Abstract
Discoveries in fruit flies have greatly contributed to our understanding of neuroscience. The use of an unparalleled wealth of tools, many of which originated between 1910–1960, has enabled milestone discoveries in nervous system development and function. Such findings have triggered and guided many research efforts in vertebrate neuroscience. After 100 years, fruit flies continue to be the choice model system for many neuroscientists. The combinational use of powerful research tools will ensure that this model organism will continue to lead to key discoveries that will impact vertebrate neuroscience.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Synaptic tau: A pathological or physiological phenomenon?
Acta Neuropathologica Communications Open Access 09 September 2021
-
Model organisms contribute to diagnosis and discovery in the undiagnosed diseases network: current state and a future vision
Orphanet Journal of Rare Diseases Open Access 07 May 2021
-
The fly liquid-food electroshock assay (FLEA) suggests opposite roles for neuropeptide F in avoidance of bitterness and shock
BMC Biology Open Access 16 February 2021
Access options
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout
References
Morgan, T. H. Sex limited inheritance in Drosophila. Science 32, 120–122 (1910).
Sturtevant, A. H. A History of Genetics (Cold Spring Harbor Laboratory Press, New York, 1966).
Morgan, T. H. & Bridges, C. B. Sex-linked inheritance in Drosophila. Carnegie Institute of Washington Publication 237, 1–88 (1916).
Poulson, D. F. Histogenesis, organogenesis and differentiation in the embryo of Drosophila melanogaster. (ed. Demerec, M.) (Hafner Publishing Co Ltd, Wiley, New York, 1950).
Campos-Ortega, J. A. Cellular interactions during early neurogenesis of Drosophila melanogaster. Trends Neurosci. 11, 400–405 (1988).
Wharton, K. A., Johansen, K. M., Xu, T. & Artavanis-Tsakonas, S. Nucleotide sequence from the neurogenic locus notch implies a gene product that shares homology with proteins containing EGF-like repeats. Cell 43, 567–581 (1985).
Vassin, H., Bremer, K. A., Knust, E. & Campos-Ortega, J. A. The neurogenic gene Delta of Drosophila melanogaster is expressed in neurogenic territories and encodes a putative transmembrane protein with EGF-like repeats. EMBO J. 6, 3431–3440 (1987).
Artavanis-Tsakonas, S., Matsuno, K. & Fortini, M. E. Notch signaling. Science 268, 225–232 (1995).
Artavanis-Tsakonas, S., Rand, M. D. & Lake, R. J. Notch signaling: cell fate control and signal integration in development. Science 284, 770–776 (1999).
Ellisen, L. W. et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66, 649–661 (1991).
Kopan, R. & Ilagan, M. X. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137, 216–233 (2009).
Breunig, J. J., Silbereis, J., Vaccarino, F. M., Sestan, N. & Rakic, P. Notch regulates cell fate and dendrite morphology of newborn neurons in the postnatal dentate gyrus. Proc. Natl Acad. Sci. USA 104, 20558–20563 (2007).
Pavlopoulos, E., Anezaki, M. & Skoulakis, E. M. Neuralized is expressed in the alpha/beta lobes of adult Drosophila mushroom bodies and facilitates olfactory long-term memory formation. Proc. Natl Acad. Sci. USA 105, 14674–14679 (2008).
Roca, C. & Adams, R. H. Regulation of vascular morphogenesis by Notch signaling. Genes Dev. 21, 2511–2524 (2007).
Weinstein, A. Coincidence of crossing over in Drosophila melanogaster (Ampelophila). Genetics 3, 135–172 (1918).
Bridges, C. B. & Morgan, T. H. The third-chromosome group of mutant characters of Drosophila melanogaster. Carnegie Institute of Washington Publication 327, 1–251 (1923).
Lewis, E. B. A gene complex controlling segmentation in Drosophila. Nature 276, 565–570 (1978).
Sanchez-Herrero, E., Vernos, I., Marco, R. & Morata, G. Genetic organization of Drosophila bithorax complex. Nature 313, 108–113 (1985).
Kaufman, T. C., Lewis, R. & Wakimoto, B. Cytogenetic analysis of chromosome 3 in Drosophila melanogaster: the homoeotic gene complex in polytene chromosome interval 84a-B. Genetics 94, 115–133 (1980).
Garber, R. L., Kuroiwa, A. & Gehring, W. J. Genomic and cDNA clones of the homeotic locus Antennapedia in Drosophila. EMBO J. 2, 2027–2036 (1983).
McGinnis, W., Garber, R. L., Wirz, J., Kuroiwa, A. & Gehring, W. J. A homologous protein-coding sequence in Drosophila homeotic genes and its conservation in other metazoans. Cell 37, 403–408 (1984).
Duboule, D. The rise and fall of Hox gene clusters. Development 134, 2549–2560 (2007).
Alexander, T., Nolte, C. & Krumlauf, R. Hox genes and segmentation of the hindbrain and axial skeleton. Annu. Rev. Cell Dev. Biol. 25, 431–456 (2009).
Dasen, J. S. & Jessell, T. M. Hox networks and the origins of motor neuron diversity. Curr. Top. Dev. Biol. 88, 169–200 (2009).
Dupin, E., Creuzet, S. & Le Douarin, N. M. The contribution of the neural crest to the vertebrate body. Adv. Exp. Med. Biol. 589, 96–119 (2006).
Ghysen, A. & Dambly-Chaudiere, C. From DNA to form: the achaete-scute complex. Genes Dev. 2, 495–501 (1988).
Raffel, D. & Muller, H. J. Position effect and gene divisibility considered in connection with three strikingly similar scute mutations. Genetics 25, 541–583 (1940).
Garcia-Bellido, A. & Santamaria, P. Developmental analysis of the Achaete-Scute system of Drosophila melanogaster. Genetics 88, 469–486 (1978).
Garcia-Bellido, A. Genetic analysis of the Achaete-Scute system of Drosophila melanogaster. Genetics 91, 491–520 (1979).
Campuzano, S. et al. Molecular genetics of the achaete-scute gene complex of D. melanogaster. Cell 40, 327–338 (1985).
Cabrera, C. V., Martinez-Arias, A. & Bate, M. The expression of three members of the achaete-scute gene complex correlates with neuroblast segregation in Drosophila. Cell 50, 425–433 (1987).
Jarman, A. P., Grau, Y., Jan, L. Y. & Jan, Y. N. atonal is a proneural gene that directs chordotonal organ formation in the Drosophila peripheral nervous system. Cell 73, 1307–1321 (1993).
Lo, L. C., Johnson, J. E., Wuenschell, C. W., Saito, T. & Anderson, D. J. Mammalian achaete-scute homolog 1 is transiently expressed by spatially restricted subsets of early neuroepithelial and neural crest cells. Genes Dev. 5, 1524–1537 (1991).
Bermingham, N. A. et al. Math1: an essential gene for the generation of inner ear hair cells. Science 284, 1837–1841 (1999).
Van Keymeulen, A. et al. Epidermal progenitors give rise to Merkel cells during embryonic development and adult homeostasis. J. Cell Biol. 187, 91–100 (2009).
Maricich, S. M. et al. Merkel cells are essential for light-touch responses. Science 324, 1580–1582 (2009).
Bertrand, N., Castro, D. S. & Guillemot, F. Proneural genes and the specification of neural cell types. Nature Rev. Neurosci. 3, 517–530 (2002).
Quan, X. J. & Hassan, B. A. From skin to nerve: flies, vertebrates and the first helix. Cell. Mol. Life Sci. 62, 2036–2049 (2005).
Uemura, T., Shepherd, S., Ackerman, L., Jan, L. Y. & Jan, Y. N. numb, a gene required in determination of cell fate during sensory organ formation in Drosophila embryos. Cell 58, 349–360 (1989).
Blochlinger, K., Bodmer, R., Jack, J., Jan, L. Y. & Jan, Y. N. Primary structure and expression of a product from cut, a locus involved in specifying sensory organ identity in Drosophila. Nature 333, 629–635 (1988).
Vaessin, H. et al. prospero is expressed in neuronal precursors and encodes a nuclear protein that is involved in the control of axonal outgrowth in Drosophila. Cell 67, 941–953 (1991).
Nolo, R., Abbott, L. A. & Bellen, H. J. Senseless, a Zn finger transcription factor, is necessary and sufficient for sensory organ development in Drosophila. Cell 102, 349–362 (2000).
Roegiers, F. & Jan, Y. N. Asymmetric cell division. Curr. Opin. Cell Biol. 16, 195–205 (2004).
Wallis, D. et al. The zinc finger transcription factor Gfi1, implicated in lymphomagenesis, is required for inner ear hair cell differentiation and survival. Development 130, 221–232 (2003).
Zhong, W. & Chia, W. Neurogenesis and asymmetric cell division. Curr. Opin. Neurobiol. 18, 4–11 (2008).
Nusslein-Volhard, C. & Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801 (1980).
Lewis, E. B., F. Bacher . Methods of feeding ethyl methane sulfonate (EMS) to Drosophila males. Dros. Inf. Serv. 43, 193 (1968).
Jurgens, G., Wieschaus, E., Nusslein-Volhard, C. & Kluding, H. Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster. Rouxs Arch. Dev. Biol. 193, 283–295 (1984).
Wieschaus, E., Nüsslein-Volhard, C. & Jürgens, G. Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster. Rouxs Arch. Dev. Biol. 193, 296–307 (1984).
Ho, K. S. & Scott, M. P. Sonic hedgehog in the nervous system: functions, modifications and mechanisms. Curr. Opin. Neurobiol. 12, 57–63 (2002).
Gaiano, N. Strange bedfellows: Reelin and Notch signaling interact to regulate cell migration in the developing neocortex. Neuron 60, 189–191 (2008).
Charron, F. & Tessier-Lavigne, M. The Hedgehog, TGF-β/BMP and Wnt families of morphogens in axon guidance. Adv. Exp. Med. Biol. 621, 116–133 (2007).
Pozniak, C. D. & Pleasure, S. J. A tale of two signals: Wnt and Hedgehog in dentate neurogenesis. Sci. STKE 2006, pe5 (2006).
Seeger, M., Tear, G., Ferres-Marco, D. & Goodman, C. S. Mutations affecting growth cone guidance in Drosophila: genes necessary for guidance toward or away from the midline. Neuron 10, 409–426 (1993).
Dickson, B. J. & Gilestro, G. F. Regulation of commissural axon pathfinding by slit and its Robo receptors. Annu. Rev. Cell Dev. Biol. 22, 651–675 (2006).
Kolodkin, A. L., Matthes, D. J. & Goodman, C. S. The semaphorin genes encode a family of transmembrane and secreted growth cone guidance molecules. Cell 75, 1389–1399 (1993).
Luo, Y., Raible, D. & Raper, J. A. Collapsin: a protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell 75, 217–227 (1993).
Eichmann, A., Le Noble, F., Autiero, M. & Carmeliet, P. Guidance of vascular and neural network formation. Curr. Opin. Neurobiol. 15, 108–115 (2005).
Benzer, S. Behavioral mutants of Drosophila isolated by countercurrent distribution. Proc. Natl Acad. Sci. USA 58, 1112–1119 (1967).
Konopka, R. J. & Benzer, S. Clock mutants of Drosophila melanogaster. Proc. Natl Acad. Sci. USA 68, 2112–2116 (1971).
Bargiello, T. A., Jackson, F. R. & Young, M. W. Restoration of circadian behavioural rhythms by gene transfer in Drosophila. Nature 312, 752–754 (1984).
Reddy, P. et al. Molecular analysis of the period locus in Drosophila melanogaster and identification of a transcript involved in biological rhythms. Cell 38, 701–710 (1984).
Zehring, W. A. et al. P-element transformation with period locus DNA restores rhythmicity to mutant, arrhythmic Drosophila melanogaster. Cell 39, 369–376 (1984).
Bargiello, T. A. & Young, M. W. Molecular genetics of a biological clock in Drosophila. Proc. Natl Acad. Sci. USA 81, 2142–2146 (1984).
Sun, Z. S. et al. RIGUI, a putative mammalian ortholog of the Drosophila period gene. Cell 90, 1003–1011 (1997).
Sehgal, A., Price, J. L., Man, B. & Young, M. W. Loss of circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless. Science 263, 1603–1606 (1994).
Vitaterna, M. H. et al. Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264, 719–725 (1994).
King, D. P. et al. The mouse Clock mutation behaves as an antimorph and maps within the W19H deletion, distal of Kit. Genetics 146, 1049–1060 (1997).
Takahashi, J. S., Hong, H. K., Ko, C. H. & McDearmon, E. L. The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nature Rev. Genet. 9, 764–775 (2008).
Quinn, W. G., Harris, W. A. & Benzer, S. Conditioned behavior in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 71, 708–712 (1974).
Dudai, Y., Jan, Y. N., Byers, D., Quinn, W. G. & Benzer, S. dunce, a mutant of Drosophila deficient in learning. Proc. Natl Acad. Sci. USA 73, 1684–1688 (1976).
Byers, D., Davis, R. L. & Kiger, J. A., Jr. Defect in cyclic AMP phosphodiesterase due to the dunce mutation of learning in Drosophila melanogaster. Nature 289, 79–81 (1981).
Davis, R. L. & Kiger, J. A., Jr. Dunce mutants of Drosophila melanogaster: mutants defective in the cyclic AMP phosphodiesterase enzyme system. J. Cell Biol. 90, 101–107 (1981).
Chen, C. N., Denome, S. & Davis, R. L. Molecular analysis of cDNA clones and the corresponding genomic coding sequences of the Drosophila dunce+ gene, the structural gene for cAMP phosphodiesterase. Proc. Natl Acad. Sci. USA 83, 9313–9317 (1986).
Livingstone, M. S., Sziber, P. P. & Quinn, W. G. Loss of calcium/calmodulin responsiveness in adenylate cyclase of rutabaga, a Drosophila learning mutant. Cell 37, 205–215 (1984).
McGuire, S. E., Deshazer, M. & Davis, R. L. Thirty years of olfactory learning and memory research in Drosophila melanogaster. Prog. Neurobiol. 76, 328–347 (2005).
Kandel, E. R. & Schwartz, J. H. Molecular biology of learning: modulation of transmitter release. Science 218, 433–443 (1982).
Alberini, C. M. Genes to remember. J. Exp. Biol. 202, 2887–2891 (1999).
Barco, A., Bailey, C. H. & Kandel, E. R. Common molecular mechanisms in explicit and implicit memory. J. Neurochem. 97, 1520–1533 (2006).
Yu, D., Ponomarev, A. & Davis, R. L. Altered representation of the spatial code for odors after olfactory classical conditioning; memory trace formation by synaptic recruitment. Neuron 42, 437–449 (2004).
Pak, W. L., Grossfield, J. & White, N. V. Nonphototactic mutants in a study of vision of Drosophila. Nature 222, 351–354 (1969).
Pak, W. L., Grossfield, J. & Arnold, K. S. Mutants of the visual pathway of Drosophila melanogaster. Nature 227, 518–520 (1970).
Cosens, D. J. & Manning, A. Abnormal electroretinogram from a Drosophila mutant. Nature 224, 285–287 (1969).
Minke, B., Wu, C. & Pak, W. L. Induction of photoreceptor voltage noise in the dark in Drosophila mutant. Nature 258, 84–87 (1975).
Zuker, C. S. The biology of vision of Drosophila. Proc. Natl Acad. Sci. USA 93, 571–576 (1996).
Levis, R., Bingham, P. M. & Rubin, G. M. Physical map of the white locus of Drosophila melanogaster. Proc. Natl Acad. Sci. USA 79, 564–568 (1982).
Zipursky, S. L. & Rubin, G. M. Determination of neuronal cell fate: lessons from the R7 neuron of Drosophila. Annu. Rev. Neurosci. 17, 373–397 (1994).
Rubin, G. M. & Spradling, A. C. Genetic transformation of Drosophila with transposable element vectors. Science 218, 348–353 (1982).
Montell, C., Jones, K., Hafen, E. & Rubin, G. Rescue of the Drosophila phototransduction mutation trp by germline transformation. Science 230, 1040–1043 (1985).
Montell, C. Visual transduction in Drosophila. Annu. Rev. Cell Dev. Biol. 15, 231–268 (1999).
Wes, P. D. et al. TRPC1, a human homolog of a Drosophila store-operated channel. Proc. Natl Acad. Sci. USA 92, 9652–9656 (1995).
Venkatachalam, K. & Montell, C. TRP channels. Annu. Rev. Biochem. 76, 387–417 (2007).
Minke, B. & Cook, B. TRP channel proteins and signal transduction. Physiol. Rev. 82, 429–472 (2002).
Dong, X. P. et al. The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel. Nature 455, 992–996 (2008).
Landouré, G. et al. Mutations in TRPV4 cause Charcot-Marie-Tooth disease type 2C. Nature Genet. 42, 170–174 (2009).
Deng, H. X. et al. Scapuloperoneal spinal muscular atrophy and CMT2C are allelic disorders caused by alterations in TRPV4. Nature Genet. 42, 165–169 (2009).
Auer-Grumbach, M. et al. Alterations in the ankyrin domain of TRPV4 cause congenital distal SMA, scapuloperoneal SMA and HMSN2C. Nature Genet. 42, 160–164 (2009).
Kaplan, W. D. & Trout, W. E., 3rd. The behavior of four neurological mutants of Drosophila. Genetics 61, 399–409 (1969).
Jan, L. Y. & Jan, Y. N. Properties of the larval neuromuscular junction in Drosophila melanogaster. J. Physiol. 262, 189–214 (1976).
Jan, Y. N., Jan, L. Y. & Dennis, M. J. Two mutations of synaptic transmission in Drosophila. Proc. R. Soc. Lond. B Biol. Sci. 198, 87–108 (1977).
Ganetzky, B. & Wu, C. F. Indirect suppression involving behavioral mutants with altered nerve excitability in Drosophila melanogster. Genetics 100, 597–614 (1982).
Wu, C. F., Ganetzky, B., Haugland, F. N. & Liu, A. X. Potassium currents in Drosophila: different components affected by mutations of two genes. Science 220, 1076–1078 (1983).
Baumann, A. et al. Molecular organization of the maternal effect region of the Shaker complex of Drosophila: characterization of an I(A) channel transcript with homology to vertebrate Na channel. EMBO J. 6, 3419–3429 (1987).
Kamb, A., Iverson, L. E. & Tanouye, M. A. Molecular characterization of Shaker, a Drosophila gene that encodes a potassium channel. Cell 50, 405–413 (1987).
Papazian, D. M., Schwarz, T. L., Tempel, B. L., Jan, Y. N. & Jan, L. Y. Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila. Science 237, 749–753 (1987).
Tempel, B. L., Papazian, D. M., Schwarz, T. L., Jan, Y. N. & Jan, L. Y. Sequence of a probable potassium channel component encoded at Shaker locus of Drosophila. Science 237, 770–775 (1987).
Salkoff, L. et al. An essential 'set' of K+ channels conserved in flies, mice and humans. Trends Neurosci. 15, 161–166 (1992).
Ganetzky, B. & Wu, C. F. Neurogenetic analysis of potassium currents in Drosophila: synergistic effects on neuromuscular transmission in double mutants. J. Neurogenet. 1, 17–28 (1983).
Warmke, J., Drysdale, R. & Ganetzky, B. A distinct potassium channel polypeptide encoded by the Drosophila eag locus. Science 252, 1560–1562 (1991).
Warmke, J. W. & Ganetzky, B. A family of potassium channel genes related to eag in Drosophila and mammals. Proc. Natl Acad. Sci. USA 91, 3438–3442 (1994).
Curran, M. E. et al. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell 80, 795–803 (1995).
Jan, L. Y. & Jan, Y. N. Cloned potassium channels from eukaryotes and prokaryotes. Annu. Rev. Neurosci. 20, 91–123 (1997).
Jentsch, T. J. Neuronal KCNQ potassium channels: physiology and role in disease. Nature Rev. Neurosci. 1, 21–30 (2000).
Featherstone, D. E., Chen, K. & Broadie, K. Harvesting and preparing Drosophila embryos for electrophysiological recording and other procedures. J. Vis. Exp. 20 May 2009 (doi: 10.3791/1347).
Brent, J., Werner, K. & McCabe, B. D. Drosophila larval NMJ immunohistochemistry. J. Vis. Exp. 28 March 2009 (doi: 10.3791/1108).
Bellen, H., Budnik, V. The Neuromuscular Junction (ed. W. Sullivan, M. A.a.R. S. H.) (Cold Spring Harbor Laboratory Press, New York, 2000).
Koh, T. W. et al. Eps15 and Dap160 control synaptic vesicle membrane retrieval and synapse development. J. Cell Biol. 178, 309–322 (2007).
Littleton, J. T., Stern, M., Perin, M. & Bellen, H. J. Calcium dependence of neurotransmitter release and rate of spontaneous vesicle fusions are altered in Drosophila synaptotagmin mutants. Proc. Natl Acad. Sci. USA 91, 10888–10892 (1994).
Littleton, J. T., Stern, M., Schulze, K., Perin, M. & Bellen, H. J. Mutational analysis of Drosophila synaptotagmin demonstrates its essential role in Ca(2+)-activated neurotransmitter release. Cell 74, 1125–1134 (1993).
DiAntonio, A., Parfitt, K. D. & Schwarz, T. L. Synaptic transmission persists in synaptotagmin mutants of Drosophila. Cell 73, 1281–1290 (1993).
Poodry, C. A., Hall, L. & Suzuki, D. T. Developmental properties of Shibire: a pleiotropic mutation affecting larval and adult locomotion and development. Dev. Biol. 32, 373–386 (1973).
van der Bliek, A. M. & Meyerowitz, E. M. Dynamin-like protein encoded by the Drosophila shibire gene associated with vesicular traffic. Nature 351, 411–414 (1991).
Poodry, C. A. & Edgar, L. Reversible alteration in the neuromuscular junctions of Drosophila melanogaster bearing a temperature-sensitive mutation, shibire. J. Cell Biol. 81, 520–527 (1979).
Koenig, J. H., Kosaka, T. & Ikeda, K. The relationship between the number of synaptic vesicles and the amount of transmitter released. J. Neurosci. 9, 1937–1942 (1989).
Richmond, J. E. & Broadie, K. S. The synaptic vesicle cycle: exocytosis and endocytosis in Drosophila and C. elegans. Curr. Opin. Neurobiol. 12, 499–507 (2002).
Schwarz, T. L. Transmitter release at the neuromuscular junction. Int. Rev. Neurobiol. 75, 105–144 (2006).
Sudhof, T. C. The synaptic vesicle cycle. Annu. Rev. Neurosci. 27, 509–547 (2004).
Bellen, H. J. et al. The BDGP gene disruption project: single transposon insertions associated with 40% of Drosophila genes. Genetics 167, 761–781 (2004).
Venken, K. J. & Bellen, H. J. Emerging technologies for gene manipulation in Drosophila melanogaster. Nature Rev. Genet. 6, 167–178 (2005).
Venken, K. J. & Bellen, H. J. Transgenesis upgrades for Drosophila melanogaster. Development 134, 3571–3584 (2007).
Hobert, O. The impact of whole genome sequencing on model system genetics: get ready for the ride. Genetics 184, 317–319 (2010).
Rong, Y. S. et al. Targeted mutagenesis by homologous recombination in D. melanogaster. Genes Dev. 16, 1568–1581 (2002).
Dietzl, G. et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448, 151–156 (2007).
Ni, J. Q. et al. A Drosophila resource of transgenic RNAi lines for neurogenetics. Genetics 182, 1089–1100 (2009).
Venken, K. J., He, Y., Hoskins, R. A. & Bellen, H. J. P[acman]: a BAC transgenic platform for targeted insertion of large DNA fragments in D. melanogaster. Science 314, 1747–1751 (2006).
Groth, A. C. & Calos, M. P. Phage integrases: biology and applications. J. Mol. Biol. 335, 667–678 (2004).
Golic, K. G. & Lindquist, S. The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 59, 499–509 (1989).
Golic, K. G. Site-specific recombination between homologous chromosomes in Drosophila. Science 252, 958–961 (1991).
Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).
Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development . Trends Neurosci. 24, 251–254 (2001).
Venken, K. J. et al. Versatile P[acman] BAC libraries for transgenesis studies in Drosophila melanogaster. Nature Methods 6, 431–434 (2009).
Broadie, K. & Bate, M. Activity-dependent development of the neuromuscular synapse during Drosophila embryogenesis. Neuron 11, 607–619 (1993).
Broadie, K. in Drosophila Protocols (eds Sullivan, W., Ashburner, M. & Hawley, S.) 273–296 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2000).
Howlett, I. C. & Tanouye, M. A. Neurocircuit assays for seizures in epilepsy mutants of Drosophila. J. Vis. Exp. 15 April 2009 (doi: 10.3791/1121).
Nitz, D. A., van Swinderen, B., Tononi, G. & Greenspan, R. J. Electrophysiological correlates of rest and activity in Drosophila melanogaster. Curr. Biol. 12, 1934–1940 (2002).
Gu, H. et al. Cav2-type calcium channels encoded by cac regulate AP-independent neurotransmitter release at cholinergic synapses in adult Drosophila brain. J. Neurophysiol. 101, 42–53 (2009).
Rohrbough, J. & Broadie, K. Electrophysiological analysis of synaptic transmission in central neurons of Drosophila larvae. J. Neurophysiol. 88, 847–860 (2002).
Mamiya, A., Beshel, J., Xu, C. & Zhong, Y. Neural representations of airflow in Drosophila mushroom body. PLoS ONE 3, e4063 (2008).
Pfeiffer, B. D. et al. Tools for neuroanatomy and neurogenetics in Drosophila. Proc. Natl Acad. Sci. USA 105, 9715–9720 (2008).
Sweeney, S. T., Broadie, K., Keane, J., Niemann, H. & O'Kane, C. J. Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron 14, 341–351 (1995).
Kitamoto, T. Targeted expression of temperature-sensitive dynamin to study neural mechanisms of complex behavior in Drosophila. J. Neurogenet. 16, 205–228 (2002).
Ren, D. et al. A prokaryotic voltage-gated sodium channel. Science 294, 2372–2375 (2001).
Luan, H. et al. Functional dissection of a neuronal network required for cuticle tanning and wing expansion in Drosophila. J. Neurosci. 26, 573–584 (2006).
Miesenbock, G. The optogenetic catechism. Science 326, 395–399 (2009).
Shaw, P. J., Cirelli, C., Greenspan, R. J. & Tononi, G. Correlates of sleep and waking in Drosophila melanogaster. Science 287, 1834–1837 (2000).
Harbison, S. T., Mackay, T. F. & Anholt, R. R. Understanding the neurogenetics of sleep: progress from Drosophila. Trends Genet. 25, 262–269 (2009).
Cirelli, C. The genetic and molecular regulation of sleep: from fruit flies to humans. Nature Rev. Neurosci. 10, 549–560 (2009).
Koh, K. et al. Identification of SLEEPLESS, a sleep-promoting factor. Science 321, 372–376 (2008).
Wu, M. N. et al. SLEEPLESS, a Ly-6/neurotoxin family member, regulates the levels, localization and activity of Shaker. Nature Neurosci. 13, 69–75 (2010).
Cirelli, C. et al. Reduced sleep in Drosophila Shaker mutants. Nature 434, 1087–1092 (2005).
Axel, R. Scents and sensibility: a molecular logic of olfactory perception (Nobel lecture). Angew. Chem. Int. Ed Engl. 44, 6110–6127 (2005).
Anderson, D. J. Profile of David J. Anderson. Interview by Kaspar D. Mossman. Proc. Natl Acad. Sci. USA 106, 17623–17625 (2009).
Lozano, A. M., Lang, A. E., Hutchison, W. D. & Dostrovsky, J. O. New developments in understanding the etiology of Parkinson's disease and in its treatment. Curr. Opin. Neurobiol. 8, 783–790 (1998).
Polymeropoulos, M. H. et al. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 276, 2045–2047 (1997).
Kitada, T. et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608 (1998).
Valente, E. M. et al. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304, 1158–1160 (2004).
Greene, J. C. et al. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc. Natl Acad. Sci. USA 100, 4078–4083 (2003).
Pesah, Y. et al. Drosophila parkin mutants have decreased mass and cell size and increased sensitivity to oxygen radical stress. Development 131, 2183–2194 (2004).
Orr, H. T. & Zoghbi, H. Y. Trinucleotide repeat disorders. Annu. Rev. Neurosci. 30, 575–621 (2007).
Lessing, D. & Bonini, N. M. Maintaining the brain: insight into human neurodegeneration from Drosophila melanogaster mutants. Nature Rev. Genet. 10, 359–370 (2009).
Botas, J. Drosophila researchers focus on human disease. Nature Genet. 39, 589–591 (2007).
Vosshall, L. B. & Stocker, R. F. Molecular architecture of smell and taste in Drosophila. Annu. Rev. Neurosci. 30, 505–533 (2007).
Iliadi, K. G. The genetic basis of emotional behavior: has the time come for a Drosophila model? J. Neurogenet. 23, 136–146 (2009).
Kernan, M. J. Mechanotransduction and auditory transduction in Drosophila. Pflugers Arch. 454, 703–720 (2007).
Fotowat, H., Fayyazuddin, A., Bellen, H. J. & Gabbiani, F. A novel neuronal pathway for visually guided escape in Drosophila melanogaster. J. Neurophysiol. 102, 875–885 (2009).
Manoli, D. S., Meissner, G. W. & Baker, B. S. Blueprints for behavior: genetic specification of neural circuitry for innate behaviors. Trends Neurosci. 29, 444–451 (2006).
Dickson, B. J. Wired for sex: the neurobiology of Drosophila mating decisions. Science 322, 904–909 (2008).
Muller, H. J. Genetic variability, twin hybrids and constant hybrids, in a case of balanced lethal factors. Genetics 3, 422–499 (1918).
Muller, H. J. Artificial transmutation of the gene. Science 66, 84–87 (1927).
Bridges, C. B. Salivary chromosome maps with a key to the banding of the chromosomes of Drosophila melanogaster. J. Hered. 26, 60–64 (1935).
Stern, C. Somatic crossing over and segregation in Drosophila melanogaster. Genetics 21, 625–730 (1936).
Fuccillo, M., Joyner, A. L. & Fishell, G. Morphogen to mitogen: the multiple roles of hedgehog signalling in vertebrate neural development. Nature Rev. Neurosci. 7, 772–783 (2006).
Kunes, S. Axonal signals in the assembly of neural circuitry. Curr. Opin. Neurobiol. 10, 58–62 (2000).
Doe, C. Q. Neural stem cells: balancing self-renewal with differentiation. Development 135, 1575–1587 (2008).
Ciani, L. & Salinas, P. C. WNTs in the vertebrate nervous system: from patterning to neuronal connectivity. Nature Rev. Neurosci. 6, 351–362 (2005).
Legent, K. & Treisman, J. E. Wingless signaling in Drosophila eye development. Methods Mol. Biol. 469, 141–161 (2008).
Inestrosa, N. C. & Arenas, E. Emerging roles of Wnts in the adult nervous system. Nature Rev. Neurosci. 11, 77–86 (2010).
Korkut, C. & Budnik, V. WNTs tune up the neuromuscular junction. Nature Rev. Neurosci. 10, 627–634 (2009).
Liu, A. & Niswander, L. A. Bone morphogenetic protein signalling and vertebrate nervous system development. Nature Rev. Neurosci. 6, 945–954 (2005).
Kaphingst, K. & Kunes, S. Pattern formation in the visual centers of the Drosophila brain: wingless acts via decapentaplegic to specify the dorsoventral axis. Cell 78, 437–448 (1994).
Yoshida, S. et al. DPP signaling controls development of the lamina glia required for retinal axon targeting in the visual system of Drosophila. Development 132, 4587–4598 (2005).
Parker, L., Ellis, J. E., Nguyen, M. Q. & Arora, K. The divergent TGF-beta ligand Dawdle utilizes an activin pathway to influence axon guidance in Drosophila. Development 133, 4981–4991 (2006).
Serpe, M. & O'Connor, M. B. The metalloprotease tolloid-related and its TGF-b-like substrate Dawdle regulate Drosophila motoneuron axon guidance. Development 133, 4969–4979 (2006).
Keshishian, H. & Kim, Y. S. Orchestrating development and function: retrograde BMP signaling in the Drosophila nervous system. Trends Neurosci. 27, 143–147 (2004).
James, D., Levine, A. J., Besser, D. & Hemmati-Brivanlou, A. TGFb/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development 132, 1273–1282 (2005).
Ogawa, K. et al. Activin-Nodal signaling is involved in propagation of mouse embryonic stem cells. J. Cell Sci. 120, 55–65 (2007).
Louvi, A. & Artavanis-Tsakonas, S. Notch signalling in vertebrate neural development. Nature Rev. Neurosci. 7, 93–102 (2006).
Bardin, A. J., Le Borgne, R. & Schweisguth, F. Asymmetric localization and function of cell-fate determinants: a fly's view. Curr. Opin. Neurobiol. 14, 6–14 (2004).
Carthew, R. W. Pattern formation in the Drosophila eye. Curr. Opin. Genet. Dev. 17, 309–313 (2007).
Le Gall, M., De Mattei, C. & Giniger, E. Molecular separation of two signaling pathways for the receptor, Notch. Dev. Biol. 313, 556–567 (2008).
de Bivort, B. L., Guo, H. F. & Zhong, Y. Notch signaling is required for activity-dependent synaptic plasticity at the Drosophila neuromuscular junction. J. Neurogenet. 23, 395–404 (2009).
Hou, J., Tamura, T. & Kidokoro, Y. Delayed synaptic transmission in Drosophila cacophony null embryos. J. Neurophysiol. 100, 2833–2842 (2008).
Xue, M. et al. Tilting the balance between facilitatory and inhibitory functions of mammalian and Drosophila Complexins orchestrates synaptic vesicle exocytosis. Neuron 64, 367–380 (2009).
Bronk, P. et al. The multiple functions of cysteine-string protein analyzed at Drosophila nerve terminals. J. Neurosci. 25, 2204–2214 (2005).
Ohyama, T. et al. Huntingtin-interacting protein 14, a palmitoyl transferase required for exocytosis and targeting of CSP to synaptic vesicles. J. Cell Biol. 179, 1481–1496 (2007).
Schulze, K. L. et al. rop, a Drosophila homolog of yeast Sec1 and vertebrate n-Sec1/Munc-18 proteins, is a negative regulator of neurotransmitter release in vivo. Neuron 13, 1099–1108 (1994).
Ly, C. V., Yao, C. K., Verstreken, P., Ohyama, T. & Bellen, H. J. straightjacket is required for the synaptic stabilization of cacophony, a voltage-gated calcium channel a1 subunit. J. Cell Biol. 181, 157–170 (2008).
Vilinsky, I., Stewart, B. A., Drummond, J., Robinson, I. & Deitcher, D. L. A Drosophila SNAP-25 null mutant reveals context-dependent redundancy with SNAP-24 in neurotransmission. Genetics 162, 259–271 (2002).
Broadie, K. et al. Syntaxin and synaptobrevin function downstream of vesicle docking in Drosophila. Neuron 15, 663–673 (1995).
Schulze, K. L., Broadie, K., Perin, M. S. & Bellen, H. J. Genetic and electrophysiological studies of Drosophila syntaxin-1A demonstrate its role in nonneuronal secretion and neurotransmission. Cell 80, 311–320 (1995).
Wu, M. N. et al. Syntaxin 1A interacts with multiple exocytic proteins to regulate neurotransmitter release in vivo. Neuron 23, 593–605 (1999).
Aravamudan, B., Fergestad, T., Davis, W. S., Rodesch, C. K. & Broadie, K. Drosophila UNC-13 is essential for synaptic transmission. Nature Neurosci. 2, 965–971 (1999).
Hiesinger, P. R. et al. The v-ATPase V0 subunit a1 is required for a late step in synaptic vesicle exocytosis in Drosophila. Cell 121, 607–620 (2005).
Zhang, B. et al. Synaptic vesicle size and number are regulated by a clathrin adaptor protein required for endocytosis. Neuron 21, 1465–1475 (1998).
Kasprowicz, J. et al. Inactivation of clathrin heavy chain inhibits synaptic recycling but allows bulk membrane uptake. J. Cell Biol. 182, 1007–1016 (2008).
Heerssen, H., Fetter, R. D. & Davis, G. W. Clathrin dependence of synaptic-vesicle formation at the Drosophila neuromuscular junction. Curr. Biol. 18, 401–409 (2008).
Koh, T. W., Verstreken, P. & Bellen, H. J. Dap160/intersectin acts as a stabilizing scaffold required for synaptic development and vesicle endocytosis. Neuron 43, 193–205 (2004).
Ramaswami, M., Rao, S., van der Bliek, A., Kelly, R. B. & Krishnan, K. S. Genetic studies on dynamin function in Drosophila. J. Neurogenet. 9, 73–87 (1993).
Verstreken, P. et al. Endophilin mutations block clathrin-mediated endocytosis but not neurotransmitter release. Cell 109, 101–112 (2002).
Yao, C. K. et al. A synaptic vesicle-associated Ca2+ channel promotes endocytosis and couples exocytosis to endocytosis. Cell 138, 947–960 (2009).
Phillips, A. M., Ramaswami, M. & Kelly, L. E. Stoned. Traffic 11, 16–24.
Verstreken, P. et al. Synaptojanin is recruited by endophilin to promote synaptic vesicle uncoating. Neuron 40, 733–748 (2003).
Verstreken, P. et al. Tweek, an evolutionarily conserved protein, is required for synaptic vesicle recycling. Neuron 63, 203–215 (2009).
Acknowledgements
We would like to thank B. Ganetzky, S. Yamamoto, M. Rasband, N. Giagtzoglou, M. Xue, J. Kiger, H. Dierick, K. Cook, K. Schulze and B. Hassan for reading the manuscript. We apologize to all our colleagues whose work was not cited because of space constraints. HJB is an investigator of the Howard Hughes Medical Institute, HT is supported by the Amyotrophic Lateral Sclerosis Association and CT is supported by a T32 from the National Institute of Neurological Disorders.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Related links
Related links
DATABASES
OMIM
familial advanced sleep phase syndrome
hereditary motor and sensory neuropathy type IIC
FURTHER INFORMATION
Rights and permissions
About this article
Cite this article
Bellen, H., Tong, C. & Tsuda, H. 100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future. Nat Rev Neurosci 11, 514–522 (2010). https://doi.org/10.1038/nrn2839
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrn2839
This article is cited by
-
Sensing microbial infections in the Drosophila melanogaster genetic model organism
Immunogenetics (2022)
-
Synaptic tau: A pathological or physiological phenomenon?
Acta Neuropathologica Communications (2021)
-
The fly liquid-food electroshock assay (FLEA) suggests opposite roles for neuropeptide F in avoidance of bitterness and shock
BMC Biology (2021)
-
Model organisms contribute to diagnosis and discovery in the undiagnosed diseases network: current state and a future vision
Orphanet Journal of Rare Diseases (2021)