Long, C. J. Habenular Lesions and avoidance learning deficits in allbins rats. Physiol. Behav. 2, 352–356 (1974).

    Google Scholar 

  57. Thornton, E. W., Bradbury, G. E., Evans, J. A. & Wickens, A. A failure to support cross-sensitization between effects of apomorphine and lesions of the habenula nucleus. Pharmacol. Biochem. Behav. 32, 77–81 (1989).

    CAS  PubMed  Article  Google Scholar 

  58. Katz, R. J., Roth, K. A. & Carroll, B. J. Acute and chronic stress effects on open field activity in the rat: implications for a model of depression. Neurosci. Biobehav. Rev. 5, 247–251 (1981).

    CAS  PubMed  Article  Google Scholar 

  59. Shumake, J. & Gonzalez-Lima, F. Brain systems underlying susceptibility to helplessness and depression. Behav. Cogn. Neurosci. Rev. 2, 198–221 (2003).

    CAS  PubMed  Article  Google Scholar 

  60. Wirtshafter, D., Asin, K. E. & Pitzer, M. R. Dopamine agonists and stress produce different patterns of Fos-like immunoreactivity in the lateral habenula. Brain Res. 633, 21–26 (1994).

    CAS  PubMed  Article  Google Scholar 

  61. Phillipson, O. T. & Pycock, C. J. Dopamine neurones of the ventral tegmentum project to both medial and lateral habenula. Some implications for habenular function. Exp. Brain Res. 45, 89–94 (1982).

    CAS  PubMed  Google Scholar 

  62. Sugama, S. et al. Neurons of the superior nucleus of the medial habenula and ependymal cells express IL-18 in rat CNS. Brain Res. 958, 1–9 (2002).

    CAS  PubMed  Article  Google Scholar 

  63. Cirulli, F., Pistillo, L., de Acetis, L., Alleva, E. & Aloe, L. Increased number of mast cells in the central nervous system of adult male mice following chronic subordination stress. Brain Behav. Immun. 12, 123–133 (1998).

    CAS  PubMed  Article  Google Scholar 

  64. Seligman, M. E. Learned helplessness. Annu. Rev. Med. 23, 407–412 (1972).

    CAS  PubMed  Article  Google Scholar 

  65. Matsumoto, M. & Hikosaka, O. Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature 459, 837–841 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. Shumake, J., Edwards, E. & Gonzalez-Lima, F. Opposite metabolic changes in the habenula and ventral tegmental area of a genetic model of helpless behavior. Brain Res. 963, 274–281 (2003).

    CAS  PubMed  Article  Google Scholar 

  67. Takase, L. F. et al. Inescapable shock activates serotonergic neurons in all raphe nuclei of rat. Behav. Brain Res. 153, 233–239 (2004).

    PubMed  Article  Google Scholar 

  68. Maier, S. F. & Watkins, L. R. Stressor controllability and learned helplessness: the roles of the dorsal raphe nucleus, serotonin, and corticotropin-releasing factor. Neurosci. Biobehav. Rev. 29, 829–841 (2005).

    CAS  PubMed  Article  Google Scholar 

  69. Aghajanian, G. K. & Wang, R. Y. Habenular and other midbrain raphe afferents demonstrated by a modified retrograde tracing technique. Brain Res. 122, 229–242 (1977).

    CAS  PubMed  Article  Google Scholar 

  70. Stern, W. C., Johnson, A., Bronzino, J. D. & Morgane, P. J. Effects of electrical stimulation of the lateral habenula on single-unit activity of raphe neurons. Exp. Neurol. 65, 326–342 (1979).

    CAS  PubMed  Article  Google Scholar 

  71. Nishikawa, T. & Scatton, B. Inhibitory influence of GABA on central serotonergic transmission. Involvement of the habenulo-raphe pathways in the GABAergic inhibition of ascending cerebral serotonergic neurons. Brain Res. 331, 81–90 (1985).

    CAS  PubMed  Article  Google Scholar 

  72. Kalen, P., Lindvall, O. & Bjorklund, A. Electrical stimulation of the lateral habenula increases hippocampal noradrenaline release as monitored by in vivo microdialysis. Exp. Brain Res. 76, 239–245 (1989).

    CAS  PubMed  Article  Google Scholar 

  73. Nakamura, K., Matsumoto, M. & Hikosaka, O. Reward-dependent modulation of neuronal activity in the primate dorsal raphe nucleus. J. Neurosci. 28, 5331–5343 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. Bromberg-Martin, E. S., Hikosaka, O. & Nakamura, K. Coding of task reward value in the dorsal raphe nucleus. J. Neurosci. 30, 6262–6272 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. Johnsen, S. & Lohmann, K. J. The physics and neurobiology of magnetoreception. Nature Rev. Neurosci. 6, 703–712 (2005).

    CAS  Article  Google Scholar 

  76. Chung-Davidson, Y. W., Yun, S. S., Teeter, J. & Li, W. Brain pathways and behavioral responses to weak electric fields in parasitic sea lampreys (Petromyzon marinus). Behav. Neurosci. 118, 611–619 (2004).

    PubMed  Article  Google Scholar 

  77. Taube, J. S. The head direction signal: origins and sensory-motor integration. Annu. Rev. Neurosci. 30, 181–207 (2007).

    CAS  PubMed  Article  Google Scholar 

  78. Clark, B. J., Sarma, A. & Taube, J. S. Head direction cell instability in the anterior dorsal thalamus after lesions of the interpeduncular nucleus. J. Neurosci. 29, 493–507 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. Sharp, P. E., Turner-Williams, S. & Tuttle, S. Movement-related correlates of single cell activity in the interpeduncular nucleus and habenula of the rat during a pellet-chasing task. Behav. Brain Res. 166, 55–70 (2006).

    PubMed  Article  Google Scholar 

  80. Matthews-Felton, T., Corodimas, K. P., Rosenblatt, J. S. & Morrell, J. I. Lateral habenula neurons are necessary for the hormonal onset of maternal behavior and for the display of postpartum estrus in naturally parturient female rats. Behav. Neurosci. 109, 1172–1188 (1995).

    CAS  PubMed  Article  Google Scholar 

  81. Lonstein, J. S., Simmons, D. A., Swann, J. M. & Stern, J. M. Forebrain expression of c-fos due to active maternal behaviour in lactating rats. Neuroscience 82, 267–281 (1998).

    CAS  PubMed  Article  Google Scholar 

  82. Champagne, F. A. et al. Variations in nucleus accumbens dopamine associated with individual differences in maternal behavior in the rat. J. Neurosci. 24, 4113–4123 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  83. Caldecott-Hazard, S., Mazziotta, J. & Phelps, M. Cerebral correlates of depressed behavior in rats, visualized using 14C-2-deoxyglucose autoradiography. J. Neurosci. 8, 1951–1961 (1988). Regional glucose metabolism was measured using 2-deoxyglucose in three rat models of depressed behaviour (induced by injections of α-methyl-para-tyrosine, withdrawal from chronic amphetamine, or stress). Glucose metabolism was elevated in the lateral habenula in each of the three models.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  84. Yang, L. M., Hu, B., Xia, Y. H., Zhang, B. L. & Zhao, H. Lateral habenula lesions improve the behavioral response in depressed rats via increasing the serotonin level in dorsal raphe nucleus. Behav. Brain Res. 188, 84–90 (2008).

    PubMed  Article  Google Scholar 

  85. Roiser, J. P. et al. The effects of tryptophan depletion on neural responses to emotional words in remitted depression. Biol. Psychiatry 66, 441–450 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. Soares, J. C. & Mann, J. J. The functional neuroanatomy of mood disorders. J. Psychiatr. Res. 31, 393–432 (1997).

