Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Modelling neurodegeneration in Saccharomyces cerevisiae: why cook with baker's yeast?

Abstract

In ageing populations, neurodegenerative diseases increase in prevalence, exacting an enormous toll on individuals and their communities. Multiple complementary experimental approaches are needed to elucidate the mechanisms underlying these complex diseases and to develop novel therapeutics. Here, we describe why the budding yeast Saccharomyces cerevisiae has a unique role in the neurodegeneration armamentarium. As the best-understood and most readily analysed eukaryotic organism, S. cerevisiae is delivering mechanistic insights into cell-autonomous mechanisms of neurodegeneration at an interactome-wide scale.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Conserved cellular biology in yeast.
Figure 2: Creating, characterizing and screening a yeast model of neurodegenerative disease.

References

  1. Smith, M. G. & Snyder, M. Yeast as a model for human disease. Curr. Protoc. Hum. Genet. Ch. 15, Unit 15.6 (2006).

  2. Brandis, K. A. et al. α-Synuclein fission yeast model: concentration-dependent aggregation without plasma membrane localization or toxicity. J. Mol. Neurosci. 28, 179–191 (2006).

    CAS  PubMed  Google Scholar 

  3. Codlin, S. & Mole, S. E. S. pombe btn1, the orthologue of the Batten disease gene CLN3, is required for vacuole protein sorting of Cpy1p and Golgi exit of Vps10p. J. Cell Sci. 122, 1163–1173 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Botstein, D., Chervitz, S. A. & Cherry, J. M. Yeast as a model organism. Science 277, 1259–1260 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bassett, D. E., Boguski, M. S. & Hieter, P. Yeast genes and human disease. Nature 379, 589–590 (1996).

    CAS  PubMed  Google Scholar 

  6. Foury, F. Human genetic diseases: a cross-talk between man and yeast. Gene 195, 1–10 (1997).

    CAS  PubMed  Google Scholar 

  7. Lindquist, S., Krobitsch, S., Li, L. & Sondheimer, N. Investigating protein conformation-based inheritance and disease in yeast. Phil. Trans. R. Soc. Lond. B 356, 169–176 (2001).

    CAS  Google Scholar 

  8. Tessier, P. & Lindquist, S. Unraveling infectious structures, strain variants and species barriers for the yeast prion [PSI+]. Nature Struct. Mol. Biol. 16, 598–605 (2009).

    CAS  Google Scholar 

  9. Knott, A. B., Perkins, G., Schwarzenbacher, R. & Bossy-Wetzel, E. Mitochondrial fragmentation in neurodegeneration. Nature Rev. Neurosci. 9, 505–518 (2008).

    CAS  Google Scholar 

  10. Malhotra, V. & Emr, S. D. Rothman and Schekman SNAREd by Lasker for trafficking. Cell 111, 1–3 (2002).

    CAS  PubMed  Google Scholar 

  11. Littleton, J. T. & Bellen, H. J. Synaptotagmin controls and modulates synaptic-vesicle fusion in a Ca2+-dependent manner. Trends Neurosci. 18, 177–183 (1995).

    CAS  PubMed  Google Scholar 

  12. Cooper, A. A. et al. α-Synuclein blocks ER–Golgi traffic and Rab1 rescues neuron loss in Parkinson's models. Science 313, 324–328 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lin, W. & Popko, B. Endoplasmic reticulum stress in disorders of myelinating cells. Nature Neurosci. 12, 379–385 (2009).

    CAS  PubMed  Google Scholar 

  14. Scheper, W. & Hoozemans, J. J. Endoplasmic reticulum protein quality control in neurodegenerative disease: the good, the bad and the therapy. Curr. Med. Chem. 16, 615–626 (2009).

    CAS  PubMed  Google Scholar 

  15. Herrup, K. & Yang, Y. Cell cycle regulation in the postmitotic neuron: oxymoron or new biology? Nature Rev. Neurosci. 8, 368–378 (2007).

    CAS  Google Scholar 

  16. Jin, C. & Reed, J. C. Yeast and apoptosis. Nature Rev. Mol. Cell Biol. 3, 453–459 (2002).

    CAS  Google Scholar 

  17. Cheng, W. C., Leach, K. M. & Hardwick, J. M. Mitochondrial death pathways in yeast and mammalian cells. Biochim. Biophys. Acta 1783, 1272–1279 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Khoury, C. & Greenwood, M. The pleiotropic effects of heterologous Bax expression in yeast. Biochim. Biophys. Acta 1783, 1449–1465 (2008).

    CAS  PubMed  Google Scholar 

  19. Nakatogawa, H., Suzuki, K., Kamada, Y. & Ohsumi, Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nature Rev. Mol. Cell Biol. 10, 458–467 (2009).

    CAS  Google Scholar 

  20. Levine, B. & Kroemer, G. Autophagy in the pathogenesis of disease. Cell 132, 27–42 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Botstein, D. & Fink, G. R. Yeast: an experimental organism for modern biology. Science 240, 1439–1443 (1988).

    CAS  PubMed  Google Scholar 

  22. Sherman, F. Getting started with yeast. Methods Enzymol. 350, 3–41 (2002).

    CAS  PubMed  Google Scholar 

  23. van Anken, E. & Braakman, I. Endoplasmic reticulum stress and the making of a professional secretory cell. Crit. Rev. Biochem. Mol. Biol. 40, 269–283 (2005).

    PubMed  Google Scholar 

  24. Knight, S., Kim, R., Pain, D. & Dancis, A. The yeast connection to Friedreich ataxia. Am. J. Hum. Genet. 64, 365–371 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Orr, H. T. & Zoghbi, H. Y. Trinucleotide repeat disorders. Annu. Rev. Neurosci. 30, 575–621 (2007).

    CAS  PubMed  Google Scholar 

  26. Davies, S. W. et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90, 537–548 (1997).

    CAS  PubMed  Google Scholar 

  27. Hughes, R. E. et al. Altered transcription in yeast expressing expanded polyglutamine. Proc. Natl Acad. Sci. USA 98, 13201–13206 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Krobitsch, S. & Lindquist, S. Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins. Proc. Natl Acad. Sci. USA 97, 1589–1594 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Meriin, A. B. et al. Huntington toxicity in yeast model depends on polyglutamine aggregation mediated by a prion-like protein Rnq1. J. Cell Biol. 157, 997–1004 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Muchowski, P. J. et al. Hsp70 and Hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils. Proc. Natl Acad. Sci. USA 97, 7841–7846 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Giorgini, F., Guidetti, P., Nguyen, Q., Bennett, S. C. & Muchowski, P. J. A genomic screen in yeast implicates kynurenine 3-monooxygenase as a therapeutic target for Huntington disease. Nature Genet. 37, 526–531 (2005).

    CAS  PubMed  Google Scholar 

  32. Sokolov, S., Pozniakovsky, A., Bocharova, N., Knorre, D. & Severin, F. Expression of an expanded polyglutamine domain in yeast causes death with apoptotic markers. Biochim. Biophys. Acta 1757, 660–666 (2006).

    CAS  PubMed  Google Scholar 

  33. Duennwald, M. L. & Lindquist, S. Impaired ERAD and ER stress are early and specific events in polyglutamine toxicity. Genes Dev. 22, 3308–3319 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen, Q., Thorpe, J. & Keller, J. N. α-Synuclein alters proteasome function, protein synthesis, and stationary phase viability. J. Biol. Chem. 280, 30009–30017 (2005).

    CAS  PubMed  Google Scholar 

  35. Dixon, C., Mathias, N., Zweig, R. M., Davis, D. A. & Gross, D. S. α-Synuclein targets the plasma membrane via the secretory pathway and induces toxicity in yeast. Genetics 170, 47–59 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Flower, T. R., Chesnokova, L. S., Froelich, C. A., Dixon, C. & Witt, S. N. Heat shock prevents α-synuclein-induced apoptosis in a yeast model of Parkinson's disease. J. Mol. Biol. 351, 1081–1100 (2005).

    CAS  PubMed  Google Scholar 

  37. Outeiro, T. F. & Lindquist, S. Yeast cells provide insight into α-synuclein biology and pathobiology. Science 302, 1772–1775 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Sharma, N. et al. α-Synuclein budding yeast model: toxicity enhanced by impaired proteasome and oxidative stress. J. Mol. Neurosci. 28, 161–178 (2006).

    CAS  PubMed  Google Scholar 

  39. Winderickx, J. et al. Protein folding diseases and neurodegeneration: lessons learned from yeast. Biochim. Biophys. Acta 1783, 1381–1395 (2008).

    CAS  PubMed  Google Scholar 

  40. Su, L. J. et al. Compounds from an unbiased chemical screen reverse both ER-to-Golgi trafficking defects and mitochondrial dysfunction in Parkinson's disease models. Dis. Model Mech. 3, 194–208 (2010).

    CAS  PubMed  Google Scholar 

  41. Kritzer, J. A. et al. Rapid selection of cyclic peptides that reduce α-synuclein toxicity in yeast and animal models. Nature Chem. Biol. 5, 655–663 (2009).

    CAS  Google Scholar 

  42. Chopra, V. et al. A small-molecule therapeutic lead for Huntington's disease: preclinical pharmacology and efficacy of C2-8 in the R6/2 transgenic mouse. Proc. Natl Acad. Sci. USA 104, 16685–16689 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Schaffar, G. et al. Cellular toxicity of polyglutamine expansion proteins: mechanism of transcription factor deactivation. Mol. Cell 15, 95–105 (2004).

    CAS  PubMed  Google Scholar 

  44. Duennwald, M. L., Jagadish, S., Giorgini, F., Muchowski, P. J. & Lindquist, S. A network of protein interactions determines polyglutamine toxicity. Proc. Natl Acad. Sci. USA 103, 11051–11056 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Duennwald, M. L., Jagadish, S., Muchowski, P. J. & Lindquist, S. Flanking sequences profoundly alter polyglutamine toxicity in yeast. Proc. Natl Acad. Sci. USA 103, 11045–11050 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Gitler, A. D. et al. α-Synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity. Nature Genet. 41, 308–315 (2009).

    CAS  PubMed  Google Scholar 

  47. Jankovic, J. Searching for a relationship between manganese and welding and Parkinson's disease. Neurology 64, 2021–2028 (2005).

    CAS  PubMed  Google Scholar 

  48. Ramirez, A. et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nature Genet. 38, 1184–1191 (2006).

    CAS  PubMed  Google Scholar 

  49. Schmidt, K., Wolfe, D. M., Stiller, B. & Pearce, D. A. Cd2+, Mn2+, Ni2+ and Se2+ toxicity to Saccharomyces cerevisiae lacking YPK9p the orthologue of human ATP13A2. Biochem. Biophys. Res. Commun. 383, 198–202 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Yeger-Lotem, E. et al. Bridging high-throughput genetic and transcriptional data reveals cellular responses to α-synuclein toxicity. Nature Genet. 41, 316–323 (2009).

    CAS  PubMed  Google Scholar 

  51. Wahner, A. D., Bronstein, J. M., Bordelon, Y. M. & Ritz, B. Statin use and the risk of Parkinson disease. Neurology 70, 1418–1422 (2008).

    CAS  PubMed  Google Scholar 

  52. Jones, G. M. et al. A systematic library for comprehensive overexpression screens in Saccharomyces cerevisiae. Nature Methods 5, 239–241 (2008).

    CAS  PubMed  Google Scholar 

  53. DeRisi, J. L., Iyer, V. R. & Brown, P. O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680–686 (1997).

    CAS  PubMed  Google Scholar 

  54. Alberti, S., Gitler, A. D. & Lindquist, S. A suite of Gateway® cloning vectors for high-throughput genetic analysis in Saccharomyces cerevisiae. Yeast 24, 913–919 (2007).

    CAS  PubMed  Google Scholar 

  55. Ejsing, C. S. et al. Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc. Natl Acad. Sci. USA 106, 2136–2141 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Gaspar, M. L. et al. The emergence of yeast lipidomics. Biochim. Biophys. Acta 1771, 241–254 (2007).

    CAS  PubMed  Google Scholar 

  57. Hoon, S., St Onge, R. P., Giaever, G. & Nislow, C. Yeast chemical genomics and drug discovery: an update. Trends Pharmacol. Sci. 29, 499–504 (2008).

    CAS  PubMed  Google Scholar 

  58. Parsons, A. B. et al. Exploring the mode-of-action of bioactive compounds by chemical-genetic profiling in yeast. Cell 126, 611–625 (2006).

    CAS  PubMed  Google Scholar 

  59. Hillenmeyer, M. E. et al. The chemical genomic portrait of yeast: uncovering a phenotype for all genes. Science 320, 362–365 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Outeiro, T. F. & Giorgini, F. Yeast as a drug discovery platform in Huntington's and Parkinson's diseases. Biotechnol. J. 1, 258–269 (2006).

    CAS  PubMed  Google Scholar 

  61. Willingham, S., Outeiro, T. F., DeVit, M. J., Lindquist, S. L. & Muchowski, P. J. Yeast genes that enhance the toxicity of a mutant huntingtin fragment or α-synuclein. Science 302, 1769–1772 (2003).

    CAS  PubMed  Google Scholar 

  62. Zhang, X. et al. A potent small molecule inhibits polyglutamine aggregation in Huntington's disease neurons and suppresses neurodegeneration in vivo. Proc. Natl Acad. Sci. USA 102, 892–897 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Ehrnhoefer, D. E. et al. Green tea (-)-epigallocatechin-gallate modulates early events in huntingtin misfolding and reduces toxicity in Huntington's disease models. Hum. Mol. Genet. 15, 2743–2751 (2006).

    CAS  PubMed  Google Scholar 

  64. Marsh, J. L. & Thompson, L. M. Drosophila in the study of neurodegenerative disease. Neuron 52, 169–178 (2006).

    CAS  PubMed  Google Scholar 

  65. Tam, S., Geller, R., Spiess, C. & Frydman, J. The chaperonin TRiC controls polyglutamine aggregation and toxicity through subunit-specific interactions. Nature Cell Biol. 8, 1155–1162 (2006).

    CAS  PubMed  Google Scholar 

  66. Vacher, C., Garcia-Oroz, L. & Rubinsztein, D. C. Overexpression of yeast hsp104 reduces polyglutamine aggregation and prolongs survival of a transgenic mouse model of Huntington's disease. Hum. Mol. Genet. 14, 3425–3433 (2005).

    CAS  PubMed  Google Scholar 

  67. Carnemolla, A. et al. RRS1 is involved in endoplasmic reticulum stress response in Huntington's disease. J. Biol. Chem. 284, 18167–18173 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Sas, K., Robotka, H., Toldi, J. & Vécsei, L. Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders. J. Neurol. Sci. 257, 221–239 (2007).

    CAS  PubMed  Google Scholar 

  69. Arrasate, M., Mitra, S., Schweitzer, E. S., Segal, M. R. & Finkbeiner, S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431, 805–810 (2004).

    CAS  PubMed  Google Scholar 

  70. Treusch, S., Cyr, D. M. & Lindquist, S. Amyloid deposits: protection against toxic protein species? Cell Cycle 8, 1668–1674 (2009).

    CAS  PubMed  Google Scholar 

  71. Gitler, A. D. et al. The Parkinson's disease protein α-synuclein disrupts cellular Rab homeostasis. Proc. Natl Acad. Sci. USA 105, 145–150 (2008).

    CAS  PubMed  Google Scholar 

  72. Soper, J. H. et al. α-Synuclein-induced aggregation of cytoplasmic vesicles in Saccharomyces cerevisiae. Mol. Biol. Cell 19, 1093–1103 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Flower, T. R. et al. YGR198w (YPP1) targets A30P α-synuclein to the vacuole for degradation. J. Cell Biol. 177, 1091–104 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Griffioen, G. et al. A yeast-based model of α-synucleinopathy identifies compounds with therapeutic potential. Biochim. Biophys. Acta 1762, 312–318 (2006).

    CAS  PubMed  Google Scholar 

  75. Larsen, K. E. et al. α-Synuclein overexpression in PC12 and chromaffin cells impairs catecholamine release by interfering with a late step in exocytosis. J. Neurosci. 26, 11915–11922 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Nemani, V. M. et al. Increased expression of α-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron 65, 66–79 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Cabin, D. E. et al. Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking α-synuclein. J. Neurosci. 22, 8797–8807 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Pearce, D. A., Ferea, T., Nosel, S. A., Das, B. & Sherman, F. Action of BTN1, the yeast orthologue of the gene mutated in Batten disease. Nature Genet. 22, 55–58 (1999).

    CAS  PubMed  Google Scholar 

  79. Zhang, S. et al. Ncr1p, the yeast ortholog of mammalian Niemann Pick C1 protein, is dispensable for endocytic transport. Traffic 5, 1017–1030 (2004).

    CAS  PubMed  Google Scholar 

  80. Moore, J. K., Sept, D. & Cooper, J. A. Neurodegeneration mutations in dynactin impair dynein-dependent nuclear migration. Proc. Natl Acad. Sci. USA 106, 5147–5152 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Pearce, D. A. Hereditary spastic paraplegia: mitochondrial metalloproteases of yeast. Hum. Genet. 104, 443–448 (1999).

    CAS  PubMed  Google Scholar 

  82. Shani, N. & Valle, D. A Saccharomyces cerevisiae homolog of the human adrenoleukodystrophy transporter is a heterodimer of two half ATP-binding cassette transporters. Proc. Natl Acad. Sci. USA 93, 11901–11906 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Middendorp, O., Lüthi, U., Hausch, F. & Barberis, A. Searching for the most effective screening system to identify cell-active inhibitors of β-secretase. Biol. Chem. 385, 481–485 (2004).

    CAS  PubMed  Google Scholar 

  84. Bagriantsev, S. & Liebman, S. Modulation of Αβ42 low-n oligomerization using a novel yeast reporter system. BMC Biol. 4, 32 (2006).

    PubMed  PubMed Central  Google Scholar 

  85. von der Haar, T., Jossé, L., Wright, P., Zenthon, J. & Tuite, M. F. Development of a novel yeast cell-based system for studying the aggregation of Alzheimer's disease-associated αβ peptides in vivo. Neurodegener. Dis. 4, 136–147 (2007).

    CAS  PubMed  Google Scholar 

  86. Caine, J. et al. Alzheimer's Aβ fused to green fluorescent protein induces growth stress and a heat shock response. FEMS Yeast Res. 7, 1230–1236 (2007).

    CAS  PubMed  Google Scholar 

  87. Bharadwaj, P., Waddington, L., Varghese, J. & Macreadie, I. G. A new method to measure cellular toxicity of non-fibrillar and fibrillar Alzheimer's Aβ using yeast. J. Alzheimers Dis. 13, 147–150 (2008).

    CAS  PubMed  Google Scholar 

  88. Johnson, B. S., McCaffery, J. M., Lindquist, S. & Gitler, A. D. A yeast TDP-43 proteinopathy model: exploring the molecular determinants of TDP-43 aggregation and cellular toxicity. Proc. Natl Acad. Sci. USA 105, 6439–6444 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Apodaca, J., Kim, I. & Rao, H. Cellular tolerance of prion protein PrP in yeast involves proteolysis and the unfolded protein response. Biochem. Biophys. Res. Commun. 347, 319–326 (2006).

    CAS  PubMed  Google Scholar 

  90. Ma, J. & Lindquist, S. De novo generation of a PrPSc-like conformation in living cells. Nature Cell Biol. 1, 358–361 (1999).

    CAS  PubMed  Google Scholar 

  91. Tank, E. M., Harris, D. A., Desai, A. A. & True, H. L. Prion protein repeat expansion results in increased aggregation and reveals phenotypic variability. Mol. Cell. Biol. 27, 5445–5455 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Yang, W., Yang, H. & Tien, P. In vitro self-propagation of recombinant PrPSc-like conformation generated in the yeast cytoplasm. FEBS Lett. 580, 4231–4235 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Lindquist laboratory for their insightful comments on the manuscript, and particularly E. Nabieva for her assistance in the preparation of Table 2. S.L. is an Investigator at the Howard Hughes Medical Institute (HHMI). This work was supported by an HHMI Collaborative Innovation Award, US National Institutes of Health Udall program grant NS038372, and the Whitehead Institute Regenerative Biology Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Lindquist.

Ethics declarations

Competing interests

Susan Lindquist is a co-founder of, a former member of the Board of Directors of and has received consulting fees from FoldRx Pharmaceuticals, a company that investigates drugs for treating protein-folding diseases. She is an inventor of patents and patent applications that have been licensed to FoldRx. She is also a member of the Board of Directors of Johnson & Johnson.

Related links

Related links

FURTHER INFORMATION

Susan Lindquist's homepage

Addgene — S. cerevisiae Advanced Gateway Destination Vectors

Saccharomyces Genome Database

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Khurana, V., Lindquist, S. Modelling neurodegeneration in Saccharomyces cerevisiae: why cook with baker's yeast?. Nat Rev Neurosci 11, 436–449 (2010). https://doi.org/10.1038/nrn2809

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2809

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing