Abstract
Action and perception are functionally linked in the brain, but a hotly debated question is whether perception and comprehension of stimuli depend on motor circuits. Brain language mechanisms are ideal for addressing this question. Neuroimaging investigations have found specific motor activations when subjects understand speech sounds, word meanings and sentence structures. Moreover, studies involving transcranial magnetic stimulation and patients with lesions affecting inferior frontal regions of the brain have shown contributions of motor circuits to the comprehension of phonemes, semantic categories and grammar. These data show that language comprehension benefits from frontocentral action systems, indicating that action and perception circuits are interdependent.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Hubel, D. Eye, Brain, and Vision (Scientific American Library, New York, 1995).
Fodor, J. A. The Modulatity of Mind (MIT Press, Cambridge, Massachusetts, 1983).
Shallice, T. From Neuropsychology to Mental Structure (Cambridge University Press, New York, 1988).
Rizzolatti, G., Fadiga, L., Gallese, V. & Fogassi, L. Premotor cortex and the recognition of motor actions. Brain Res. Cogn. Brain Res. 3, 131–141 (1996).
Kohler, E. et al. Hearing sounds, understanding actions: action representation in mirror neurons. Science 297, 846–848 (2002).
Braitenberg, V. & Schüz, A. Cortex: Statistics and Geometry of Neuronal Connectivity (Springer, Berlin, 1998).
Pulvermüller, F. Words in the brain's language. Behav.Brain Sci. 22, 253–336 (1999).
Fadiga, L., Fogassi, L., Gallese, V. & Rizzolatti, G. Visuomotor neurons: ambiguity of the discharge or 'motor' perception? Int. J. Psychophysiol. 35, 165–177 (2000).
Jeannerod, M. Motor Cognition: What Actions Tell to the Self (Oxford University Press, Oxford, 2006).
Rizzolatti, G. & Craighero, L. The mirror-neuron system. Annu. Rev. Neurosci. 27, 169–192 (2004).
Pulvermüller, F. Brain mechanisms linking language and action. Nature Rev. Neurosci. 6, 576–582 (2005).
Guenther, F. H., Ghosh, S. S. & Tourville, J. A. Neural modeling and imaging of the cortical interactions underlying syllable production. Brain Lang. 96, 280–301 (2006).
Petrides, M., Cadoret, G. & Mackey, S. Orofacial somatomotor responses in the macaque monkey homologue of Broca's area. Nature 435, 1235–1238 (2005).
Fadiga, L., Fogassi, L., Pavesi, G. & Rizzolatti, G. Motor facilitation during action observation: a magnetic stimulation study. J. Neurophysiol. 73, 2608–2611 (1995).
Fadiga, L., Craighero, L., Buccino, G. & Rizzolatti, G. Speech listening specifically modulates the excitability of tongue muscles: a TMS study. Eur. J. Neurosci. 15, 399–402 (2002).
Pulvermüller, F., Shtyrov, Y. & Ilmoniemi, R. J. Spatio-temporal patterns of neural language processing: an MEG study using minimum-norm current estimates. Neuroimage 20, 1020–1025 (2003).
Fogassi, L. et al. Parietal lobe: from action organization to intention understanding. Science 308, 662–667 (2005).
Tomasello, M. & Call, J. in The Gestural Communication of Apes and Monkeys (eds Call, J. & Tomasello, M.) 221–239 (Lawrence Erlbaum Associates, Mahwah, 2007).
Werker, J. F. & Tees, R. C. Influences on infant speech processing: toward a new synthesis. Annu. Rev. Psychol. 50, 509–535 (1999).
Mampe, B., Friederici, A. D., Christophe, A. & Wermke, K. Newborns' cry melody is shaped by their native language. Curr. Biol. 19, 1994–1997 (2009).
Cheour, M. et al. Development of language-specific phoneme representations in the infant brain. Nature Neurosci. 1, 351–353 (1998).
de Boysson-Bardies, B. & Vihman, M. M. Adaptation to language: evidence from babbling and first words in four languages. Language 67, 297–319 (1991).
Locke, J. L. The Child's Path to Spoken Language (Harvard University Press, Cambridge, Massachusetts, 1993).
Braitenberg, V. & Pulvermüller, F. Entwurf einer neurologischen Theorie der Sprache. Naturwissenschaften 79, 103–117 (1992) (in German).
Catani, M., Jones, D. K. & Ffytche, D. H. Perisylvian language networks of the human brain. Ann. Neurol. 57, 8–16 (2005).
Saffran, J. R., Aslin, R. N. & Newport, E. L. Statistical learning by 8-month-old infants. Science 274, 1926–1928 (1996).
Hauser, M. D., Newport, E. L. & Aslin, R. N. Segmentation of the speech stream in a non-human primate: statistical learning in cotton-top tamarins. Cognition 78, B53–B64 (2001).
Bishop, D. V., Brown, B. B. & Robson, J. The relationship between phoneme discrimination, speech production, and language comprehension in cerebral-palsied individuals. J. Speech Hear Res. 33, 210–219 (1990).
Westermann, G. & Reck Miranda, E. A new model of sensorimotor coupling in the development of speech. Brain Lang. 89, 393–400 (2004).
Garagnani, M., Wennekers, T. & Pulvermüller, F. A neuroanatomically-grounded Hebbian learning model of attention-language interactions in the human brain. Eur. J. Neurosci. 27, 492–513 (2008).
Pulvermüller, F. & Preissl, H. A cell assembly model of language. Network Comput. Neur. Syst. 2, 455–468 (1991).
Paus, T., Perry, D. W., Zatorre, R. J., Worsley, K. J. & Evans, A. C. Modulation of cerebral blood flow in the human auditory cortex during speech: role of motor-to-sensory discharges. Eur. J. Neurosci. 8, 2236–2246 (1996).
Watkins, K. E., Strafella, A. P. & Paus, T. Seeing and hearing speech excites the motor system involved in speech production. Neuropsychologia 41, 989–994 (2003).
Zatorre, R. J., Evans, A. C., Meyer, E. & Gjedde, A. Lateralization of phonetic and pitch discrimination in speech processing. Science 256, 846–849 (1992).
Wilson, S. M., Saygin, A. P., Sereno, M. I. & Iacoboni, M. Listening to speech activates motor areas involved in speech production. Nature Neurosci. 7, 701–702 (2004).
Vigneau, M. et al. Meta-analyzing left hemisphere language areas: phonology, semantics, and sentence processing. Neuroimage 30, 1414–1432 (2006).
Pulvermüller, F. et al. Motor cortex maps articulatory features of speech sounds. Proc. Natl Acad. Sci. USA 103, 7865–7870 (2006).
Uppenkamp, S., Johnsrude, I. S., Norris, D., Marslen-Wilson, W. & Patterson, R. D. Locating the initial stages of speech-sound processing in human temporal cortex. Neuroimage 31, 1284–1296 (2006).
Scott, S. K., McGettigan, C. & Eisner, F. A little more conversation, a little less action — candidate roles for the motor cortex in speech perception. Nature Rev. Neurosci. 10, 295–302 (2009).
Diesch, E., Eulitz, C., Hampson, S. & Ross, B. The neurotopography of vowels as mirrored by evoked magnetic field measurements. Brain Lang. 53, 143–168 (1996).
Obleser, J. et al. Vowel sound extraction in anterior superior temporal cortex. Hum. Brain Mapp. 27, 562–571 (2006).
Fry, D. B. in The Genesis of Language (eds Smith, F. & Miller, G. A.) 187–206 (MIT Press, Cambridge, Massachusetts, 1966).
Liberman, A. M., Cooper, F. S., Shankweiler, D. P. & Studdert-Kennedy, M. Perception of the speech code. Psychol. Rev. 74, 431–461 (1967).
Galantucci, B., Fowler, C. A. & Turvey, M. T. The motor theory of speech perception reviewed. Psychon. Bull. Rev. 13, 361–377 (2006).
Lotto, A. J., Hickok, G. S. & Holt, L. L. Reflections on mirror neurons and speech perception. Trends Cogn. Sci. 13, 110–114 (2009).
Lichtheim, L. On aphasia. Brain 7, 433–484 (1885).
Broca, P. Remarques sur la siège de la faculté de la parole articulée, suivies d'une observation d'aphémie (perte de parole). Bull.Soc. Anat. 36, 330–357 (1861) (in French).
Wernicke, C. Der aphasische Symptomencomplex. Eine psychologische Studie auf anatomischer Basis (Kohn und Weigert, Breslau, 1874) (in German).
De Renzi, E. & Vignolo, L. The token test: a sensitive test to detect receptive disturbances in aphasics. Brain 85, 665–678 (1962).
Rosenbek, J. C., LaPointe, L. L. & Wertz, R. Aphasia: A Clincial Approach (College-Hill Press, Boston, 1995).
Moineau, S., Dronkers, N. F. & Bates, E. Exploring the processing continuum of single-word comprehension in aphasia. J. Speech Lang. Hear. Res. 48, 884–896 (2005).
Yee, E., Blumstein, S. E. & Sedivy, J. C. Lexical-semantic activation in Broca's and Wernicke's aphasia: evidence from eye movements. J. Cogn. Neurosci. 20, 592–612 (2008).
Utman, J. A., Blumstein, S. E. & Sullivan, K. Mapping from sound to meaning: reduced lexical activation in Broca's aphasics. Brain Lang. 79, 444–472 (2001).
Basso, A., Casati, G. & Vignolo, L. A. Phonemic identification defect in aphasia. Cortex 13, 85–95 (1977).
D'Ausilio, A. et al. The motor somatotopy of speech perception. Curr. Biol. 19, 381–385 (2009).
Meister, I. G., Wilson, S. M., Deblieck, C., Wu, A. D. & Iacoboni, M. The essential role of premotor cortex in speech perception. Curr. Biol. 17, 1692–1696 (2007).
Mottonen, R. & Watkins, K. E. Motor representations of articulators contribute to categorical perception of speech sounds. J. Neurosci. 29, 9819–9825 (2009).
Fadiga, L., Craighero, L. & D'Ausilio, A. Broca's area in language, action, and music. Ann. NY Acad. Sci. 1169, 448–458 (2009).
Binder, J. R., Desai, R. H., Graves, W. W. & Conant, L. L. Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb. Cortex 19, 2767–2796 (2009).
Wittgenstein, L. Philosophical Investigations (Blackwell Publishers, Oxford, 1953).
Damasio, H., Grabowski, T. J., Tranel, D., Hichwa, R. D. & Damasio, A. R. A neural basis for lexical retrieval. Nature 380, 499–505 (1996).
Martin, A., Wiggs, C. L., Ungerleider, L. G. & Haxby, J. V. Neural correlates of category-specific knowledge. Nature 379, 649–652 (1996).
Pulvermüller, F. & Hauk, O. Category-specific processing of color and form words in left fronto-temporal cortex. Cereb. Cortex 16, 1193–1201 (2006).
Simmons, W. K. et al. A common neural substrate for perceiving and knowing about color. Neuropsychologia 45, 2802–2810 (2007).
Gonzalez, J. et al. Reading “cinnamon” activates olfactory brain regions. Neuroimage 32, 906–912 (2006).
Patterson, K., Nestor, P. J. & Rogers, T. T. Where do you know what you know? The representation of semantic knowledge in the human brain. Nature Rev. Neurosci. 8, 976–987 (2007).
Wise, R. J. et al. Noun imageability and the temporal lobes. Neuropsychologia 38, 985–994 (2000).