    CAS  PubMed  Article  Google Scholar 

  87. Kapur, S. & Mann, J. J. Role of the dopaminergic system in depression. Biol. Psychiatry 32, 1–17 (1992).

    CAS  PubMed  Article  Google Scholar 

  88. Wise, R. A. Dopamine, learning and motivation. Nature Rev. Neurosci. 5, 483–494 (2004).

    CAS  Article  Google Scholar 

  89. Middlemiss, D. N., Price, G. W. & Watson, J. M. Serotonergic targets in depression. Curr. Opin. Pharmacol. 2, 18–22 (2002).

    CAS  PubMed  Article  Google Scholar 

  90. Amat, J. et al. The role of the habenular complex in the elevation of dorsal raphe nucleus serotonin and the changes in the behavioral responses produced by uncontrollable stress. Brain Res. 917, 118–126 (2001).

    CAS  PubMed  Article  Google Scholar 

  91. Dantzer, R., O'Connor, J. C., Freund, G. G., Johnson, R. W. & Kelley, K. W. From inflammation to sickness and depression: when the immune system subjugates the brain. Nature Rev. Neurosci. 9, 46–56 (2008).

    CAS  Article  Google Scholar 

  92. Sartorius, A. & Henn, F. A. Deep brain stimulation of the lateral habenula in treatment resistant major depression. Med. Hypotheses 69, 1305–1308 (2007).

    PubMed  Article  Google Scholar 

  93. Hauptman, J. S., DeSalles, A. A., Espinoza, R., Sedrak, M. & Ishida, W. Potential surgical targets for deep brain stimulation in treatment-resistant depression. Neurosurg. Focus 25, e3 (2008).

    PubMed  Article  Google Scholar 

  94. Sartorius, A. et al. Remission of major depression under deep brain stimulation of the lateral habenula in a therapy-refractory patient. Biol. Psychiatry 67, e9–e11 (2009).

    Article  Google Scholar 

  95. Mayberg, H. S. et al. Deep brain stimulation for treatment-resistant depression. Neuron 45, 651–660 (2005).

    CAS  PubMed  Article  Google Scholar 

  96. Benabid, A. L. Deep brain stimulation for Parkinson's disease. Curr. Opin. Neurobiol. 13, 696–706 (2003).

    CAS  PubMed  Article  Google Scholar 

  97. Ellison, G. Stimulant-induced psychosis, the dopamine theory of schizophrenia, and the habenula. Brain Res. Brain Res. Rev. 19, 223–239 (1994).

    CAS  PubMed  Article  Google Scholar 

  98. Perrotti, L. I. et al. DeltaFosB accumulates in a GABAergic cell population in the posterior tail of the ventral tegmental area after psychostimulant treatment. Eur. J. Neurosci. 21, 2817–2824 (2005).

    PubMed  Article  Google Scholar 

  99. Geisler, S. et al. Prominent activation of brainstem and pallidal afferents of the ventral tegmental area by cocaine. Neuropsychopharmacology 33, 2688–2700 (2008).

    CAS  PubMed  Article  Google Scholar 

  100. Sandyk, R. Pineal and habenula calcification in schizophrenia. Int. J. Neurosci. 67, 19–30 (1992).

    CAS  PubMed  Article  Google Scholar 

  101. Shepard, P. D., Holcomb, H. H. & Gold, J. M. Schizophrenia in translation: the presence of absence: habenular regulation of dopamine neurons and the encoding of negative outcomes. Schizophr. Bull. 32, 417–421 (2006).

    PubMed  PubMed Central  Article  Google Scholar 

  102. Gold, J. M. & Weinberger, D. R. Cognitive deficits and the neurobiology of schizophrenia. Curr. Opin. Neurobiol. 5, 225–230 (1995).

    CAS  PubMed  Article  Google Scholar 

  103. Joyce, J. N. The dopamine hypothesis of schizophrenia: limbic interactions with serotonin and norepinephrine. Psychopharmacology (Berl.) 112, S16–S34 (1993).

    CAS  Article  Google Scholar 

  104. Lecourtier, L., Neijt, H. C. & Kelly, P. H. Habenula lesions cause impaired cognitive performance in rats: implications for schizophrenia. Eur. J. Neurosci. 19, 2551–2560 (2004).

    PubMed  Article  Google Scholar 

  105. Lecourtier, L. et al. Habenula lesions alter synaptic plasticity within the fimbria-accumbens pathway in the rat. Neuroscience 141, 1025–1032 (2006).

    CAS  PubMed  Article  Google Scholar 

  106. De Biasi, M. & Salas, R. Influence of neuronal nicotinic receptors over nicotine addiction and withdrawal. Exp. Biol. Med. (Maywood) 233, 917–929 (2008).

    CAS  Article  Google Scholar 

  107. Salas, R., Sturm, R., Boulter, J. & De Biasi, M. Nicotinic receptors in the habenulo-interpeduncular system are necessary for nicotine withdrawal in mice. J. Neurosci. 29, 3014–3018 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  108. Sanders, D. et al. Nicotinic receptors in the habenula: importance for memory. Neuroscience 166, 386–390 (2010).

    CAS  PubMed  Article  Google Scholar 

  109. Carlson, J., Noguchi, K. & Ellison, G. Nicotine produces selective degeneration in the medial habenula and fasciculus retroflexus. Brain Res. 906, 127–134 (2001).

    CAS  PubMed  Article  Google Scholar 

  110. Bracha, H. S. Freeze, flight, fight, fright, faint: adaptationist perspectives on the acute stress response spectrum. CNS Spectr. 9, 679–685 (2004).

    PubMed  Article  Google Scholar 

  111. Tavakoli-Nezhad, M. & Schwartz, W. J. Hamsters running on time: is the lateral habenula a part of the clock? Chronobiol. Int. 23, 217–224 (2006).

    CAS  PubMed  Article  Google Scholar 

  112. Price, J., Sloman, L., Gardner, R. Jr, Gilbert, P. & Rohde, P. The social competition hypothesis of depression. Br. J. Psychiatry 164, 309–315 (1994).

    CAS  PubMed  Article  Google Scholar 

  113. Thorndike, E. L. Animal Intelligence: Experimental Studies (Macmillan, New York, 1911).

    Book  Google Scholar 

  114. Schultz, W. & Dickinson, A. Neuronal coding of prediction errors. Annu. Rev. Neurosci. 23, 473–500 (2000).

    CAS  PubMed  Article  Google Scholar 

  115. Wickens, J. R., Horvitz, J. C., Costa, R. M. & Killcross, S. Dopaminergic mechanisms in actions and habits. J. Neurosci. 27, 8181–8183 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

I would like to thank my colleagues Masayuki Matsumoto, Simon Hong and Ethan Bromberg-Martin, who have discovered various properties of the primate habenula and have provided me with excellent ideas on the function of the habenula. I also thank Ilya Monosov for helping me improve the manuscript. This research was supported by the Intramural Research Program at the National Institutes of Health, National Eye Institute.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Author's homepage

Glossary

Sleep-associated atonia

Depression of skeletal muscle tone that occurs during rapid eye movement sleep. The brain remains active with fast eye movements, but both sensory input and motor output are suppressed.

Suprachiasmatic nucleus

The master circadian pacemaker in the mammalian brain. Its circadian rhythm is generated by a gene expression cycle in individual neurons in this nucleus, but it also receives light intensity signals directly from the retina.

Reinforcement learning

A sub-area of machine learning concerned with how an agent learns from the consequences of its actions, rather than from being explicitly taught. It is essentially trial-and-error learning. The agent seeks to learn to select actions that maximize the accumulated reward over time.

Avoidance learning

A type of learning in which a certain behaviour results in the cessation of an aversive stimulus — for example, a rat is placed in a box where a warning signal, such as a tone, is followed by an electric shock. As the sequence is repeated, the rat learns to jump over to the adjacent box before the shock is delivered.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hikosaka, O. The habenula: from stress evasion to value-based decision-making. Nat Rev Neurosci 11, 503–513 (2010). https://doi.org/10.1038/nrn2866

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2866

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing