Traumatic brain injury and amyloid-β pathology: a link to Alzheimer's disease?

Article metrics


Traumatic brain injury (TBI) has devastating acute effects and in many cases seems to initiate long-term neurodegeneration. Indeed, an epidemiological association between TBI and the development of Alzheimer's disease (AD) later in life has been demonstrated, and it has been shown that amyloid-β (Aβ) plaques — one of the hallmarks of AD — may be found in patients within hours following TBI. Here, we explore the mechanistic underpinnings of the link between TBI and AD, focusing on the hypothesis that rapid Aβ plaque formation may result from the accumulation of amyloid precursor protein in damaged axons and a disturbed balance between Aβ genesis and catabolism following TBI.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Immunohistochemical findings exploring mechanisms of amyloid-β plaque formation following traumatic brain injury.
Figure 2: Potential mechanisms of post-traumatic amyloid-β formation and clearance.


  1. 1

    Langlois, J. A., Rutland-Brown, W. & Thomas, K. E. Traumatic Brain Injury in the United States: Emergency Department Visits, Hospitalizations, and Deaths. (Centers for Disease Control and Prevention, Nation Center for Injury Prevention and Control, Atlanta, Georgia, 2006).

  2. 2

    Thurman, D., Alverson, C., Dunn, K., Guerrero, J. & Sniezek, J. Traumatic brain injury in the United States: a public health perspective. J. Head Trauma Rehabil. 14, 602–615 (1999).

  3. 3

    Molgaard, C. A. et al. Epidemiology of head trauma and neurocognitive impairment in a multi-ethnic population. Neuroepidemiology 9, 233–242 (1990).

  4. 4

    Mortimer, J. A., French, L. R., Hutton, J. T. & Schuman, L. M. Head injury as a risk factor for Alzheimer's disease. Neurology 35, 264–267 (1985).

  5. 5

    Mortimer, J. A. et al. Head trauma as a risk factor for Alzheimer's disease: a collaborative re-analysis of case–control studies. EURODEM Risk Factors Research Group. Int. J. Epidemiol. 20 (Suppl. 2), 28–35 (1991).

  6. 6

    Graves, A. B. et al. The association between head trauma and Alzheimer's disease. Am. J. Epidemiol. 131, 491–501 (1990).

  7. 7

    O'Meara, E. S. et al. Head injury and risk of Alzheimer's disease by apolipoprotein E genotype. Am. J. Epidemiol. 146, 373–384 (1997).

  8. 8

    Salib, E. & Hillier, V. Head injury and the risk of Alzheimer's disease: a case control study. Int. J. Geriatr. Psychiatry 12, 363–368 (1997).

  9. 9

    Guo, Z. et al. Head injury and the risk of AD in the MIRAGE study. Neurology 54, 1316–1323 (2000).

  10. 10

    Schofield, P. W. et al. Alzheimer's disease after remote head injury: an incidence study. J. Neurol. Neurosurg. Psychiatry 62, 119–124 (1997).

  11. 11

    Plassman, B. L. et al. Documented head injury in early adulthood and risk of Alzheimer's disease and other dementias. Neurology 55, 1158–1166 (2000).

  12. 12

    Fleminger, S., Oliver, D. L., Lovestone, S., Rabe-Hesketh, S. & Giora, A. Head injury as a risk factor for Alzheimer's disease: the evidence 10 years on; a partial replication. J. Neurol. Neurosurg. Psychiatry 74, 857–862 (2003).

  13. 13

    Kotapka, M. J., Graham, D. I., Adams, J. H. & Gennarelli, T. A. Hippocampal pathology in fatal non-missile human head injury. Acta Neuropathol. 83, 530–534 (1992).

  14. 14

    Smith, D. H. et al. Progressive atrophy and neuron death for one year following brain trauma in the rat. J. Neurotrauma 14, 715–727 (1997).

  15. 15

    Maxwell, W. L., Mackinnon, M. A., Stewart, J. E. & Graham, D. I. Stereology of cerebral cortex after traumatic brain injury matched to the Glasgow Outcome Score. Brain 133, 139–160 (2010).

  16. 16

    Gentleman, S. M. et al. Long-term intracerebral inflammatory response after traumatic brain injury. Forensic Sci. Int. 146, 97–104 (2004).

  17. 17

    Nicoll, J. A. et al. Association of interleukin-1 gene polymorphisms with Alzheimer's disease. Ann. Neurol. 47, 365–368 (2000).

  18. 18

    Smith, D. H. et al. Accumulation of amyloid beta and tau and the formation of neurofilament inclusions following diffuse brain injury in the pig. J. Neuropathol. Exp. Neurol. 58, 982–992 (1999).

  19. 19

    Geddes, J. F., Vowles, G. H., Nicoll, J. A. & Revesz, T. Neuronal cytoskeletal changes are an early consequence of repetitive head injury. Acta Neuropathol. 98, 171–178 (1999).

  20. 20

    van Duijn, C. M. et al. Head trauma and the risk of Alzheimer's disease. Am. J. Epidemiol. 135, 775–782 (1992).

  21. 21

    Chandra, V., Philipose, V., Bell, P. A., Lazaroff, A. & Schoenberg, B. S. Case–control study of late onset “probable Alzheimer's disease”. Neurology 37, 1295–1300 (1987).

  22. 22

    Amaducci, L. A. et al. Risk factors for clinically diagnosed Alzheimer's disease: a case–control study of an Italian population. Neurology 36, 922–931 (1986).

  23. 23

    Broe, G. A. et al. A case–control study of Alzheimer's disease in Australia. Neurology 40, 1698–1707 (1990).

  24. 24

    Ferini-Strambi, L., Smirne, S., Garancini, P., Pinto, P. & Franceschi, M. Clinical and epidemiological aspects of Alzheimer's disease with presenile onset: a case control study. Neuroepidemiology 9, 39–49 (1990).

  25. 25

    Katzman, R. et al. Development of dementing illnesses in an 80-year-old volunteer cohort. Ann. Neurol. 25, 317–324 (1989).

  26. 26

    Launer, L. J. et al. Rates and risk factors for dementia and Alzheimer's disease: results from EURODEM pooled analyses. EURODEM Incidence Research Group and Work Groups. European Studies of Dementia. Neurology 52, 78–84 (1999).

  27. 27

    Williams, D. B., Annegers, J. F., Kokmen, E., O'Brien, P. C. & Kurland, L. T. Brain injury and neurologic sequelae: a cohort study of dementia, parkinsonism, and amyotrophic lateral sclerosis. Neurology 41, 1554–1557 (1991).

  28. 28

    Mehta, K. M. et al. Head trauma and risk of dementia and Alzheimer's disease: the Rotterdam study. Neurology 53, 1959–1962 (1999).

  29. 29

    Lye, T. C. & Shores, E. A. Traumatic brain injury as a risk factor for Alzheimer's disease: a review. Neuropsychol. Rev. 10, 115–129 (2000).

  30. 30

    Sullivan, P., Petitti, D. & Barbaccia, J. Head trauma and age of onset of dementia of the Alzheimer type. Jama 257, 2289–2290 (1987).

  31. 31

    Gedye, A., Beattie, B. L., Tuokko, H., Horton, A. & Korsarek, E. Severe head injury hastens age of onset of Alzheimer's disease. J. Am. Geriatr. Soc. 37, 970–973 (1989).

  32. 32

    Nemetz, P. N. et al. Traumatic brain injury and time to onset of Alzheimer's disease: a population-based study. Am. J. Epidemiol. 149, 32–40 (1999).

  33. 33

    Victor, M. R. & Ropper, A. H. Adams and Victor's Principles of Neurology 1–1692 (McGraw-Hill, 2001).

  34. 34

    Roberts, G. W., Gentleman, S. M., Lynch, A. & Graham, D. I. βA4 amyloid protein deposition in brain after head trauma. Lancet 338, 1422–1423 (1991).

  35. 35

    Roberts, G. W. et al. Beta amyloid protein deposition in the brain after severe head injury: implications for the pathogenesis of Alzheimer's disease. J. Neurol. Neurosurg. Psychiatry 57, 419–425 (1994).

  36. 36

    Ikonomovic, M. D. et al. Alzheimer's pathology in human temporal cortex surgically excised after severe brain injury. Exp. Neurol. 190, 192–203 (2004).

  37. 37

    DeKosky, S. T. et al. Association of increased cortical soluble Aβ42 levels with diffuse plaques after severe brain injury in humans. Arch. Neurol. 64, 541–544 (2007).

  38. 38

    Smith, D. H., Chen, X. H., Iwata, A. & Graham, D. I. Amyloid β accumulation in axons after traumatic brain injury in humans. J. Neurosurg. 98, 1072–1077 (2003).

  39. 39

    Gentleman, S. M. et al. Aβ42 is the predominant form of amyloid β-protein in the brains of short-term survivors of head injury. Neuroreport 8, 1519–1522 (1997).

  40. 40

    Horsburgh, K. et al. β-amyloid (Aβ)42(43), Aβ42, Aβ40 and apoE immunostaining of plaques in fatal head injury. Neuropathol. Appl. Neurobiol. 26, 124–132 (2000).

  41. 41

    Huber, A., Gabbert, K., Kelemen, J. & Cervod-Navarro, J. Density of amyloid plaques in brains after head trauma. J. Neurotrauma 10 (Suppl. 1), 180 (1993).

  42. 42

    Chen, X. H., Johnson, V. E., Uryu, K., Trojanowski, J. Q. & Smith, D. H. A lack of amyloid β plaques despite persistent accumulation of amyloid β in axons of long-term survivors of traumatic brain injury. Brain Pathol. 19, 214–223 (2009).

  43. 43

    Uryu, K. et al. Multiple proteins implicated in neurodegenerative diseases accumulate in axons after brain trauma in humans. Exp. Neurol. 208, 185–192 (2007).

  44. 44

    Raby, C. A. et al. Traumatic brain injury increases β-amyloid peptide 1–42 in cerebrospinal fluid. J. Neurochem. 71, 2505–2509 (1998).

  45. 45

    Emmerling, M. R. et al. Traumatic brain injury elevates the Alzheimer's amyloid peptide Aβ42 in human CSF. A possible role for nerve cell injury. Ann. NY Acad. Sci. 903, 118–122 (2000).

  46. 46

    Kay, A. D. et al. Alterations in cerebrospinal fluid apolipoprotein E and amyloid β-protein after traumatic brain injury. J. Neurotrauma 20, 943–952 (2003).

  47. 47

    Franz, G. et al. Amyloid β 1–42 and tau in cerebrospinal fluid after severe traumatic brain injury. Neurology 60, 1457–1461 (2003).

  48. 48

    Brody, D. L. et al. Amyloid-β dynamics correlate with neurological status in the injured human brain. Science 321, 1221–1224 (2008).

  49. 49

    Marklund, N. et al. Monitoring of brain interstitial total tau and β amyloid proteins by microdialysis in patients with traumatic brain injury. J. Neurosurg. 110, 1227–1237 (2009).

  50. 50

    Geddes, J. F., Vowles, G. H., Beer, T. W. & Ellison, D. W. The diagnosis of diffuse axonal injury: implications for forensic practice. Neuropathol. Appl. Neurobiol. 23, 339–347 (1997).

  51. 51

    Geddes, J. F., Whitwell, H. L. & Graham, D. I. Traumatic axonal injury: practical issues for diagnosis in medicolegal cases. Neuropathol. Appl. Neurobiol. 26, 105–116 (2000).

  52. 52

    Adams, J. H., Graham, D. I., Murray, L. S. & Scott, G. Diffuse axonal injury due to nonmissile head injury in humans: an analysis of 45 cases. Ann. Neurol. 12, 557–563 (1982).

  53. 53

    Gentleman, S. M., Nash, M. J., Sweeting, C. J., Graham, D. I. & Roberts, G. W. Beta-amyloid precursor protein (beta APP) as a marker for axonal injury after head injury. Neurosci. Lett. 160, 139–144 (1993).

  54. 54

    Gorrie, C., Oakes, S., Duflou, J., Blumbergs, P. & Waite, P. M. Axonal injury in children after motor vehicle crashes: extent, distribution, and size of axonal swellings using β-APP immunohistochemistry. J. Neurotrauma 19, 1171–1182 (2002).

  55. 55

    Sherriff, F. E., Bridges, L. R. & Sivaloganathan, S. Early detection of axonal injury after human head trauma using immunocytochemistry for beta-amyloid precursor protein. Acta Neuropathol. 87, 55–62 (1994).

  56. 56

    Lambri, M., Djurovic, V., Kibble, M., Cairns, N. & Al-Sarraj, S. Specificity and sensitivity of βAPP in head injury. Clin. Neuropathol. 20, 263–271 (2001).

  57. 57

    Reichard, R. R., White, C. L. 3rd, Hladik, C. L. & Dolinak, D. Beta-amyloid precursor protein staining of nonaccidental central nervous system injury in pediatric autopsies. J. Neurotrauma 20, 347–355 (2003).

  58. 58

    Adams, J. H. et al. Diffuse axonal injury in head injury: definition, diagnosis and grading. Histopathology 15, 49–59 (1989).

  59. 59

    Povlishock, J. T. & Becker, D. P. Fate of reactive axonal swellings induced by head injury. Lab. Invest. 52, 540–552 (1985).

  60. 60

    Maxwell, W. L., Povlishock, J. T. & Graham, D. L. A mechanistic analysis of nondisruptive axonal injury: a review. J. Neurotrauma 14, 419–440 (1997).

  61. 61

    Maxwell, W. L., Domleo, A., McColl, G., Jafari, S. S. & Graham, D. I. Post-acute alterations in the axonal cytoskeleton after traumatic axonal injury. J. Neurotrauma 20, 151–168 (2003).

  62. 62

    Lewen, A., Li, G. L., Nilsson, P., Olsson, Y. & Hillered, L. Traumatic brain injury in rat produces changes of β-amyloid precursor protein immunoreactivity. Neuroreport 6, 357–360 (1995).

  63. 63

    Pierce, J. E., Trojanowski, J. Q., Graham, D. I., Smith, D. H. & McIntosh, T. K. Immunohistochemical characterization of alterations in the distribution of amyloid precursor proteins and β-amyloid peptide after experimental brain injury in the rat. J. Neurosci. 16, 1083–1090 (1996).

  64. 64

    Murai, H. et al. Twofold overexpression of human β-amyloid precursor proteins in transgenic mice does not affect the neuromotor, cognitive, or neurodegenerative sequelae following experimental brain injury. J. Comp. Neurol. 392, 428–438 (1998).

  65. 65

    Smith, D. H. et al. Brain trauma induces massive hippocampal neuron death linked to a surge in β-amyloid levels in mice overexpressing mutant amyloid precursor protein. Am. J. Pathol. 153, 1005–1010 (1998).

  66. 66

    Nakagawa, Y. et al. Traumatic brain injury in young, amyloid-β peptide overexpressing transgenic mice induces marked ipsilateral hippocampal atrophy and diminished Aβ deposition during aging. J. Comp. Neurol. 411, 390–398 (1999).

  67. 67

    Nakagawa, Y. et al. Brain trauma in aged transgenic mice induces regression of established Aβ deposits. Exp. Neurol. 163, 244–252 (2000).

  68. 68

    Abrahamson, E. E. et al. Caspase inhibition therapy abolishes brain trauma-induced increases in Aβ peptide: implications for clinical outcome. Exp. Neurol. 197, 437–450 (2006).

  69. 69

    Abrahamson, E. E., Ikonomovic, M. D., Dixon, C. E. & DeKosky, S. T. Simvastatin therapy prevents brain trauma-induced increases in β-amyloid peptide levels. Ann. Neurol. 66, 407–414 (2009).

  70. 70

    Loane, D. J. et al. Amyloid precursor protein secretases as therapeutic targets for traumatic brain injury. Nature Med. 15, 377–379 (2009).

  71. 71

    Smith, D. H. et al. Characterization of diffuse axonal pathology and selective hippocampal damage following inertial brain trauma in the pig. J. Neuropathol. Exp. Neurol. 56, 822–834 (1997).

  72. 72

    Meaney, D. F. et al. Biomechanical analysis of experimental diffuse axonal injury. J. Neurotrauma 12, 689–694 (1995).

  73. 73

    Stone, J. R. et al. Caspase-3-mediated cleavage of amyloid precursor protein and formation of amyloid β peptide in traumatic axonal injury. J. Neurotrauma 19, 601–614 (2002).

  74. 74

    Iwata, A., Chen, X. H., McIntosh, T. K., Browne, K. D. & Smith, D. H. Long-term accumulation of amyloid-β in axons following brain trauma without persistent upregulation of amyloid precursor protein genes. J. Neuropathol. Exp. Neurol. 61, 1056–1068 (2002).

  75. 75

    Chen, X. H. et al. Long-term accumulation of amyloid-β, β-secretase, presenilin-1, and caspase-3 in damaged axons following brain trauma. Am. J. Pathol. 165, 357–371 (2004).

  76. 76

    Bigler, E. D. Quantitative magnetic resonance imaging in traumatic brain injury. J. Head Trauma Rehabil. 16, 117–134 (2001).

  77. 77

    Stokin, G. B. et al. Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease. Science 307, 1282–1288 (2005).

  78. 78

    Graham, D. I. et al. Altered β-APP metabolism after head injury and its relationship to the aetiology of Alzheimer's disease. Acta Neurochir. Suppl. 66, 96–102 (1996).

  79. 79

    Tamagno, E. et al. β-Site APP cleaving enzyme up-regulation induced by 4-hydroxynonenal is mediated by stress-activated protein kinases pathways. J. Neurochem. 92, 628–636 (2005).

  80. 80

    Guglielmotto, M. et al. The up-regulation of BACE1 mediated by hypoxia and ischemic injury: role of oxidative stress and HIF1α. J. Neurochem. 108, 1045–1056 (2009).

  81. 81

    Tamagno, E. et al. Oxidative stress activates a positive feedback between the γ- and β-secretase cleavages of the β-amyloid precursor protein. J. Neurochem. 104, 683–695 (2008).

  82. 82

    Povlishock, J. T. & Kontos, H. A. The role of oxygen radicals in the pathobiology of traumatic brain injury. Hum. Cell 5, 345–353 (1992).

  83. 83

    LaFerla, F. M., Green, K. N. & Oddo, S. Intracellular amyloid-β in Alzheimer's disease. Nature Rev. Neurosci. 8, 499–509 (2007).

  84. 84

    Kamal, A., Almenar-Queralt, A., LeBlanc, J. F., Roberts, E. A. & Goldstein, L. S. Kinesin-mediated axonal transport of a membrane compartment containing β-secretase and presenilin-1 requires APP. Nature 414, 643–648 (2001).

  85. 85

    Kamal, A., Stokin, G. B., Yang, Z., Xia, C. H. & Goldstein, L. S. Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I. Neuron 28, 449–459 (2000).

  86. 86

    Lazarov, O. et al. Axonal transport, amyloid precursor protein, kinesin-1, and the processing apparatus: revisited. J. Neurosci. 25, 2386–2395 (2005).

  87. 87

    Simons, K. & Toomre, D. Lipid rafts and signal transduction. Nature Rev. Mol. Cell Biol. 1, 31–39 (2000).

  88. 88

    Pike, L. J. Rafts defined: a report on the Keystone symposium on lipid rafts and cell function. J. Lipid Res. 47, 1597–1598 (2006).

  89. 89

    Ehehalt, R., Keller, P., Haass, C., Thiele, C. & Simons, K. Amyloidogenic processing of the Alzheimer β-amyloid precursor protein depends on lipid rafts. J. Cell Biol. 160, 113–123 (2003).

  90. 90

    Gervais, F. G. et al. Involvement of caspases in proteolytic cleavage of Alzheimer's amyloid-β precursor protein and amyloidogenic Aβ peptide formation. Cell 97, 395–406 (1999).

  91. 91

    Clark, R. S. et al. Increases in Bcl-2 and cleavage of caspase-1 and caspase-3 in human brain after head injury. FASEB J. 13, 813–821 (1999).

  92. 92

    Knoblach, S. M. et al. Multiple caspases are activated after traumatic brain injury: evidence for involvement in functional outcome. J. Neurotrauma 19, 1155–1170 (2002).

  93. 93

    Yakovlev, A. G. et al. Activation of CPP32-like caspases contributes to neuronal apoptosis and neurological dysfunction after traumatic brain injury. J. Neurosci. 17, 7415–7424 (1997).

  94. 94

    Sanchez Mejia, R. O., Ona, V. O., Li, M. & Friedlander, R. M. Minocycline reduces traumatic brain injury-mediated caspase-1 activation, tissue damage, and neurological dysfunction. Neurosurgery 48, 1393–1399; discussion 1399–1401 (2001).

  95. 95

    Tesco, G. et al. Depletion of GGA3 stabilizes BACE and enhances β-secretase activity. Neuron 54, 721–737 (2007).

  96. 96

    Blasko, I. et al. Experimental traumatic brain injury in rats stimulates the expression, production and activity of Alzheimer's disease β-secretase (BACE-1). J. Neural Transm. 111, 523–536 (2004).

  97. 97

    Shirotani, K. et al. Neprilysin degrades both amyloid β peptides 1–40 and 1–42 most rapidly and efficiently among thiorphan- and phosphoramidon-sensitive endopeptidases. J. Biol. Chem. 276, 21895–21901 (2001).

  98. 98

    Iwata, N. et al. Identification of the major Aβ1–42-degrading catabolic pathway in brain parenchyma: suppression leads to biochemical and pathological deposition. Nature Med. 6, 143–150 (2000).

  99. 99

    Miners, J. S. et al. Aβ-degrading enzymes in Alzheimer's disease. Brain Pathol. 18, 240–252 (2008).

  100. 100

    Li, C. et al. Comparison of the structure and expression of the human and rat neprilysin (endopeptidase 24.11)-encoding genes. Gene 164, 363–366 (1995).

  101. 101

    Li, C. & Hersh, L. B. Characterization of the promoter region of the rat neprilysin gene. Arch. Biochem. Biophys. 358, 189–195 (1998).

  102. 102

    Roques, B. P., Noble, F., Dauge, V., Fournie-Zaluski, M. C. & Beaumont, A. Neutral endopeptidase 24.11: structure, inhibition, and experimental and clinical pharmacology. Pharmacol. Rev. 45, 87–146 (1993).

  103. 103

    Turner, A. J., Isaac, R. E. & Coates, D. The neprilysin (NEP) family of zinc metalloendopeptidases: genomics and function. Bioessays 23, 261–269 (2001).

  104. 104

    Kanemitsu, H., Tomiyama, T. & Mori, H. Human neprilysin is capable of degrading amyloid beta peptide not only in the monomeric form but also the pathological oligomeric form. Neurosci. Lett. 350, 113–116 (2003).

  105. 105

    Iwata, N. et al. Metabolic regulation of brain Aβ by neprilysin. Science 292, 1550–1552 (2001).

  106. 106

    Iwata, N., Higuchi, M. & Saido, T. C. Metabolism of amyloid-β peptide and Alzheimer's disease. Pharmacol. Ther. 108, 129–148 (2005).

  107. 107

    Yasojima, K., Akiyama, H., McGeer, E. G. & McGeer, P. L. Reduced neprilysin in high plaque areas of Alzheimer brain: a possible relationship to deficient degradation of β-amyloid peptide. Neurosci. Lett. 297, 97–100 (2001).

  108. 108

    Koenigsknecht-Talboo, J. et al. Rapid microglial response around amyloid pathology after systemic anti-Aβ antibody administration in PDAPP mice. J. Neurosci. 28, 14156–14164 (2008).

  109. 109

    Hickman, S. E., Allison, E. K. & El Khoury, J. Microglial dysfunction and defective β-amyloid clearance pathways in aging Alzheimer's disease mice. J. Neurosci. 28, 8354–8360 (2008).

  110. 110

    Pardossi-Piquard, R. et al. Presenilin-dependent transcriptional control of the Aβ-degrading enzyme neprilysin by intracellular domains of βAPP and APLP. Neuron 46, 541–554 (2005).

  111. 111

    Mohajeri, M. H., Wollmer, M. A. & Nitsch, R. M. Aβ 42-induced increase in neprilysin is associated with prevention of amyloid plaque formation in vivo. J. Biol. Chem. 277, 35460–35465 (2002).

  112. 112

    Johnson, V. et al. A neprilysin polymorphism and amyloid β plaques following traumatic brain injury in humans. J. Neurotrauma 27 Mar 2009 (doi:10.1089/neu.2008-0843).

  113. 113

    Mattson, M. P. et al. Evidence for excitoprotective and intraneuronal calcium-regulating roles for secreted forms of the β-amyloid precursor protein. Neuron 10, 243–254 (1993).

  114. 114

    Milward, E. A. et al. The amyloid protein precursor of Alzheimer's disease is a mediator of the effects of nerve growth factor on neurite outgrowth. Neuron 9, 129–137 (1992).

  115. 115

    Roch, J. M., Jin, L. W., Ninomiya, H., Schubert, D. & Saitoh, T. Biologically active domain of the secreted form of the amyloid β/A4 protein precursor. Ann. NY Acad. Sci. 695, 149–157 (1993).

  116. 116

    Small, D. H. et al. Neurite-outgrowth regulating functions of the amyloid protein precursor of Alzheimer's disease. J. Alzheimers Dis. 1, 275–285 (1999).

  117. 117

    Small, D. H. et al. A heparin-binding domain in the amyloid protein precursor of Alzheimer's disease is involved in the regulation of neurite outgrowth. J. Neurosci. 14, 2117–2127 (1994).

  118. 118

    Morimoto, T., Ohsawa, I., Takamura, C., Ishiguro, M. & Kohsaka, S. Involvement of amyloid precursor protein in functional synapse formation in cultured hippocampal neurons. J. Neurosci. Res. 51, 185–195 (1998).

  119. 119

    Van den Heuvel, C. et al. Upregulation of amyloid precursor protein messenger RNA in response to traumatic brain injury: an ovine head impact model. Exp. Neurol. 159, 441–450 (1999).

  120. 120

    Thornton, E., Vink, R., Blumbergs, P. C. & Van Den Heuvel, C. Soluble amyloid precursor protein alpha reduces neuronal injury and improves functional outcome following diffuse traumatic brain injury in rats. Brain Res. 1094, 38–46 (2006).

  121. 121

    Terry, R. D. et al. Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann. Neurol. 30, 572–580 (1991).

  122. 122

    Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Neuropathology Group of the Medical Research Council Cognitive Function and Ageing Study (MRC CFAS). Lancet 357, 169–175 (2001).

  123. 123

    Engler, H. et al. Two-year follow-up of amyloid deposition in patients with Alzheimer's disease. Brain 129, 2856–2866 (2006).

  124. 124

    Holmes, C. et al. Long-term effects of Aβ42 immunisation in Alzheimer's disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 372, 216–223 (2008).

  125. 125

    Lambert, M. P. et al. Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins. Proc. Natl Acad. Sci. USA 95, 6448–6453 (1998).

  126. 126

    Hartley, D. M. et al. Protofibrillar intermediates of amyloid β-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J. Neurosci. 19, 8876–8884 (1999).

  127. 127

    Walsh, D. M., Klyubin, I., Fadeeva, J. V., Rowan, M. J. & Selkoe, D. J. Amyloid-β oligomers: their production, toxicity and therapeutic inhibition. Biochem. Soc. Trans. 30, 552–557 (2002).

  128. 128

    Cleary, J. P. et al. Natural oligomers of the amyloid-β protein specifically disrupt cognitive function. Nature Neurosci. 8, 79–84 (2005).

  129. 129

    Lee, E. B. et al. Targeting amyloid-β peptide (Aβ) oligomers by passive immunization with a conformation-selective monoclonal antibody improves learning and memory in Aβ precursor protein (APP) transgenic mice. J. Biol. Chem. 281, 4292–4299 (2006).

  130. 130

    Lesne, S. et al. A specific amyloid-β protein assembly in the brain impairs memory. Nature 440, 352–357 (2006).

  131. 131

    Pearson, H. A. & Peers, C. Physiological roles for amyloid β peptides. J. Physiol. 575, 5–10 (2006).

  132. 132

    Wang, Q., Walsh, D. M., Rowan, M. J., Selkoe, D. J. & Anwyl, R. Block of long-term potentiation by naturally secreted and synthetic amyloid β-peptide in hippocampal slices is mediated via activation of the kinases c-Jun N-terminal kinase, cyclin-dependent kinase 5, and p38 mitogen-activated protein kinase as well as metabotropic glutamate receptor type 5. J. Neurosci. 24, 3370–3378 (2004).

  133. 133

    Walsh, D. M. et al. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416, 535–539 (2002).

  134. 134

    Shankar, G. M. et al. Amyloid-β protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nature Med. 14, 837–842 (2008).

  135. 135

    Langlois, J. A., Rutland-Brown, W. & Wald, M. M. The epidemiology and impact of traumatic brain injury: a brief overview. J. Head Trauma Rehabil. 21, 375–378 (2006).

  136. 136

    Bateman, R. J. et al. A γ-secretase inhibitor decreases amyloid-β production in the central nervous system. Ann. Neurol. 66, 48–54 (2009).

  137. 137

    Corder, E. H. et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 261, 921–923 (1993).

  138. 138

    Saunders, A. M. et al. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer's disease. Neurology 43, 1467–1472 (1993).

  139. 139

    Teasdale, G. M., Nicoll, J. A., Murray, G. & Fiddes, M. Association of apolipoprotein E polymorphism with outcome after head injury. Lancet 350, 1069–1071 (1997).

  140. 140

    Sorbi, S. et al. ApoE as a prognostic factor for post-traumatic coma. Nature Med. 1, 852 (1995).

  141. 141

    Friedman, G. et al. Apolipoprotein E-ɛ4 genotype predicts a poor outcome in survivors of traumatic brain injury. Neurology 52, 244–248 (1999).

  142. 142

    Liberman, J. N., Stewart, W. F., Wesnes, K. & Troncoso, J. Apolipoprotein E ɛ4 and short-term recovery from predominantly mild brain injury. Neurology 58, 1038–1044 (2002).

  143. 143

    Sundstrom, A. et al. APOE influences on neuropsychological function after mild head injury: within-person comparisons. Neurology 62, 1963–1966 (2004).

  144. 144

    Lichtman, S. W., Seliger, G., Tycko, B. & Marder, K. Apolipoprotein E and functional recovery from brain injury following postacute rehabilitation. Neurology 55, 1536–1539 (2000).

  145. 145

    Liaquat, I., Dunn, L. T., Nicoll, J. A., Teasdale, G. M. & Norrie, J. D. Effect of apolipoprotein E genotype on hematoma volume after trauma. J. Neurosurg. 96, 90–96 (2002).

  146. 146

    Smith, C., Graham, D. I., Murray, L. S., Stewart, J. & Nicoll, J. A. Association of APOE ɛ4 and cerebrovascular pathology in traumatic brain injury. J. Neurol. Neurosurg. Psychiatry 77, 363–366 (2006).

  147. 147

    Diaz-Arrastia, R. et al. Increased risk of late posttraumatic seizures associated with inheritance of APOE ɛ4 allele. Arch. Neurol. 60, 818–822 (2003).

  148. 148

    Chamelian, L., Reis, M. & Feinstein, A. Six-month recovery from mild to moderate traumatic brain injury: the role of APOE-ɛ4 allele. Brain 127, 2621–2628 (2004).

  149. 149

    Nathoo, N., Chetry, R., van Dellen, J. R., Connolly, C. & Naidoo, R. Apolipoprotein E polymorphism and outcome after closed traumatic brain injury: influence of ethnic and regional differences. J. Neurosurg. 98, 302–306 (2003).

  150. 150

    Teasdale, G. M., Murray, G. D. & Nicoll, J. A. The association between APOE ɛ4, age and outcome after head injury: a prospective cohort study. Brain 128, 2556–2561 (2005).

  151. 151

    Mayeux, R. et al. Synergistic effects of traumatic head injury and apolipoprotein-ɛ4 in patients with Alzheimer's disease. Neurology 45, 555–557 (1995).

  152. 152

    Mayeux, R. et al. Genetic susceptibility and head injury as risk factors for Alzheimer's disease among community-dwelling elderly persons and their first-degree relatives. Ann. Neurol. 33, 494–501 (1993).

  153. 153

    Mauri, M. et al. Interaction between Apolipoprotein ɛ4 and traumatic brain injury in patients with Alzheimer's disease and mild cognitive impairment. Funct. Neurol. 21, 223–228 (2006).

  154. 154

    Nicoll, J. A., Roberts, G. W. & Graham, D. I. Apolipoprotein E ɛ4 allele is associated with deposition of amyloid β-protein following head injury. Nature Med. 1, 135–137 (1995).

  155. 155

    Hartman, R. E. et al. Apolipoprotein E4 influences amyloid deposition but not cell loss after traumatic brain injury in a mouse model of Alzheimer's disease. J. Neurosci. 22, 10083–10087 (2002).

  156. 156

    Martland, H. Punch drunk. J. Am. Med. Assoc. 91, 1103–1107 (1928).

  157. 157

    Millspaugh, J. Dementia pugilistica. US Naval Med. Bull. 35, 297–303 (1937).

  158. 158

    Roberts, G. W., Allsop, D. & Bruton, C. The occult aftermath of boxing. J. Neurol. Neurosurg. Psychiatry 53, 373–378 (1990).

  159. 159

    Roberts, A. Brain Damage in Boxers (Pitman Publishing, London, 1969).

  160. 160

    Jordan, B. D. et al. CT of 338 active professional boxers. Radiology 185, 509–512 (1992).

  161. 161

    Jordan, B. D. et al. Apolipoprotein E ɛ4 associated with chronic traumatic brain injury in boxing. JAMA 278, 136–140 (1997).

  162. 162

    Guskiewicz, K. M. et al. Association between recurrent concussion and late-life cognitive impairment in retired professional football players. Neurosurgery 57, 719–726 (2005).

  163. 163

    Omalu, B. I. et al. Chronic traumatic encephalopathy in a National Football League player. Neurosurgery 57, 128–134 (2005).

  164. 164

    Omalu, B. I. et al. Chronic traumatic encephalopathy in a national football league player: part II. Neurosurgery 59, 1086–1092; discussion 1092–1093 (2006).

  165. 165

    McKee, A. C. et al. Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. J. Neuropathol. Exp. Neurol. 68, 709–735 (2009).

  166. 166

    Tokuda, T., Ikeda, S., Yanagisawa, N., Ihara, Y. & Glenner, G. G. Re-examination of ex-boxers' brains using immunohistochemistry with antibodies to amyloid β-protein and tau protein. Acta Neuropathol. 82, 280–285 (1991).

  167. 167

    Uryu, K. et al. Repetitive mild brain trauma accelerates Aβ deposition, lipid peroxidation, and cognitive impairment in a transgenic mouse model of Alzheimer amyloidosis. J. Neurosci. 22, 446–454 (2002).

  168. 168

    Conte, V. et al. Vitamin E reduces amyloidosis and improves cognitive function in Tg2576 mice following repetitive concussive brain injury. J. Neurochem. 90, 758–764 (2004).

  169. 169

    Selkoe, D. J. Alzheimer's disease: genes, proteins, and therapy. Physiol. Rev. 81, 741–766 (2001).

  170. 170

    Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259 (1991).

  171. 171

    Forman, M. S., Trojanowski, J. Q. & Lee, V. M. Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs. Nature Med. 10, 1055–1063 (2004).

  172. 172

    Corsellis, J. A., Bruton, C. J. & Freeman-Browne, D. The aftermath of boxing. Psychol. Med. 3, 270–303 (1973).

  173. 173

    Dale, G. E., Leigh, P. N., Luthert, P., Anderton, B. H. & Roberts, G. W. Neurofibrillary tangles in dementia pugilistica are ubiquitinated. J. Neurol. Neurosurg. Psychiatry 54, 116–118 (1991).

  174. 174

    Schmidt, M. L., Zhukareva, V., Newell, K. L., Lee, V. M. & Trojanowski, J. Q. Tau isoform profile and phosphorylation state in dementia pugilistica recapitulate Alzheimer's disease. Acta Neuropathol. 101, 518–524 (2001).

  175. 175

    Smith, C., Graham, D. I., Murray, L. S. & Nicoll, J. A. Tau immunohistochemistry in acute brain injury. Neuropathol. Appl. Neurobiol. 29, 496–502 (2003).

  176. 176

    Hoshino, S. et al. Emergence of immunoreactivities for phosphorylated tau and amyloid-β protein in chronic stage of fluid percussion injury in rat brain. Neuroreport 9, 1879–1883 (1998).

Download references


This work was supported by US National Institutes of Health grants NS038104 and NS056202.

Author information

Correspondence to Douglas H. Smith.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links


Alzheimer's disease


Penn Center for Brain injury and Repair

Smith Laboratory Homepage

Rights and permissions

Reprints and Permissions

About this article

Further reading