Barsalou, L. W. Grounded cognition. Annu. Rev. Psychol. 59, 617–645 (2008).
Martin, A. The representation of object concepts in the brain. Annu. Rev. Psychol. 58, 25–45 (2007).
Kiefer, M. Perceptual and semantic sources of category-specific effects: event-related potentials during picture and word categorization. Mem. Cognit. 29, 100–116 (2001).
Pulvermüller, F., Kherif, F., Hauk, O., Mohr, B. & Nimmo-Smith, I. Cortical cell assemblies for general lexical and category-specific semantic processing as revealed by fMRI cluster analysis. Hum. Brain Mapp. 30, 3837–3850 (2009).
Hauk, O., Johnsrude, I. & Pulvermüller, F. Somatotopic representation of action words in the motor and premotor cortex. Neuron 41, 301–307 (2004).
Kemmerer, D., Castillo, J. G., Talavage, T., Patterson, S. & Wiley, C. Neuroanatomical distribution of five semantic components of verbs: evidence from fMRI. Brain Lang. 107, 16–43 (2008).
Tettamanti, M. et al. Listening to action-related sentences activates fronto-parietal motor circuits. J. Cogn Neurosci. 17, 273–281 (2005).
Aziz-Zadeh, L., Wilson, S. M., Rizzolatti, G. & Iacoboni, M. Congruent embodied representations for visually presented actions and linguistic phrases describing actions. Curr. Biol. 16, 1818–1823 (2006).
Boulenger, V., Hauk, O. & Pulvermüller, F. Grasping ideas with the motor system: semantic somatotopy in idiom comprehension. Cereb. Cortex 19, 1905–1914 (2009).
Marslen-Wilson, W. D. Functional parallelism in spoken word-recognition. Cognition 25, 71–102 (1987).
Pulvermüller, F., Hauml;rle, M. & Hummel, F. Neurophysiological distinction of verb categories. Neuroreport 11, 2789–2793 (2000).
Hauk, O. & Pulvermüller, F. Neurophysiological distinction of action words in the fronto-central cortex. Hum. Brain Mappp. 21, 191–201 (2004).
Pulvermüller, F., Shtyrov, Y. & Ilmoniemi, R. J. Brain signatures of meaning access in action word recognition. J. Cogn. Neurosci. 17, 884–892 (2005).
Hauk, O., Davis, M. H., Ford, M., Pulvermüller, F. & Marslen-Wilson, W. D. The time course of visual word recognition as revealed by linear regression analysis of ERP data. Neuroimage 30, 1383–1400 (2006).
Sereno, S. C., Brewer, C. C. & O'Donnell, P. J. Context effects in word recognition: evidence for early interactive processing. Psychol. Sci. 14, 328–333 (2003).
Warrington, E. K. & McCarthy, R. A. Categories of knowledge: further fractionations and an attempted integration. Brain 110, 1273–1296 (1987).
Gainotti, G. A metanalysis of impaired and spared naming for different categories of knowledge in patients with a visuo-verbal disconnection. Neuropsychologia 42, 299–319 (2004).
Miceli, G., Mazzucchi, A., Menn, L. & Goodglass, H. Contrasting cases of italian agrammatic aphasia without comprehension disorders. Brain Lang. 19, 65–97 (1983).
Damasio, A. R. & Tranel, D. Nouns and verbs are retrieved with differently distributed neural systems. Proc. Natl Acad. Sci. USA 90, 4957–4960 (1993).
Daniele, A., Giustolisi, L., Silveri, M. C., Colosimo, C. & Gainotti, G. Evidence for a possible neuroanatomical basis for lexical processing of nouns and verbs. Neuropsychologia 32, 1325–1341 (1994).
Neininger, B. & Pulvermüller, F. Word-category specific deficits after lesions in the right hemisphere. Neuropsychologia 41, 53–70 (2003).
Fazio, P. et al. Encoding of human action in Broca's area. Brain 132, 1980–1988 (2009).
Bak, T. H., O'Donovan, D. G., Xuereb, J. H., Boniface, S. & Hodges, J. R. Selective impairment of verb processing associated with pathological changes in Brodmann areas 44 and 45 in the motor neurone disease–dementia–aphasia syndrome. Brain 124, 103–120 (2001).
Cotelli, M. et al. Action and object naming in Parkinson's disease without dementia. Eur. J. Neurol. 14, 632–637 (2007).
Boulenger, V. et al. Word processing in Parkinson's disease is impaired for action verbs but not for concrete nouns. Neuropsychologia 46, 743–756 (2008).
Cotelli, M. et al. Action and object naming in frontotemporal dementia, progressive supranuclear palsy, and corticobasal degeneration. Neuropsychology 20, 558–565 (2006).
Pulvermüller, F., Lutzenberger, W. & Preissl, H. Nouns and verbs in the intact brain: evidence from event-related potentials and high-frequency cortical responses. Cereb. Cortex 9, 498–508 (1999).
Bird, H., Lambon-Ralph, M. A., Patterson, K. & Hodges, J. R. The rise and fall of frequency and imageability: noun and verb production in semantic dementia. Brain Lang. 73, 17–49 (2000).
Tranel, D., Kemmerer, D., Adolphs, R., Damasio, H. & Damasio, A. R. Neural correlates of conceptual knowledge for actions. Cogn. Neuropsychol. 20, 409–432 (2003).
Bak, T. H. et al. Clinical, imaging and pathological correlates of a hereditary deficit in verb and action processing. Brain 129, 321–332 (2006).
Pulvermüller, F., Hauk, O., Nikulin, V. V. & Ilmoniemi, R. J. Functional links between motor and language systems. Eur. J. Neurosci. 21, 793–797 (2005).
Caplan, D. et al. Vascular responses to syntactic processing: event-related fMRI study of relative clauses. Hum. Brain Mapp. 15, 26–38 (2002).
Just, M. A., Carpenter, P. A., Keller, T. A., Eddy, W. F. & Thulborn, K. R. Brain activation modulated by sentence comprehension. Science 274, 114–116 (1996).
Kinno, R., Kawamura, M., Shioda, S. & Sakai, K. L. Neural correlates of noncanonical syntactic processing revealed by a picture-sentence matching task. Hum. Brain Mapp. 29, 1015–1027 (2008).
Friederici, A. D. Towards a neural basis of auditory sentence processing. Trends Cogn. Sci. 6, 78–84 (2002).
Shtyrov, Y., Pulvermüller, F., Näätänen, R. & Ilmoniemi, R. J. Grammar processing outside the focus of attention: an MEG study. J. Cogn. Neurosci. 15, 1195–1206 (2003).
Pick, A. Die agrammatischen Sprachstörungen. Studien zur psychologischen Grundlegung der Aphasielehre (Springer, Berlin, 1913) (in German).
Caplan, D., Hildebrandt, N. & Makris, N. Location of lesions in stroke patients with deficits in syntactic processing in sentence comprehension. Brain 119, 933–949 (1996).
Caramazza, A. & Zurif, E. B. Dissociation of algorithmic and heuristic processes in sentence comprehension: evidence from aphasia. Brain Lang. 3, 572–582 (1976).
Dominey, P. F., Hoen, M., Blanc, J. M. & Lelekov-Boissard, T. Neurological basis of language and sequential cognition: evidence from simulation, aphasia, and ERP studies. Brain Lang. 86, 207–225 (2003).
Clerget, E., Winderickx, A., Fadiga, L. & Olivier, E. Role of Broca's area in encoding sequential human actions: a virtual lesion study. Neuroreport 20, 1496–1499 (2009).
Chen, J. L., Penhune, V. B. & Zatorre, R. J. Listening to musical rhythms recruits motor regions of the brain. Cereb. Cortex 18, 2844–2854 (2008).
Maess, B., Koelsch, S., Gunter, T. C. & Friederici, A. D. Musical syntax is processed in Broca's area: an MEG study. Nature Neurosci. 4, 540–545 (2001).
Patel, A. D. Language, music, syntax and the brain. Nature Neurosci. 6, 674–681 (2003).
Reichardt, W. & Varju, D. Übertragungseigenschaften im Auswertesystem für das Bewegungssehen. Zeitschrift für Naturforschung 14b, 674–689 (1959) (in German).
Pulvermüller, F. & Knoblauch, A. Discrete combinatorial circuits emerging in neural networks: a mechanism for rules of grammar in the human brain? Neural Netw. 22, 161–172 (2009).
Koechlin, E. & Jubault, T. Broca's area and the hierarchical organization of human behavior. Neuron 50, 963–974 (2006).
Bahlmann, J., Schubotz, R. I. & Friederici, A. D. Hierarchical artificial grammar processing engages Broca's area. Neuroimage 42, 525–534 (2008).
Pulvermüller, F. & Shtyrov, Y. Language outside the focus of attention: the mismatch negativity as a tool for studying higher cognitive processes. Prog. Neurobiol. 79, 49–71 (2006).
Pulvermüller, F. & Shtyrov, Y. Spatio-temporal signatures of large-scale synfire chains for speech: MEG evidence. Cereb. Cortex 19, 79–88 (2009).
Garagnani, M., Shtyrov, Y. & Pulvermüller, F. Effects of attention on what is known and what is not: MEG evidence for functionally discrete memory circuits. Front. Hum. Neurosci. 30 Jun 2009 (doi:10.3389/neuro.09.010.2009).
Wennekers, T., Garagnani, M. & Pulvermüller, F. Language models based on Hebbian cell assemblies. J. Physiol. (Paris) 100, 16–30 (2006).
Pulvermüller, F. et al. The word processing deficit in Semantic Dementia: all categories are equal but some categories are more equal than others. J. Cogn. Neurosci. 1 Sep 2009 (doi:10.1162/jocn.2009.21339).
Chater, N. & Manning, C. D. Probabilistic models of language processing and acquisition. Trends Cogn. Sci. 10, 335–344 (2006).
Elman, J. L. et al. Rethinking Innateness. A Connectionist Perspective on Development (MIT Press, Cambridge, Massachusetts, 1996).
Marcus, G. F. The Algebraic Mind: Integrating Connectionism and Cognitive Science (MIT Press, Cambridge, Massachusetts, 2001).
McClelland, J. L. & Patterson, K. Rules or connections in past-tense inflections: what does the evidence rule out? Trends Cogn. Sci. 6, 465–472 (2002).
Gervain, J., Macagno, F., Cogoi, S., Pena, M. & Mehler, J. The neonate brain detects speech structure. Proc. Natl Acad. Sci. USA 105, 14222–14227 (2008).
Grafton, S. T. & Hamilton, A. F. Evidence for a distributed hierarchy of action representation in the brain. Hum. Mov. Sci. 26, 590–616 (2007).
Pulvermüller, F. Brain embodiment of syntax and grammar: discrete combinatorial mechanisms spelt out in neuronal circuits. Brain Lang. 112, 167–179 (2010).
Petrides, M. & Pandya, D. N. Distinct parietal and temporal pathways to the homologues of Broca's area in the monkey. PLoS Biol. 7, e1000170 (2009).
Rilling, J. K. et al. The evolution of the arcuate fasciculus revealed with comparative DTI. Nature Neurosci. 11, 426–428 (2008).
Saur, D. et al. Ventral and dorsal pathways for language. Proc. Natl Acad. Sci. USA 105, 18035–18040 (2008).
Kiefer, M., Sim, E. J., Herrnberger, B., Grothe, J. & Hoenig, K. The sound of concepts: four markers for a link between auditory and conceptual brain systems. J. Neurosci. 28, 12224–12230 (2008).
Acknowledgements
We thank M. Garagnani, I. Laka, R. Wise, R. Moseley and three anonymous reviewers for their comments on earlier versions of this manuscript. This work is supported by the Medical Research Council (UK) (U1055.04.003.00001.01) to F.P., by the Fondazione Cassa di Risparmio di Ferrara to L.F. and by the European Community (Nestcom (NEST-2005-PATH-HUM contract 043,374) to F.P. and Robot-cub, Contact, Poeticon to L.F.).
Author information
Authors and Affiliations
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information S1 (box)
Sensorimotor neurons and action–perception circuits (PDF 202 kb)
Supplementary information S2 (box)
A role for action in perception? Controversies and clinical data (PDF 217 kb)
Related links
Related links
DATABASES
OMIM
FURTHER INFORMATION
Friedemann Pulvermuller's homepages
Glossary
- Motor cortex
-
The portion of the frontal cortex that controls movements and is therefore classically considered an output area of the cortex. It includes primary motor, premotor and supplementary motor areas.
- Sensorimotor neuron
-
A neuron that is activated both by sensory stimulation — sometimes through various modalities — and during action execution. Mirror neurons and canonical neurons are special types of sensorimotor neurons.
- Mirror neuron
-
A neuron that activates during action execution and during the observation of another individual performing a similar action. Some mirror neurons also fire during listening to action-related sounds.
- Syntactic
-
Relating to the rules of syntax — the grammatical arrangement of words and phrases in a sentence, which affects relationships of meaning. For example, changing the placement of a word or phrase can change the meaning.
- Phonological
-
Relating to the scientific discipline of phonology, which studies the sound structure of languages. The term is also used to refer to the sound structure of a language itself.
- Semantics
-
Scientific discipline studying the meaning of words and, in a wider use of the term, meaning in general. The term is also used as a synonym of 'meaning'.
- Broca's area
-
The posterior part of the inferior frontal gyrus. It includes the cytoarchitectonically defined Brodmann area 44 (BA 44) and BA 45 and is involved in speech production.
- Phoneme
-
A speech sound and smallest unit of speech that can be used to distinguish between meaningful words in a given language.
- Perisylvian cortex
-
The brain region surrounding the sylvian fissure which, in the left hemisphere of almost all right-handed people and in most left-handed people, is most relevant for language processing. It includes the posterior inferior frontal cortex, the superior temporal cortex, inferior parietal areas, the insula and cortico-cortical fibre bundles.
- Somatotopy
-
A property of motor and somatosensory cortices whereby the spatial organization of adjacent body parts is preserved in representations in adjacent brain regions. Phonological somatotopy refers to the somatotopic representation of speech sounds in the motor areas of the articulator that produced the speech sounds. Semantic somatotopy is the mapping of action-related words to the motor areas representing the body parts typically involved in executing the action.
- Transcranial magnetic stimulation
-
A non-invasive method for focal cortical stimulation by means of a coil positioned on the scalp. It delivers brief, strong electric pulses. These create a local magnetic field, which induces a current in the surface of the cortex that temporarily changes local neural activity.
- Neuropsychology
-
A scientific discipline studying the effects on behaviour of changes in neuronal function — caused, for example, by a brain lesion, magnetic stimulation, drugs or sensory stimulation.
- Wernicke's region
-
The posterior perisylvian cortex, originally identified by the Polish–German neurologist Carl Wernicke as the area necessary for speech comprehension. Although definitions vary, Brodmann area 22 in the superior temporal cortex is usually included.
Rights and permissions
About this article
Cite this article
Pulvermüller, F., Fadiga, L. Active perception: sensorimotor circuits as a cortical basis for language. Nat Rev Neurosci 11, 351–360 (2010). https://doi.org/10.1038/nrn2811
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrn2811