Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A model for memory systems based on processing modes rather than consciousness

Abstract

Prominent models of human long-term memory distinguish between memory systems on the basis of whether learning and retrieval occur consciously or unconsciously. Episodic memory formation requires the rapid encoding of associations between different aspects of an event which, according to these models, depends on the hippocampus and on consciousness. However, recent evidence indicates that the hippocampus mediates rapid associative learning with and without consciousness in humans and animals, for long-term and short-term retention. Consciousness seems to be a poor criterion for differentiating between declarative (or explicit) and nondeclarative (or implicit) types of memory. A new model is therefore required in which memory systems are distinguished based on the processing operations involved rather than by consciousness.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The declarative versus nondeclarative memory account.
Figure 2: Hippocampal connectivity.
Figure 3: A processing-based division among memory systems.

References

  1. 1

    Squire, L. R. Memory and Brain (Oxford Univ. Press, New York, 1987).

    Google Scholar 

  2. 2

    Squire, L. R. Memory and the hippocampus — a synthesis from findings with rats, monkeys, and humans. Psychol. Rev. 99, 195–231 (1992).

    CAS  PubMed  Google Scholar 

  3. 3

    Graf, P. & Schacter, D. L. Implicit and explicit memory for new associations in normal and amnesic subjects. J. Exp. Psychol. Learn. Mem. Cogn. 11, 501–518 (1985).

    CAS  PubMed  Google Scholar 

  4. 4

    Gabrieli, J. D. E. Cognitive neuroscience of human memory. Annu. Rev. Psychol. 49, 87–115 (1998).

    CAS  PubMed  Google Scholar 

  5. 5

    Moscovitch, M. Recovered consciousness — a hypothesis concerning modularity and episodic memory. J. Clin. Exp. Neuropsychol. 17, 276–290 (1995).

    CAS  PubMed  Google Scholar 

  6. 6

    Cohen, N. J. & Eichenbaum, H. Memory, Amnesia, and the Hippocampal System (MIT Press, Cambridge, Massachusetts, 1993).

    Google Scholar 

  7. 7

    Dienes, Z. & Berry, D. Implicit learning: below the subjective threshold. Psychon. Bull. Rev. 4, 3–23 (1997).

    Google Scholar 

  8. 8

    Schwerdtfeger, W. K. Direct efferent and afferent connections of the hippocampus with the neocortex in the marmoset monkey. Am. J. Anat. 156, 77–82 (1979).

    CAS  PubMed  Google Scholar 

  9. 9

    Blatt, G. J. & Rosene, D. L. Organization of direct hippocampal efferent projections to the cerebral cortex of the rhesus monkey: projections from CA1, prosubiculum, and subiculum to the temporal lobe. J. Comp. Neurol. 392, 92–114 (1998).

    CAS  PubMed  Google Scholar 

  10. 10

    Insausti, R. & Amaral, D. G. in The Human Nervous System (eds Paxinos, G. & Mai, J. K.) 871–914 (Academic Press, San Diego, 2004).

    Google Scholar 

  11. 11

    Treves, A. & Rolls, E. T. Computational analysis of the role of the hippocampus in memory. Hippocampus 4, 374–391 (1994).

    CAS  PubMed  Google Scholar 

  12. 12

    Teyler, T. J. & Discenna, P. The hippocampal memory indexing theory. Behav. Neurosci. 100, 147–154 (1986).

    CAS  PubMed  Google Scholar 

  13. 13

    Squire, L. R. & Zola, S. M. Structure and function of declarative and nondeclarative memory systems. Proc. Natl Acad. Sci. USA 93, 13515–13522 (1996).

    CAS  PubMed  Google Scholar 

  14. 14

    Rudy, J. W. & Sutherland, R. J. Configural association theory and the hippocampal formation: an appraisal and reconfiguration. Hippocampus 5, 375–389 (1995).

    CAS  PubMed  Google Scholar 

  15. 15

    McClelland, J. L., McNaughton, B. L. & Oreilly, R. C. Why there are complementary learning systems in the hippocampus and neocortex — insights from the successes and failures of connectionist models of learning and memory. Psychol. Rev. 102, 419–457 (1995).

    PubMed  Google Scholar 

  16. 16

    Norman, K. A. & O'Reilly, R. C. Modeling hippocampal and neocortical contributions to recognition memory: a complementary-learning-systems approach. Psychol. Rev. 110, 611–646 (2003).

    PubMed  Google Scholar 

  17. 17

    O'Reilly, R. C. & Rudy, J. W. Computational principles of learning in the neocortex and hippocampus. Hippocampus 10, 389–397 (2000).

    CAS  PubMed  Google Scholar 

  18. 18

    Li, J. S. & Chao, Y. S. Electrolytic lesions of dorsal CA3 impair episodic-like memory in rats. Neurobiol. Learn. Mem. 89, 192–198 (2008).

    PubMed  Google Scholar 

  19. 19

    Trepel, C. & Racine, R. J. Long-term potentiation in the neocortex of the adult, freely moving rat. Cereb. Cortex 8, 719–729 (1998).

    CAS  PubMed  Google Scholar 

  20. 20

    Glisky, E. L., Schacter, D. L. & Tulving, E. Computer learning by memory-impaired patients — acquisition and retention of complex knowledge. Neuropsychologia 24, 313–328 (1986).

    CAS  PubMed  Google Scholar 

  21. 21

    Tulving, E., Hayman, C. A. G. & Macdonald, C. A. Long-lasting perceptual priming and semantic learning in amnesia — a case experiment. J. Exp. Psychol. Learn. Mem. Cogn. 17, 595–617 (1991).

    CAS  PubMed  Google Scholar 

  22. 22

    Musen, G. & Squire, L. R. On the implicit learning of novel associations by amnesic patients and normal subjects. Neuropsychology 7, 119–135 (1993).

    Google Scholar 

  23. 23

    Kitchener, E. G., Hodges, J. R. & McCarthy, R. Acquisition of post-morbid vocabulary and semantic facts in the absence of episodic memory. Brain 121, 1313–1327 (1998).

    PubMed  Google Scholar 

  24. 24

    Holdstock, J. S., Mayes, A. R., Isaac, C. L., Gong, Q. & Roberts, N. Differential involvement of the hippocampus and temporal lobe cortices in rapid and slow learning of new semantic information. Neuropsychologia 40, 748–768 (2002).

    CAS  PubMed  Google Scholar 

  25. 25

    O'Kane, G., Kensinger, E. A. & Corkin, S. Evidence for semantic learning in profound amnesia: an investigation with patient HM. Hippocampus 14, 417–425 (2004).

    PubMed  Google Scholar 

  26. 26

    Eichenbaum, H., Fagan, A. & Cohen, N. J. Normal olfactory discrimination learning set and facilitation of reversal learning after medial temporal damage in rats — implications for an account of preserved learning abilities in amnesia. J. Neurosci. 6, 1876–1884 (1986).

    CAS  PubMed  Google Scholar 

  27. 27

    Eichenbaum, H., Fagan, A., Mathews, P. & Cohen, N. J. Hippocampal system dysfunction and odor discrimination learning in rats — impairment or facilitation depending on representational demands. Behav. Neurosci. 102, 331–339 (1988).

    CAS  PubMed  Google Scholar 

  28. 28

    Eichenbaum, H., Mathews, P. & Cohen, N. J. Further studies of hippocampal representation during odor discrimination learning. Behav. Neurosci. 103, 1207–1216 (1989).

    CAS  PubMed  Google Scholar 

  29. 29

    Sutherland, R. J., Mcdonald, R. J., Hill, C. R. & Rudy, J. W. Damage to the hippocampal formation in rats selectively impairs the ability to learn cue relationships. Behav. Neural Biol. 52, 331–356 (1989).

    CAS  PubMed  Google Scholar 

  30. 30

    Bunsey, M. & Eichenbaum, H. Conservation of hippocampal memory function in rats and humans. Nature 379, 255–257 (1996).

    CAS  PubMed  Google Scholar 

  31. 31

    Frank, M. J., Rudy, J. W. & O'Reilly, R. C. Transitivity, flexibility, conjunctive representations, and the hippocampus. II. A computational analysis. Hippocampus 13, 341–354 (2003).

    PubMed  Google Scholar 

  32. 32

    Ergorul, C. & Eichenbaum, H. The hippocampus and memory for 'what', 'where' and 'when' Learn. Mem. 11, 397–405 (2004).

    PubMed  PubMed Central  Google Scholar 

  33. 33

    Clayton, N. S., Bussey, T. J. & Dickinson, A. Can animals recall the past and plan for the future? Nature Rev. Neurosci. 4, 685–691 (2003).

    CAS  Google Scholar 

  34. 34

    Tulving, E. Episodic memory: from mind to brain. Annu. Rev. Psychol. 53, 1–25 (2002).

    PubMed  Google Scholar 

  35. 35

    Tulving, E. Episodic memory and common sense: how far apart? Phil. Trans. R. Soc. Lond. B 356, 1505–1515 (2001).

    CAS  Google Scholar 

  36. 36

    Suddendorf, T. & Corballis, M. C. Behavioural evidence for mental time travel in nonhuman animals. Behav. Brain Res. 03 Dec 2009 (doi: 10.1016/j.bbr.2009.11.044).

    PubMed  Google Scholar 

  37. 37

    Clayton, N. S. & Dickinson, A. Episodic-like memory during cache recovery by scrub jays. Nature 395, 272–274 (1998).

    CAS  PubMed  Google Scholar 

  38. 38

    Warrington, E. K. & Weiskrantz, L. Amnesia — a disconnection syndrome. Neuropsychologia 20, 233–248 (1982).

    CAS  PubMed  Google Scholar 

  39. 39

    Mayes, A. R., Holdstock, J. S., Isaac, C. L., Hunkin, N. M. & Roberts, N. Relative sparing of item recognition memory in a patient with adult-onset damage limited to the hippocampus. Hippocampus 12, 325–340 (2002).

    CAS  PubMed  Google Scholar 

  40. 40

    Mayes, A. R. et al. Associative recognition in a patient with selective hippocampal lesions and relatively normal item recognition. Hippocampus 14, 763–784 (2004).

    CAS  PubMed  Google Scholar 

  41. 41

    Aggleton, J. P. & Brown, M. W. Interleaving brain systems for episodic and recognition memory. Trends Cogn. Sci. 10, 455–463 (2006).

    PubMed  Google Scholar 

  42. 42

    Yonelinas, A. P. The nature of recollection and familiarity: a review of 30 years of research. J. Mem. Lang. 46, 441–517 (2002).

    Google Scholar 

  43. 43

    Jaeger, T., Mecklinger, A. & Kipp, K. H. Intra- and inter-item associations doubly dissociate the electrophysiological correlates of familiarity and recollection. Neuron 52, 535–545 (2006).

    CAS  Google Scholar 

  44. 44

    Quamme, J. R., Yonelinas, A. P. & Normani, K. A. Effect of unitization on associative recognition in amnesia. Hippocampus 17, 192–200 (2007).

    PubMed  Google Scholar 

  45. 45

    Haskins, A. L., Yonelinas, A. P., Quamme, J. R. & Ranganath, C. Perirhinal cortex supports encoding and familiarity-based recognition of novel associations. Neuron 59, 554–560 (2008).

    CAS  PubMed  Google Scholar 

  46. 46

    Giovanello, K. S., Verfaellie, M. & Keane, M. M. Disproportionate deficit in associative recognition relative to item recognition in global amnesia. Cogn. Affect. Behav. Neurosci. 3, 186–194 (2003).

    PubMed  Google Scholar 

  47. 47

    Kan, I. P., Giovanello, K. S., Schnyer, D. M., Makris, N. & Verfaellie, M. Role of the medial temporal lobes in relational memory: neuropsychological evidence from a cued recognition paradigm. Neuropsychologia 45, 2589–2597 (2007).

    PubMed  PubMed Central  Google Scholar 

  48. 48

    Rajaram, S. & Coslett, H. B. Acquisition and transfer of new verbal information in amnesia: retrieval and neuroanatomical constraints. Neuropsychology 14, 427–455 (2000).

    CAS  PubMed  Google Scholar 

  49. 49

    Ryan, J. D., Althoff, R. R., Whitlow, S. & Cohen, N. J. Amnesia is a deficit in relational memory. Psychol. Sci. 11, 454–461 (2000).

    CAS  PubMed  Google Scholar 

  50. 50

    Verfaellie, M., Martin, E., Page, K., Parks, E. & Keane, M. M. Implicit memory for novel conceptual associations in amnesia. Cogn. Affect. Behav. Neurosci. 6, 91–101 (2006).

    PubMed  PubMed Central  Google Scholar 

  51. 51

    Hannula, D. E., Ryan, J. D., Tranel, D. & Cohen, N. J. Rapid onset relational memory effects are evident in eye movement behavior, but not in hippocampal amnesia. J. Cogn. Neurosci. 19, 1690–1705 (2007).

    PubMed  Google Scholar 

  52. 52

    Duff, M. C., Hengst, J., Tranel, D. & Cohen, N. J. Development of shared information in communication despite hippocampal amnesia. Nature Neurosci. 9, 140–146 (2006).

    CAS  PubMed  Google Scholar 

  53. 53

    Chun, M. M. & Phelps, E. A. Memory deficits for implicit contextual information in amnesic subjects with hippocampal damage. Nature Neurosci. 2, 844–847 (1999).

    CAS  PubMed  Google Scholar 

  54. 54

    Park, H., Quinlan, J., Thornton, E. & Reder, L. M. The effect of midazolam on visual search: implications for understanding amnesia. Proc. Natl Acad. Sci. USA 101, 17879–17883 (2004).

    CAS  PubMed  Google Scholar 

  55. 55

    Greene, A. J., Gross, W. L., Elsinger, C. L. & Rao, S. M. Hippocampal differentiation without recognition: an fMRI analysis of the contextual cueing task. Learn. Mem. 14, 548–553 (2007).

    PubMed  PubMed Central  Google Scholar 

  56. 56

    Manns, J. R. & Squire, L. R. Perceptual learning, awareness, and the hippocampus. Hippocampus 11, 776–782 (2001).

    CAS  PubMed  Google Scholar 

  57. 57

    Preston, A. R. & Gabrieli, J. D. E. Dissociation between explicit memory and configural memory in the human medial temporal lobe. Cereb. Cortex 18, 2192–2207 (2008).

    PubMed  PubMed Central  Google Scholar 

  58. 58

    Montaldi, D. et al. Associative encoding of pictures activates the medial temporal lobes. Hum. Brain Mapp. 6, 85–104 (1998).

    CAS  PubMed  Google Scholar 

  59. 59

    Staresina, B. P. & Davachi, L. Mind the gap: binding experiences across space and time in the human hippocampus. Neuron 63, 267–276 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Luo, J. & Niki, K. Does hippocampus associate discontiguous events? — Evidence from event-related fMRI. Hippocampus 15, 141–148 (2005).

    PubMed  Google Scholar 

  61. 61

    Qin, S. Z. et al. Probing the transformation of discontinuous associations into episodic memory: an event-related fMRI study. Neuroimage 38, 212–222 (2007).

    PubMed  Google Scholar 

  62. 62

    Gonzalo, D., Shallice, T. & Dolan, R. Time-dependent changes in learning audiovisual associations: a single-trial fMRI study. Neuroimage 11, 243–255 (2000).

    CAS  PubMed  Google Scholar 

  63. 63

    Henke, K., Buck, A., Weber, B. & Wieser, H. G. Human hippocampus establishes associations in memory. Hippocampus 7, 249–256 (1997).

    CAS  PubMed  Google Scholar 

  64. 64

    Henke, K., Weber, B., Kneifel, S., Wieser, H. G. & Buck, A. Human hippocampus associates information in memory. Proc. Natl Acad. Sci. USA 96, 5884–5889 (1999).

    CAS  PubMed  Google Scholar 

  65. 65

    Rombouts, S. A. R. B. et al. Visual association encoding activates the medial temporal lobe: a functional magnetic resonance imaging study. Hippocampus 7, 594–601 (1997).

    CAS  PubMed  Google Scholar 

  66. 66

    Hannula, D. E. & Ranganath, C. The eyes have it: hippocampal activity predicts expression of memory in eye movements. Neuron 63, 592–599 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Henke, K. et al. Nonconscious formation and reactivation of semantic associations by way of the medial temporal lobe. Neuropsychologia 41, 863–876 (2003).

    PubMed  Google Scholar 

  68. 68

    Henke, K. et al. Active hippocampus during nonconscious memories. Conscious. Cogn. 12, 31–48 (2003).

    PubMed  Google Scholar 

  69. 69

    Degonda, N. et al. Implicit associative learning engages the hippocampus and interacts with explicit associative learning. Neuron 46, 505–520 (2005).

    CAS  PubMed  Google Scholar 

  70. 70

    Milner, B., Corkin, S. & Teuber, H. L. Further analysis of hippocampal amnesic syndrome — 14-year follow-up study of H. M. Neuropsychologia 6, 215–234 (1968).

    Google Scholar 

  71. 71

    Cabeza, R., Dolcos, F., Graham, R. & Nyberg, L. Similarities and differences in the neural correlates of episodic memory retrieval and working memory. Neuroimage 16, 317–330 (2002).

    PubMed  Google Scholar 

  72. 72

    Nichols, E. A., Kao, Y. C., Verfaellie, M. & Gabrieli, J. D. E. Working memory and long-term memory for faces: evidence from fMRI and global amnesia for involvement of the medial temporal lobes. Hippocampus 16, 604–616 (2006).

    PubMed  PubMed Central  Google Scholar 

  73. 73

    Ranganath, C. & D'Esposito, M. Medial temporal lobe activity associated with active maintenance of novel information. Neuron 31, 865–873 (2001).

    CAS  PubMed  Google Scholar 

  74. 74

    Axmacher, N. et al. Sustained neural activity patterns during working memory in the human medial temporal lobe. J. Neurosci. 27, 7807–7816 (2007).

    CAS  PubMed  Google Scholar 

  75. 75

    Rissman, J., Gazzaley, A. & D'Esposito, M. Dynamic adjustments in prefrontal, hippocampal, and inferior temporal interactions with increasing visual working memory load. Cereb. Cortex 18, 1618–1629 (2008).

    PubMed  Google Scholar 

  76. 76

    Hannula, D. E., Tranel, D. & Cohen, N. J. The long and the short of it: relational memory impairments in amnesia, even at short lags. J. Neurosci. 26, 8352–8359 (2006).

    CAS  PubMed  Google Scholar 

  77. 77

    Olson, I. R., Page, K., Moore, K. S., Chatterjee, A. & Verfaellie, M. Working memory for conjunctions relies on the medial temporal lobe. J. Neurosci. 26, 4596–4601 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Ranganath, C. & Blumenfeld, R. S. Doubts about double dissociations between short- and long-term memory. Trends Cogn. Sci. 9, 374–380 (2005).

    PubMed  Google Scholar 

  79. 79

    Hassin, R. R., Bargh, J. A., Engell, A. D. & McCulloch, K. C. Implicit working memory. Conscious. Cogn. 18, 665–678 (2009).

    PubMed  PubMed Central  Google Scholar 

  80. 80

    Morris, C. D., Bransford, J. D. & Franks, J. J. Levels of processing versus transfer appropriate processing. J. Verb. Learn. Verb. Behav. 16, 519–533 (1977).

    Google Scholar 

  81. 81

    Blaxton, T. A. Investigating dissociations among memory measures — support for a transfer-appropriate processing framework. J. Exp. Psychol. Learn. Mem. Cogn. 15, 657–668 (1989).

    Google Scholar 

  82. 82

    Schacter, D. L. Perceptual representation systems and implicit memory — toward a resolution of the multiple memory-systems debate. Ann. NY Acad. Sci. 608, 543–571 (1990).

    CAS  PubMed  Google Scholar 

  83. 83

    Bird, C. M. & Burgess, N. The hippocampus and memory: insights from spatial processing. Nature Rev. Neurosci. 9, 182–194 (2008).

    CAS  Google Scholar 

  84. 84

    Maren, S. Pavlovian fear conditioning as a behavioral assay for hippocampus and amygdala function: cautions and caveats. Eur. J. Neurosci. 28, 1661–1666 (2008).

    PubMed  Google Scholar 

  85. 85

    Ji, J. Z. & Maren, S. Hippocampal involvement in contextual modulation of fear extinction. Hippocampus 17, 749–758 (2007).

    PubMed  Google Scholar 

  86. 86

    Squire, L. R. & Alvarez, P. Retrograde amnesia and memory consolidation — a neurobiological perspective. Curr. Opin. Neurobiol. 5, 169–177 (1995).

    CAS  PubMed  Google Scholar 

  87. 87

    Moscovitch, M. et al. Functional neuroanatomy of remote episodic, semantic and spatial memory: a unified account based on multiple trace theory. J. Anat. 207, 35–66 (2005).

    PubMed  PubMed Central  Google Scholar 

  88. 88

    Cermak, L. S. in The Neuropsychology of Memory (eds Squire, L. R. & Butters, N.) 52–62 (Guilford Press, New York, 1984).

    Google Scholar 

  89. 89

    Esclassan, F., Coutureau, E., Di Scala, G. & Marchand, A. R. Differential contribution of dorsal and ventral hippocampus to trace and delay fear conditioning. Hippocampus 19, 33–44 (2009).

    PubMed  Google Scholar 

  90. 90

    Suzuki, W. A. Integrating associative learning signals across the brain. Hippocampus 17, 842–850 (2007).

    PubMed  Google Scholar 

  91. 91

    Poldrack, R. A. et al. Interactive memory systems in the human brain. Nature 414, 546–550 (2001).

    CAS  PubMed  Google Scholar 

  92. 92

    Schendan, H. E., Searl, M. M., Melrose, R. J. & Stern, C. E. An fMRI study of the role of the medial temporal lobe in implicit and explicit sequence learning. Neuron 37, 1013–1025 (2003).

    CAS  PubMed  Google Scholar 

  93. 93

    Albouy, G. et al. Both the hippocampus and striatum are involved in consolidation of motor sequence memory. Neuron 58, 261–272 (2008).

    CAS  PubMed  Google Scholar 

  94. 94

    Clark, R. E. & Squire, L. R. Classical conditioning and brain systems: the role of awareness. Science 280, 77–81 (1998).

    CAS  PubMed  Google Scholar 

  95. 95

    Schacter, D. L., Dobbins, I. G. & Schnyer, D. M. Specificity of priming: a cognitive neuroscience perspective. Nature Rev. Neurosci. 5, 853–862 (2004).

    CAS  Google Scholar 

  96. 96

    Brown, M. W. & Xiang, J. Z. Recognition memory: neuronal substrates of the judgement of prior occurrence. Prog. Neurobiol. 55, 149–189 (1998).

    CAS  PubMed  Google Scholar 

  97. 97

    Brozinsky, C. J., Yonelinas, A. P., Kroll, N. E. A. & Ranganath, C. Lag-sensitive repetition suppression effects in the anterior parahippocampal gyrus. Hippocampus 15, 557–561 (2005).

    PubMed  Google Scholar 

  98. 98

    Jacoby, L. L. & Whitehouse, K. An illusion of memory — false recognition influenced by unconscious perception. J. Exp. Psychol. Gen. 118, 126–135 (1989).

    Google Scholar 

  99. 99

    Johnston, W. A., Hawley, K. J. & Elliott, J. M. G. Contribution of perceptual fluency to recognition judgments. J. Exp. Psychol. Learn. Mem. Cogn. 17, 210–223 (1991).

    CAS  PubMed  Google Scholar 

  100. 100

    Voss, J. L., Baym, C. L. & Paller, K. A. Accurate forced-choice recognition without awareness of memory retrieval. Learn. Mem. 15, 454–459 (2008).

    PubMed  PubMed Central  Google Scholar 

  101. 101

    Montaldi, D., Spencer, T. J., Roberts, N. & Mayes, A. R. The neural system that mediates familiarity memory. Hippocampus 16, 504–520 (2006).

    PubMed  Google Scholar 

  102. 102

    Bowles, B. et al. Impaired familiarity with preserved recollection after anterior temporal-lobe resection that spares the hippocampus. Proc. Natl Acad. Sci. USA 104, 16382–16387 (2007).

    CAS  PubMed  Google Scholar 

  103. 103

    Voss, J. L., Hauner, K. K. Y. & Paller, K. A. Establishing a relationship between activity reduction in human perirhinal cortex and priming. Hippocampus 19, 773–778 (2009).

    PubMed  Google Scholar 

  104. 104

    Hamann, S. B. & Squire, L. R. Intact perceptual memory in the absence of conscious memory. Behav. Neurosci. 111, 850–854 (1997).

    CAS  PubMed  Google Scholar 

  105. 105

    Stark, C. E. L. & Squire, L. R. Recognition memory and familiarity judgments in severe amnesia: no evidence for a contribution of repetition priming. Behav. Neurosci. 114, 459–467 (2000).

    CAS  PubMed  Google Scholar 

  106. 106

    Voss, J. L., Lucas, H. D. & Paller, K. A. Conceptual priming and familiarity: different expressions of memory during recognition testing with distinct neurophysiological correlates. J. Cogn. Neurosci. 24 Aug 2009 (doi: 10.1162/jocn.2009.21341)

    PubMed  Google Scholar 

  107. 107

    Henson, R. N. A., Cansino, S., Herron, J. E., Robb, W. G. K. & Rugg, M. D. A familiarity signal in human anterior medial temporal cortex? Hippocampus 13, 301–304 (2003).

    CAS  PubMed  Google Scholar 

  108. 108

    Verfaellie, M., Keane, M. M. & Cook, S. P. The role of explicit memory processes in cross-modal priming: an investigation of stem completion priming in amnesia. Cogn. Affect. Behav. Neurosci. 1, 222–228 (2001).

    CAS  PubMed  Google Scholar 

  109. 109

    Buckner, R. L., Koutstaal, W., Schacter, D. L. & Rosen, B. R. Functional MRI evidence for a role of frontal and inferior temporal cortex in amodal components of priming. Brain 123, 620–640 (2000).

    PubMed  Google Scholar 

  110. 110

    Carlesimo, G. A. et al. Brain activity during intra- and cross-modal priming: new empirical data and review of the literature. Neuropsychologia 42, 14–24 (2004).

    CAS  PubMed  Google Scholar 

  111. 111

    Rueckl, J. G. & Mathew, S. Implicit memory for phonological processes in visual stem completion. Mem. Cognit. 27, 1–11 (1999).

    CAS  PubMed  Google Scholar 

  112. 112

    Cabeza, R. & Nyberg, L. Imaging cognition II: an empirical review of 275 PET and fMRI studies. J. Cogn. Neurosci. 12, 1–47 (2000).

    CAS  PubMed  Google Scholar 

  113. 113

    Adlam, A. L. R., Patterson, K. & Hodges, J. R. “I remember it as if it were yesterday”: memory for recent events in patients with semantic dementia. Neuropsychologia 47, 1344–1351 (2009).

    PubMed  Google Scholar 

  114. 114

    Calabria, M., Miniussi, C., Bisiacchi, P. S., Zanetti, O. & Cotelli, M. Face–name repetition priming in semantic dementia: a case report. Brain Cogn. 70, 231–237 (2009).

    PubMed  Google Scholar 

  115. 115

    Shewmon, D. A., Holmes, G. L. & Byrne, P. A. Consciousness in congenitally decorticate children: developmental vegetative state as self-fulfilling prophecy. Dev. Med. Child Neurol. 41, 364–374 (1999).

    CAS  PubMed  Google Scholar 

  116. 116

    Ryan, J. D. & Cohen, N. J. Evaluating the neuropsychological dissociation evidence for multiple memory systems. Cogn. Affect. Behav. Neurosci. 3, 168–185 (2003).

    PubMed  Google Scholar 

  117. 117

    Moscovitch, M. The hippocampus as a 'stupid', domain-specific module: implications for theories of recent and remote memory, and of imagination. Can. J. Exp. Psychol. 62, 62–79 (2008).

    PubMed  Google Scholar 

  118. 118

    Moses, S. N. & Ryan, J. D. A comparison and evaluation of the predictions of relational and conjunctive accounts of hippocampal function. Hippocampus 16, 43–65 (2006).

    PubMed  Google Scholar 

  119. 119

    Zeineh, M. M., Engel, S. A., Thompson, P. M. & Bookheimer, S. Y. Dynamics of the hippocampus during encoding and retrieval of face–name pairs. Science 299, 577–580 (2003).

    CAS  PubMed  Google Scholar 

  120. 120

    Reber, P. J., Knowlton, B. J. & Squire, L. R. Dissociable properties of memory systems: differences in the flexibility of declarative and nondeclarative knowledge. Behav. Neurosci. 110, 861–871 (1996).

    CAS  PubMed  Google Scholar 

  121. 121

    Eichenbaum, H., Dudchenko, P., Wood, E., Shapiro, M. & Tanila, H. The hippocampus, memory, and place cells: is it spatial memory or a memory space? Neuron 23, 209–226 (1999).

    CAS  PubMed  Google Scholar 

  122. 122

    Eichenbaum, H., Yonelinas, A. P. & Ranganath, C. The medial temporal lobe and recognition memory. Annu. Rev. Neurosci. 30, 123–152 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123

    Reder, L. M., Park, H. & Kieffaber, P. D. Memory systems do not divide on consciousness: reinterpreting memory in terms of activation and binding. Psychol. Bull. 135, 23–49 (2009).

    PubMed  PubMed Central  Google Scholar 

  124. 124

    Gaillard, R. et al. Converging intracranial markers of conscious access. PLoS Biol. 7, 472–492 (2009).

    CAS  Google Scholar 

  125. 125

    Dehaene, S. & Naccache, L. Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework. Cognition 79, 1–37 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126

    Corkin, S. Acquisition of motor skill after bilateral medial temporal-lobe excision. Neuropsychologia 6, 255–265 (1968).

    Google Scholar 

  127. 127

    Brooks, D. N. & Baddeley, A. D. What can amnesic patients learn. Neuropsychologia 14, 111–122 (1976).

    CAS  PubMed  Google Scholar 

  128. 128

    Warrington, E. K. & Weiskrantz, L. New method of testing long-term retention with special reference to amnesic patients. Nature 217, 972–974 (1968).

    CAS  PubMed  Google Scholar 

  129. 129

    Cohen, N. J. & Squire, L. R. Preserved learning and retention of pattern-analyzing skill in amnesia — dissociation of knowing how and knowing that. Science 210, 207–210 (1980).

    CAS  PubMed  Google Scholar 

  130. 130

    Knowlton, B. J. & Squire, L. R. The learning of categories — parallel brain systems for item memory and category knowledge. Science 262, 1747–1749 (1993).

    CAS  PubMed  Google Scholar 

  131. 131

    Graf, P., Squire, L. R. & Mandler, G. The information that amnesic patients do not forget. J. Exp. Psychol. Learn. Mem. Cogn. 10, 164–178 (1984).

    CAS  PubMed  Google Scholar 

  132. 132

    Levy, D. A., Stark, C. E. L. & Squire, L. R. Intact conceptual priming in the absence of declarative memory. Psychol. Sci. 15, 680–686 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133

    Weiskrantz, L. & Warrington, E. K. Conditioning in amnesic patients. Neuropsychologia 17, 187–194 (1979).

    CAS  PubMed  Google Scholar 

  134. 134

    Knowlton, B. J., Ramus, S. J. & Squire, L. R. Intact artificial grammar learning in amnesia — dissociation of classification learning and explicit memory for specific instances. Psychol. Sci. 3, 172–179 (1992).

    Google Scholar 

  135. 135

    Moscovitch, M., Winocur, G. & Mclachlan, D. Memory as assessed by recognition and reading time in normal and memory-impaired people with Alzheimers-disease and other neurological disorders. J. Exp. Psychol. Gen. 115, 331–347 (1986).

    CAS  PubMed  Google Scholar 

  136. 136

    Goshen-Gottstein, Y., Moscovitch, M. & Melo, B. Intact implicit memory for newly formed verbal associations in amnesic patients following single study trials. Neuropsychology 14, 570–578 (2000).

    CAS  PubMed  Google Scholar 

  137. 137

    Gabrieli, J. D. E., Keane, M. M., Zarella, M. M. & Poldrack, R. A. Preservation of implicit memory for new associations in global amnesia. Psychol. Sci. 8, 326–329 (1997).

    Google Scholar 

  138. 138

    Schacter, D. L. & Graf, P. Preserved learning in amnesic patients — perspectives from research on direct priming. J. Clin. Exp. Neuropsychol. 8, 727–743 (1986).

    CAS  PubMed  Google Scholar 

  139. 139

    Shimamura, A. P. & Squire, L. R. Impaired priming of new associations in amnesia. J. Exp. Psychol. Learn. Mem. Cogn. 15, 721–728 (1989).

    CAS  PubMed  Google Scholar 

  140. 140

    Bowers, J. S. & Schacter, D. L. Implicit memory and test awareness. J. Exp. Psychol. Learn. Mem. Cogn. 16, 404–416 (1990).

    CAS  PubMed  Google Scholar 

  141. 141

    McKone, E. & Slee, J. A. Explicit contamination in 'implicit' memory for new associations. Mem. Cognit. 25, 352–366 (1997).

    CAS  PubMed  Google Scholar 

  142. 142

    Schacter, D. L. Memory and awareness. Science 280, 59–60 (1998).

    CAS  PubMed  Google Scholar 

  143. 143

    Tulving, E. Memory and consciousness. Can. Psychol. 26, 1–12 (1985).

    Google Scholar 

  144. 144

    West, M. J. & Gundersen, H. J. G. Unbiased stereological estimation of the number of neurons in the human hippocampus. J. Comp. Neurol. 296, 1–22 (1990).

    CAS  PubMed  Google Scholar 

  145. 145

    Ishizuka, N., Weber, J. & Amaral, D. G. Organization of intrahippocampal projections originating from CA3 pyramidal cells in the rat. J. Comp. Neurol. 295, 580–623 (1990).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author would like to thank T. Reber, O. Markes, B. Meier and S. Duss for valuable help and discussions. K.H. is supported by Swiss National Science Foundation Grants 320000-114012 and K-13K1-119953.

Author information

Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Katharina Henke's homepage

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Henke, K. A model for memory systems based on processing modes rather than consciousness. Nat Rev Neurosci 11, 523–532 (2010). https://doi.org/10.1038/nrn2850

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing