Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Traumatic brain injury and amyloid-β pathology: a link to Alzheimer's disease?

Abstract

Traumatic brain injury (TBI) has devastating acute effects and in many cases seems to initiate long-term neurodegeneration. Indeed, an epidemiological association between TBI and the development of Alzheimer's disease (AD) later in life has been demonstrated, and it has been shown that amyloid-β (Aβ) plaques — one of the hallmarks of AD — may be found in patients within hours following TBI. Here, we explore the mechanistic underpinnings of the link between TBI and AD, focusing on the hypothesis that rapid Aβ plaque formation may result from the accumulation of amyloid precursor protein in damaged axons and a disturbed balance between Aβ genesis and catabolism following TBI.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immunohistochemical findings exploring mechanisms of amyloid-β plaque formation following traumatic brain injury.
Figure 2: Potential mechanisms of post-traumatic amyloid-β formation and clearance.

Similar content being viewed by others

David S. Knopman, Helene Amieva, … David T. Jones

References

  1. Langlois, J. A., Rutland-Brown, W. & Thomas, K. E. Traumatic Brain Injury in the United States: Emergency Department Visits, Hospitalizations, and Deaths. (Centers for Disease Control and Prevention, Nation Center for Injury Prevention and Control, Atlanta, Georgia, 2006).

    Google Scholar 

  2. Thurman, D., Alverson, C., Dunn, K., Guerrero, J. & Sniezek, J. Traumatic brain injury in the United States: a public health perspective. J. Head Trauma Rehabil. 14, 602–615 (1999).

    CAS  PubMed  Google Scholar 

  3. Molgaard, C. A. et al. Epidemiology of head trauma and neurocognitive impairment in a multi-ethnic population. Neuroepidemiology 9, 233–242 (1990).

    CAS  PubMed  Google Scholar 

  4. Mortimer, J. A., French, L. R., Hutton, J. T. & Schuman, L. M. Head injury as a risk factor for Alzheimer's disease. Neurology 35, 264–267 (1985).

    CAS  PubMed  Google Scholar 

  5. Mortimer, J. A. et al. Head trauma as a risk factor for Alzheimer's disease: a collaborative re-analysis of case–control studies. EURODEM Risk Factors Research Group. Int. J. Epidemiol. 20 (Suppl. 2), 28–35 (1991).

    Google Scholar 

  6. Graves, A. B. et al. The association between head trauma and Alzheimer's disease. Am. J. Epidemiol. 131, 491–501 (1990).

    CAS  PubMed  Google Scholar 

  7. O'Meara, E. S. et al. Head injury and risk of Alzheimer's disease by apolipoprotein E genotype. Am. J. Epidemiol. 146, 373–384 (1997).

    CAS  PubMed  Google Scholar 

  8. Salib, E. & Hillier, V. Head injury and the risk of Alzheimer's disease: a case control study. Int. J. Geriatr. Psychiatry 12, 363–368 (1997).

    CAS  PubMed  Google Scholar 

  9. Guo, Z. et al. Head injury and the risk of AD in the MIRAGE study. Neurology 54, 1316–1323 (2000).

    CAS  PubMed  Google Scholar 

  10. Schofield, P. W. et al. Alzheimer's disease after remote head injury: an incidence study. J. Neurol. Neurosurg. Psychiatry 62, 119–124 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Plassman, B. L. et al. Documented head injury in early adulthood and risk of Alzheimer's disease and other dementias. Neurology 55, 1158–1166 (2000).

    CAS  PubMed  Google Scholar 

  12. Fleminger, S., Oliver, D. L., Lovestone, S., Rabe-Hesketh, S. & Giora, A. Head injury as a risk factor for Alzheimer's disease: the evidence 10 years on; a partial replication. J. Neurol. Neurosurg. Psychiatry 74, 857–862 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kotapka, M. J., Graham, D. I., Adams, J. H. & Gennarelli, T. A. Hippocampal pathology in fatal non-missile human head injury. Acta Neuropathol. 83, 530–534 (1992).

    CAS  PubMed  Google Scholar 

  14. Smith, D. H. et al. Progressive atrophy and neuron death for one year following brain trauma in the rat. J. Neurotrauma 14, 715–727 (1997).

    CAS  Google Scholar 

  15. Maxwell, W. L., Mackinnon, M. A., Stewart, J. E. & Graham, D. I. Stereology of cerebral cortex after traumatic brain injury matched to the Glasgow Outcome Score. Brain 133, 139–160 (2010).

    PubMed  Google Scholar 

  16. Gentleman, S. M. et al. Long-term intracerebral inflammatory response after traumatic brain injury. Forensic Sci. Int. 146, 97–104 (2004).

    CAS  PubMed  Google Scholar 

  17. Nicoll, J. A. et al. Association of interleukin-1 gene polymorphisms with Alzheimer's disease. Ann. Neurol. 47, 365–368 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Smith, D. H. et al. Accumulation of amyloid beta and tau and the formation of neurofilament inclusions following diffuse brain injury in the pig. J. Neuropathol. Exp. Neurol. 58, 982–992 (1999).

    CAS  PubMed  Google Scholar 

  19. Geddes, J. F., Vowles, G. H., Nicoll, J. A. & Revesz, T. Neuronal cytoskeletal changes are an early consequence of repetitive head injury. Acta Neuropathol. 98, 171–178 (1999).

    CAS  PubMed  Google Scholar 

  20. van Duijn, C. M. et al. Head trauma and the risk of Alzheimer's disease. Am. J. Epidemiol. 135, 775–782 (1992).

    CAS  PubMed  Google Scholar 

  21. Chandra, V., Philipose, V., Bell, P. A., Lazaroff, A. & Schoenberg, B. S. Case–control study of late onset “probable Alzheimer's disease”. Neurology 37, 1295–1300 (1987).

    CAS  PubMed  Google Scholar 

  22. Amaducci, L. A. et al. Risk factors for clinically diagnosed Alzheimer's disease: a case–control study of an Italian population. Neurology 36, 922–931 (1986).

    CAS  PubMed  Google Scholar 

  23. Broe, G. A. et al. A case–control study of Alzheimer's disease in Australia. Neurology 40, 1698–1707 (1990).

    CAS  PubMed  Google Scholar 

  24. Ferini-Strambi, L., Smirne, S., Garancini, P., Pinto, P. & Franceschi, M. Clinical and epidemiological aspects of Alzheimer's disease with presenile onset: a case control study. Neuroepidemiology 9, 39–49 (1990).

    CAS  PubMed  Google Scholar 

  25. Katzman, R. et al. Development of dementing illnesses in an 80-year-old volunteer cohort. Ann. Neurol. 25, 317–324 (1989).

    CAS  PubMed  Google Scholar 

  26. Launer, L. J. et al. Rates and risk factors for dementia and Alzheimer's disease: results from EURODEM pooled analyses. EURODEM Incidence Research Group and Work Groups. European Studies of Dementia. Neurology 52, 78–84 (1999).

    CAS  PubMed  Google Scholar 

  27. Williams, D. B., Annegers, J. F., Kokmen, E., O'Brien, P. C. & Kurland, L. T. Brain injury and neurologic sequelae: a cohort study of dementia, parkinsonism, and amyotrophic lateral sclerosis. Neurology 41, 1554–1557 (1991).

    CAS  PubMed  Google Scholar 

  28. Mehta, K. M. et al. Head trauma and risk of dementia and Alzheimer's disease: the Rotterdam study. Neurology 53, 1959–1962 (1999).

    CAS  PubMed  Google Scholar 

  29. Lye, T. C. & Shores, E. A. Traumatic brain injury as a risk factor for Alzheimer's disease: a review. Neuropsychol. Rev. 10, 115–129 (2000).

    CAS  PubMed  Google Scholar 

  30. Sullivan, P., Petitti, D. & Barbaccia, J. Head trauma and age of onset of dementia of the Alzheimer type. Jama 257, 2289–2290 (1987).

    CAS  PubMed  Google Scholar 

  31. Gedye, A., Beattie, B. L., Tuokko, H., Horton, A. & Korsarek, E. Severe head injury hastens age of onset of Alzheimer's disease. J. Am. Geriatr. Soc. 37, 970–973 (1989).

    CAS  PubMed  Google Scholar 

  32. Nemetz, P. N. et al. Traumatic brain injury and time to onset of Alzheimer's disease: a population-based study. Am. J. Epidemiol. 149, 32–40 (1999).

    CAS  PubMed  Google Scholar 

  33. Victor, M. R. & Ropper, A. H. Adams and Victor's Principles of Neurology 1–1692 (McGraw-Hill, 2001).

    Google Scholar 

  34. Roberts, G. W., Gentleman, S. M., Lynch, A. & Graham, D. I. βA4 amyloid protein deposition in brain after head trauma. Lancet 338, 1422–1423 (1991).

    CAS  PubMed  Google Scholar 

  35. Roberts, G. W. et al. Beta amyloid protein deposition in the brain after severe head injury: implications for the pathogenesis of Alzheimer's disease. J. Neurol. Neurosurg. Psychiatry 57, 419–425 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ikonomovic, M. D. et al. Alzheimer's pathology in human temporal cortex surgically excised after severe brain injury. Exp. Neurol. 190, 192–203 (2004).

    CAS  PubMed  Google Scholar 

  37. DeKosky, S. T. et al. Association of increased cortical soluble Aβ42 levels with diffuse plaques after severe brain injury in humans. Arch. Neurol. 64, 541–544 (2007).

    PubMed  Google Scholar 

  38. Smith, D. H., Chen, X. H., Iwata, A. & Graham, D. I. Amyloid β accumulation in axons after traumatic brain injury in humans. J. Neurosurg. 98, 1072–1077 (2003).

    CAS  PubMed  Google Scholar 

  39. Gentleman, S. M. et al. Aβ42 is the predominant form of amyloid β-protein in the brains of short-term survivors of head injury. Neuroreport 8, 1519–1522 (1997).

    CAS  PubMed  Google Scholar 

  40. Horsburgh, K. et al. β-amyloid (Aβ)42(43), Aβ42, Aβ40 and apoE immunostaining of plaques in fatal head injury. Neuropathol. Appl. Neurobiol. 26, 124–132 (2000).

    CAS  PubMed  Google Scholar 

  41. Huber, A., Gabbert, K., Kelemen, J. & Cervod-Navarro, J. Density of amyloid plaques in brains after head trauma. J. Neurotrauma 10 (Suppl. 1), 180 (1993).

    Google Scholar 

  42. Chen, X. H., Johnson, V. E., Uryu, K., Trojanowski, J. Q. & Smith, D. H. A lack of amyloid β plaques despite persistent accumulation of amyloid β in axons of long-term survivors of traumatic brain injury. Brain Pathol. 19, 214–223 (2009).

    PubMed  Google Scholar 

  43. Uryu, K. et al. Multiple proteins implicated in neurodegenerative diseases accumulate in axons after brain trauma in humans. Exp. Neurol. 208, 185–192 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Raby, C. A. et al. Traumatic brain injury increases β-amyloid peptide 1–42 in cerebrospinal fluid. J. Neurochem. 71, 2505–2509 (1998).

    CAS  PubMed  Google Scholar 

  45. Emmerling, M. R. et al. Traumatic brain injury elevates the Alzheimer's amyloid peptide Aβ42 in human CSF. A possible role for nerve cell injury. Ann. NY Acad. Sci. 903, 118–122 (2000).

    CAS  PubMed  Google Scholar 

  46. Kay, A. D. et al. Alterations in cerebrospinal fluid apolipoprotein E and amyloid β-protein after traumatic brain injury. J. Neurotrauma 20, 943–952 (2003).

    PubMed  Google Scholar 

  47. Franz, G. et al. Amyloid β 1–42 and tau in cerebrospinal fluid after severe traumatic brain injury. Neurology 60, 1457–1461 (2003).

    CAS  PubMed  Google Scholar 

  48. Brody, D. L. et al. Amyloid-β dynamics correlate with neurological status in the injured human brain. Science 321, 1221–1224 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Marklund, N. et al. Monitoring of brain interstitial total tau and β amyloid proteins by microdialysis in patients with traumatic brain injury. J. Neurosurg. 110, 1227–1237 (2009).

    CAS  PubMed  Google Scholar 

  50. Geddes, J. F., Vowles, G. H., Beer, T. W. & Ellison, D. W. The diagnosis of diffuse axonal injury: implications for forensic practice. Neuropathol. Appl. Neurobiol. 23, 339–347 (1997).

    CAS  PubMed  Google Scholar 

  51. Geddes, J. F., Whitwell, H. L. & Graham, D. I. Traumatic axonal injury: practical issues for diagnosis in medicolegal cases. Neuropathol. Appl. Neurobiol. 26, 105–116 (2000).

    CAS  PubMed  Google Scholar 

  52. Adams, J. H., Graham, D. I., Murray, L. S. & Scott, G. Diffuse axonal injury due to nonmissile head injury in humans: an analysis of 45 cases. Ann. Neurol. 12, 557–563 (1982).

    CAS  PubMed  Google Scholar 

  53. Gentleman, S. M., Nash, M. J., Sweeting, C. J., Graham, D. I. & Roberts, G. W. Beta-amyloid precursor protein (beta APP) as a marker for axonal injury after head injury. Neurosci. Lett. 160, 139–144 (1993).

    CAS  PubMed  Google Scholar 

  54. Gorrie, C., Oakes, S., Duflou, J., Blumbergs, P. & Waite, P. M. Axonal injury in children after motor vehicle crashes: extent, distribution, and size of axonal swellings using β-APP immunohistochemistry. J. Neurotrauma 19, 1171–1182 (2002).

    Google Scholar 

  55. Sherriff, F. E., Bridges, L. R. & Sivaloganathan, S. Early detection of axonal injury after human head trauma using immunocytochemistry for beta-amyloid precursor protein. Acta Neuropathol. 87, 55–62 (1994).

    CAS  PubMed  Google Scholar 

  56. Lambri, M., Djurovic, V., Kibble, M., Cairns, N. & Al-Sarraj, S. Specificity and sensitivity of βAPP in head injury. Clin. Neuropathol. 20, 263–271 (2001).

    CAS  PubMed  Google Scholar 

  57. Reichard, R. R., White, C. L. 3rd, Hladik, C. L. & Dolinak, D. Beta-amyloid precursor protein staining of nonaccidental central nervous system injury in pediatric autopsies. J. Neurotrauma 20, 347–355 (2003).

    Google Scholar 

  58. Adams, J. H. et al. Diffuse axonal injury in head injury: definition, diagnosis and grading. Histopathology 15, 49–59 (1989).

    CAS  PubMed  Google Scholar 

  59. Povlishock, J. T. & Becker, D. P. Fate of reactive axonal swellings induced by head injury. Lab. Invest. 52, 540–552 (1985).

    CAS  PubMed  Google Scholar 

  60. Maxwell, W. L., Povlishock, J. T. & Graham, D. L. A mechanistic analysis of nondisruptive axonal injury: a review. J. Neurotrauma 14, 419–440 (1997).

    CAS  Google Scholar 

  61. Maxwell, W. L., Domleo, A., McColl, G., Jafari, S. S. & Graham, D. I. Post-acute alterations in the axonal cytoskeleton after traumatic axonal injury. J. Neurotrauma 20, 151–168 (2003).

    PubMed  Google Scholar 

  62. Lewen, A., Li, G. L., Nilsson, P., Olsson, Y. & Hillered, L. Traumatic brain injury in rat produces changes of β-amyloid precursor protein immunoreactivity. Neuroreport 6, 357–360 (1995).

    CAS  PubMed  Google Scholar 

  63. Pierce, J. E., Trojanowski, J. Q., Graham, D. I., Smith, D. H. & McIntosh, T. K. Immunohistochemical characterization of alterations in the distribution of amyloid precursor proteins and β-amyloid peptide after experimental brain injury in the rat. J. Neurosci. 16, 1083–1090 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Murai, H. et al. Twofold overexpression of human β-amyloid precursor proteins in transgenic mice does not affect the neuromotor, cognitive, or neurodegenerative sequelae following experimental brain injury. J. Comp. Neurol. 392, 428–438 (1998).

    CAS  PubMed  Google Scholar 

  65. Smith, D. H. et al. Brain trauma induces massive hippocampal neuron death linked to a surge in β-amyloid levels in mice overexpressing mutant amyloid precursor protein. Am. J. Pathol. 153, 1005–1010 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Nakagawa, Y. et al. Traumatic brain injury in young, amyloid-β peptide overexpressing transgenic mice induces marked ipsilateral hippocampal atrophy and diminished Aβ deposition during aging. J. Comp. Neurol. 411, 390–398 (1999).

    CAS  PubMed  Google Scholar 

  67. Nakagawa, Y. et al. Brain trauma in aged transgenic mice induces regression of established Aβ deposits. Exp. Neurol. 163, 244–252 (2000).

    CAS  PubMed  Google Scholar 

  68. Abrahamson, E. E. et al. Caspase inhibition therapy abolishes brain trauma-induced increases in Aβ peptide: implications for clinical outcome. Exp. Neurol. 197, 437–450 (2006).

    CAS  PubMed  Google Scholar 

  69. Abrahamson, E. E., Ikonomovic, M. D., Dixon, C. E. & DeKosky, S. T. Simvastatin therapy prevents brain trauma-induced increases in β-amyloid peptide levels. Ann. Neurol. 66, 407–414 (2009).

    CAS  PubMed  Google Scholar 

  70. Loane, D. J. et al. Amyloid precursor protein secretases as therapeutic targets for traumatic brain injury. Nature Med. 15, 377–379 (2009).

    CAS  PubMed  Google Scholar 

  71. Smith, D. H. et al. Characterization of diffuse axonal pathology and selective hippocampal damage following inertial brain trauma in the pig. J. Neuropathol. Exp. Neurol. 56, 822–834 (1997).

    CAS  Google Scholar 

  72. Meaney, D. F. et al. Biomechanical analysis of experimental diffuse axonal injury. J. Neurotrauma 12, 689–694 (1995).

    CAS  PubMed  Google Scholar 

  73. Stone, J. R. et al. Caspase-3-mediated cleavage of amyloid precursor protein and formation of amyloid β peptide in traumatic axonal injury. J. Neurotrauma 19, 601–614 (2002).

    Google Scholar 

  74. Iwata, A., Chen, X. H., McIntosh, T. K., Browne, K. D. & Smith, D. H. Long-term accumulation of amyloid-β in axons following brain trauma without persistent upregulation of amyloid precursor protein genes. J. Neuropathol. Exp. Neurol. 61, 1056–1068 (2002).

    CAS  PubMed  Google Scholar 

  75. Chen, X. H. et al. Long-term accumulation of amyloid-β, β-secretase, presenilin-1, and caspase-3 in damaged axons following brain trauma. Am. J. Pathol. 165, 357–371 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Bigler, E. D. Quantitative magnetic resonance imaging in traumatic brain injury. J. Head Trauma Rehabil. 16, 117–134 (2001).

    CAS  PubMed  Google Scholar 

  77. Stokin, G. B. et al. Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease. Science 307, 1282–1288 (2005).

    CAS  PubMed  Google Scholar 

  78. Graham, D. I. et al. Altered β-APP metabolism after head injury and its relationship to the aetiology of Alzheimer's disease. Acta Neurochir. Suppl. 66, 96–102 (1996).

    CAS  PubMed  Google Scholar 

  79. Tamagno, E. et al. β-Site APP cleaving enzyme up-regulation induced by 4-hydroxynonenal is mediated by stress-activated protein kinases pathways. J. Neurochem. 92, 628–636 (2005).

    CAS  PubMed  Google Scholar 

  80. Guglielmotto, M. et al. The up-regulation of BACE1 mediated by hypoxia and ischemic injury: role of oxidative stress and HIF1α. J. Neurochem. 108, 1045–1056 (2009).

    CAS  PubMed  Google Scholar 

  81. Tamagno, E. et al. Oxidative stress activates a positive feedback between the γ- and β-secretase cleavages of the β-amyloid precursor protein. J. Neurochem. 104, 683–695 (2008).

    CAS  PubMed  Google Scholar 

  82. Povlishock, J. T. & Kontos, H. A. The role of oxygen radicals in the pathobiology of traumatic brain injury. Hum. Cell 5, 345–353 (1992).

    CAS  PubMed  Google Scholar 

  83. LaFerla, F. M., Green, K. N. & Oddo, S. Intracellular amyloid-β in Alzheimer's disease. Nature Rev. Neurosci. 8, 499–509 (2007).

    CAS  Google Scholar 

  84. Kamal, A., Almenar-Queralt, A., LeBlanc, J. F., Roberts, E. A. & Goldstein, L. S. Kinesin-mediated axonal transport of a membrane compartment containing β-secretase and presenilin-1 requires APP. Nature 414, 643–648 (2001).

    CAS  PubMed  Google Scholar 

  85. Kamal, A., Stokin, G. B., Yang, Z., Xia, C. H. & Goldstein, L. S. Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I. Neuron 28, 449–459 (2000).

    CAS  PubMed  Google Scholar 

  86. Lazarov, O. et al. Axonal transport, amyloid precursor protein, kinesin-1, and the processing apparatus: revisited. J. Neurosci. 25, 2386–2395 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Simons, K. & Toomre, D. Lipid rafts and signal transduction. Nature Rev. Mol. Cell Biol. 1, 31–39 (2000).

    CAS  Google Scholar 

  88. Pike, L. J. Rafts defined: a report on the Keystone symposium on lipid rafts and cell function. J. Lipid Res. 47, 1597–1598 (2006).

    CAS  PubMed  Google Scholar 

  89. Ehehalt, R., Keller, P., Haass, C., Thiele, C. & Simons, K. Amyloidogenic processing of the Alzheimer β-amyloid precursor protein depends on lipid rafts. J. Cell Biol. 160, 113–123 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Gervais, F. G. et al. Involvement of caspases in proteolytic cleavage of Alzheimer's amyloid-β precursor protein and amyloidogenic Aβ peptide formation. Cell 97, 395–406 (1999).

    CAS  PubMed  Google Scholar 

  91. Clark, R. S. et al. Increases in Bcl-2 and cleavage of caspase-1 and caspase-3 in human brain after head injury. FASEB J. 13, 813–821 (1999).

    CAS  PubMed  Google Scholar 

  92. Knoblach, S. M. et al. Multiple caspases are activated after traumatic brain injury: evidence for involvement in functional outcome. J. Neurotrauma 19, 1155–1170 (2002).

    PubMed  Google Scholar 

  93. Yakovlev, A. G. et al. Activation of CPP32-like caspases contributes to neuronal apoptosis and neurological dysfunction after traumatic brain injury. J. Neurosci. 17, 7415–7424 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Sanchez Mejia, R. O., Ona, V. O., Li, M. & Friedlander, R. M. Minocycline reduces traumatic brain injury-mediated caspase-1 activation, tissue damage, and neurological dysfunction. Neurosurgery 48, 1393–1399; discussion 1399–1401 (2001).

    CAS  PubMed  Google Scholar 

  95. Tesco, G. et al. Depletion of GGA3 stabilizes BACE and enhances β-secretase activity. Neuron 54, 721–737 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Blasko, I. et al. Experimental traumatic brain injury in rats stimulates the expression, production and activity of Alzheimer's disease β-secretase (BACE-1). J. Neural Transm. 111, 523–536 (2004).

    CAS  PubMed  Google Scholar 

  97. Shirotani, K. et al. Neprilysin degrades both amyloid β peptides 1–40 and 1–42 most rapidly and efficiently among thiorphan- and phosphoramidon-sensitive endopeptidases. J. Biol. Chem. 276, 21895–21901 (2001).

    CAS  PubMed  Google Scholar 

  98. Iwata, N. et al. Identification of the major Aβ1–42-degrading catabolic pathway in brain parenchyma: suppression leads to biochemical and pathological deposition. Nature Med. 6, 143–150 (2000).

    CAS  PubMed  Google Scholar 

  99. Miners, J. S. et al. Aβ-degrading enzymes in Alzheimer's disease. Brain Pathol. 18, 240–252 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Li, C. et al. Comparison of the structure and expression of the human and rat neprilysin (endopeptidase 24.11)-encoding genes. Gene 164, 363–366 (1995).

    CAS  PubMed  Google Scholar 

  101. Li, C. & Hersh, L. B. Characterization of the promoter region of the rat neprilysin gene. Arch. Biochem. Biophys. 358, 189–195 (1998).

    CAS  PubMed  Google Scholar 

  102. Roques, B. P., Noble, F., Dauge, V., Fournie-Zaluski, M. C. & Beaumont, A. Neutral endopeptidase 24.11: structure, inhibition, and experimental and clinical pharmacology. Pharmacol. Rev. 45, 87–146 (1993).

    CAS  PubMed  Google Scholar 

  103. Turner, A. J., Isaac, R. E. & Coates, D. The neprilysin (NEP) family of zinc metalloendopeptidases: genomics and function. Bioessays 23, 261–269 (2001).

    CAS  PubMed  Google Scholar 

  104. Kanemitsu, H., Tomiyama, T. & Mori, H. Human neprilysin is capable of degrading amyloid beta peptide not only in the monomeric form but also the pathological oligomeric form. Neurosci. Lett. 350, 113–116 (2003).

    CAS  PubMed  Google Scholar 

  105. Iwata, N. et al. Metabolic regulation of brain Aβ by neprilysin. Science 292, 1550–1552 (2001).

    CAS  PubMed  Google Scholar 

  106. Iwata, N., Higuchi, M. & Saido, T. C. Metabolism of amyloid-β peptide and Alzheimer's disease. Pharmacol. Ther. 108, 129–148 (2005).

    CAS  PubMed  Google Scholar 

  107. Yasojima, K., Akiyama, H., McGeer, E. G. & McGeer, P. L. Reduced neprilysin in high plaque areas of Alzheimer brain: a possible relationship to deficient degradation of β-amyloid peptide. Neurosci. Lett. 297, 97–100 (2001).

    CAS  PubMed  Google Scholar 

  108. Koenigsknecht-Talboo, J. et al. Rapid microglial response around amyloid pathology after systemic anti-Aβ antibody administration in PDAPP mice. J. Neurosci. 28, 14156–14164 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Hickman, S. E., Allison, E. K. & El Khoury, J. Microglial dysfunction and defective β-amyloid clearance pathways in aging Alzheimer's disease mice. J. Neurosci. 28, 8354–8360 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Pardossi-Piquard, R. et al. Presenilin-dependent transcriptional control of the Aβ-degrading enzyme neprilysin by intracellular domains of βAPP and APLP. Neuron 46, 541–554 (2005).

    CAS  PubMed  Google Scholar 

  111. Mohajeri, M. H., Wollmer, M. A. & Nitsch, R. M. Aβ 42-induced increase in neprilysin is associated with prevention of amyloid plaque formation in vivo. J. Biol. Chem. 277, 35460–35465 (2002).

    CAS  PubMed  Google Scholar 

  112. Johnson, V. et al. A neprilysin polymorphism and amyloid β plaques following traumatic brain injury in humans. J. Neurotrauma 27 Mar 2009 (doi:10.1089/neu.2008-0843).

  113. Mattson, M. P. et al. Evidence for excitoprotective and intraneuronal calcium-regulating roles for secreted forms of the β-amyloid precursor protein. Neuron 10, 243–254 (1993).

    CAS  PubMed  Google Scholar 

  114. Milward, E. A. et al. The amyloid protein precursor of Alzheimer's disease is a mediator of the effects of nerve growth factor on neurite outgrowth. Neuron 9, 129–137 (1992).

    CAS  PubMed  Google Scholar 

  115. Roch, J. M., Jin, L. W., Ninomiya, H., Schubert, D. & Saitoh, T. Biologically active domain of the secreted form of the amyloid β/A4 protein precursor. Ann. NY Acad. Sci. 695, 149–157 (1993).

    CAS  PubMed  Google Scholar 

  116. Small, D. H. et al. Neurite-outgrowth regulating functions of the amyloid protein precursor of Alzheimer's disease. J. Alzheimers Dis. 1, 275–285 (1999).

    CAS  PubMed  Google Scholar 

  117. Small, D. H. et al. A heparin-binding domain in the amyloid protein precursor of Alzheimer's disease is involved in the regulation of neurite outgrowth. J. Neurosci. 14, 2117–2127 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Morimoto, T., Ohsawa, I., Takamura, C., Ishiguro, M. & Kohsaka, S. Involvement of amyloid precursor protein in functional synapse formation in cultured hippocampal neurons. J. Neurosci. Res. 51, 185–195 (1998).

    CAS  PubMed  Google Scholar 

  119. Van den Heuvel, C. et al. Upregulation of amyloid precursor protein messenger RNA in response to traumatic brain injury: an ovine head impact model. Exp. Neurol. 159, 441–450 (1999).

    CAS  PubMed  Google Scholar 

  120. Thornton, E., Vink, R., Blumbergs, P. C. & Van Den Heuvel, C. Soluble amyloid precursor protein alpha reduces neuronal injury and improves functional outcome following diffuse traumatic brain injury in rats. Brain Res. 1094, 38–46 (2006).

    CAS  PubMed  Google Scholar 

  121. Terry, R. D. et al. Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann. Neurol. 30, 572–580 (1991).

    CAS  PubMed  Google Scholar 

  122. Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Neuropathology Group of the Medical Research Council Cognitive Function and Ageing Study (MRC CFAS). Lancet 357, 169–175 (2001).

  123. Engler, H. et al. Two-year follow-up of amyloid deposition in patients with Alzheimer's disease. Brain 129, 2856–2866 (2006).

    PubMed  Google Scholar 

  124. Holmes, C. et al. Long-term effects of Aβ42 immunisation in Alzheimer's disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 372, 216–223 (2008).

    CAS  PubMed  Google Scholar 

  125. Lambert, M. P. et al. Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins. Proc. Natl Acad. Sci. USA 95, 6448–6453 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Hartley, D. M. et al. Protofibrillar intermediates of amyloid β-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J. Neurosci. 19, 8876–8884 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Walsh, D. M., Klyubin, I., Fadeeva, J. V., Rowan, M. J. & Selkoe, D. J. Amyloid-β oligomers: their production, toxicity and therapeutic inhibition. Biochem. Soc. Trans. 30, 552–557 (2002).

    CAS  PubMed  Google Scholar 

  128. Cleary, J. P. et al. Natural oligomers of the amyloid-β protein specifically disrupt cognitive function. Nature Neurosci. 8, 79–84 (2005).

    CAS  PubMed  Google Scholar 

  129. Lee, E. B. et al. Targeting amyloid-β peptide (Aβ) oligomers by passive immunization with a conformation-selective monoclonal antibody improves learning and memory in Aβ precursor protein (APP) transgenic mice. J. Biol. Chem. 281, 4292–4299 (2006).

    CAS  PubMed  Google Scholar 

  130. Lesne, S. et al. A specific amyloid-β protein assembly in the brain impairs memory. Nature 440, 352–357 (2006).

    CAS  PubMed  Google Scholar 

  131. Pearson, H. A. & Peers, C. Physiological roles for amyloid β peptides. J. Physiol. 575, 5–10 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Wang, Q., Walsh, D. M., Rowan, M. J., Selkoe, D. J. & Anwyl, R. Block of long-term potentiation by naturally secreted and synthetic amyloid β-peptide in hippocampal slices is mediated via activation of the kinases c-Jun N-terminal kinase, cyclin-dependent kinase 5, and p38 mitogen-activated protein kinase as well as metabotropic glutamate receptor type 5. J. Neurosci. 24, 3370–3378 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Walsh, D. M. et al. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416, 535–539 (2002).

    CAS  PubMed  Google Scholar 

  134. Shankar, G. M. et al. Amyloid-β protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nature Med. 14, 837–842 (2008).

    CAS  PubMed  Google Scholar 

  135. Langlois, J. A., Rutland-Brown, W. & Wald, M. M. The epidemiology and impact of traumatic brain injury: a brief overview. J. Head Trauma Rehabil. 21, 375–378 (2006).

    PubMed  Google Scholar 

  136. Bateman, R. J. et al. A γ-secretase inhibitor decreases amyloid-β production in the central nervous system. Ann. Neurol. 66, 48–54 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Corder, E. H. et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 261, 921–923 (1993).

    CAS  PubMed  Google Scholar 

  138. Saunders, A. M. et al. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer's disease. Neurology 43, 1467–1472 (1993).

    CAS  PubMed  Google Scholar 

  139. Teasdale, G. M., Nicoll, J. A., Murray, G. & Fiddes, M. Association of apolipoprotein E polymorphism with outcome after head injury. Lancet 350, 1069–1071 (1997).

    CAS  PubMed  Google Scholar 

  140. Sorbi, S. et al. ApoE as a prognostic factor for post-traumatic coma. Nature Med. 1, 852 (1995).

    CAS  PubMed  Google Scholar 

  141. Friedman, G. et al. Apolipoprotein E-ɛ4 genotype predicts a poor outcome in survivors of traumatic brain injury. Neurology 52, 244–248 (1999).

    CAS  PubMed  Google Scholar 

  142. Liberman, J. N., Stewart, W. F., Wesnes, K. & Troncoso, J. Apolipoprotein E ɛ4 and short-term recovery from predominantly mild brain injury. Neurology 58, 1038–1044 (2002).

    CAS  PubMed  Google Scholar 

  143. Sundstrom, A. et al. APOE influences on neuropsychological function after mild head injury: within-person comparisons. Neurology 62, 1963–1966 (2004).

    CAS  PubMed  Google Scholar 

  144. Lichtman, S. W., Seliger, G., Tycko, B. & Marder, K. Apolipoprotein E and functional recovery from brain injury following postacute rehabilitation. Neurology 55, 1536–1539 (2000).

    CAS  PubMed  Google Scholar 

  145. Liaquat, I., Dunn, L. T., Nicoll, J. A., Teasdale, G. M. & Norrie, J. D. Effect of apolipoprotein E genotype on hematoma volume after trauma. J. Neurosurg. 96, 90–96 (2002).

    CAS  PubMed  Google Scholar 

  146. Smith, C., Graham, D. I., Murray, L. S., Stewart, J. & Nicoll, J. A. Association of APOE ɛ4 and cerebrovascular pathology in traumatic brain injury. J. Neurol. Neurosurg. Psychiatry 77, 363–366 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Diaz-Arrastia, R. et al. Increased risk of late posttraumatic seizures associated with inheritance of APOE ɛ4 allele. Arch. Neurol. 60, 818–822 (2003).

    PubMed  Google Scholar 

  148. Chamelian, L., Reis, M. & Feinstein, A. Six-month recovery from mild to moderate traumatic brain injury: the role of APOE-ɛ4 allele. Brain 127, 2621–2628 (2004).

    PubMed  Google Scholar 

  149. Nathoo, N., Chetry, R., van Dellen, J. R., Connolly, C. & Naidoo, R. Apolipoprotein E polymorphism and outcome after closed traumatic brain injury: influence of ethnic and regional differences. J. Neurosurg. 98, 302–306 (2003).

    CAS  PubMed  Google Scholar 

  150. Teasdale, G. M., Murray, G. D. & Nicoll, J. A. The association between APOE ɛ4, age and outcome after head injury: a prospective cohort study. Brain 128, 2556–2561 (2005).

    CAS  PubMed  Google Scholar 

  151. Mayeux, R. et al. Synergistic effects of traumatic head injury and apolipoprotein-ɛ4 in patients with Alzheimer's disease. Neurology 45, 555–557 (1995).

    CAS  PubMed  Google Scholar 

  152. Mayeux, R. et al. Genetic susceptibility and head injury as risk factors for Alzheimer's disease among community-dwelling elderly persons and their first-degree relatives. Ann. Neurol. 33, 494–501 (1993).

    CAS  PubMed  Google Scholar 

  153. Mauri, M. et al. Interaction between Apolipoprotein ɛ4 and traumatic brain injury in patients with Alzheimer's disease and mild cognitive impairment. Funct. Neurol. 21, 223–228 (2006).

    PubMed  Google Scholar 

  154. Nicoll, J. A., Roberts, G. W. & Graham, D. I. Apolipoprotein E ɛ4 allele is associated with deposition of amyloid β-protein following head injury. Nature Med. 1, 135–137 (1995).

    CAS  PubMed  Google Scholar 

  155. Hartman, R. E. et al. Apolipoprotein E4 influences amyloid deposition but not cell loss after traumatic brain injury in a mouse model of Alzheimer's disease. J. Neurosci. 22, 10083–10087 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Martland, H. Punch drunk. J. Am. Med. Assoc. 91, 1103–1107 (1928).

    Google Scholar 

  157. Millspaugh, J. Dementia pugilistica. US Naval Med. Bull. 35, 297–303 (1937).

    Google Scholar 

  158. Roberts, G. W., Allsop, D. & Bruton, C. The occult aftermath of boxing. J. Neurol. Neurosurg. Psychiatry 53, 373–378 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Roberts, A. Brain Damage in Boxers (Pitman Publishing, London, 1969).

    Google Scholar 

  160. Jordan, B. D. et al. CT of 338 active professional boxers. Radiology 185, 509–512 (1992).

    CAS  PubMed  Google Scholar 

  161. Jordan, B. D. et al. Apolipoprotein E ɛ4 associated with chronic traumatic brain injury in boxing. JAMA 278, 136–140 (1997).

    CAS  PubMed  Google Scholar 

  162. Guskiewicz, K. M. et al. Association between recurrent concussion and late-life cognitive impairment in retired professional football players. Neurosurgery 57, 719–726 (2005).

    PubMed  Google Scholar 

  163. Omalu, B. I. et al. Chronic traumatic encephalopathy in a National Football League player. Neurosurgery 57, 128–134 (2005).

    PubMed  Google Scholar 

  164. Omalu, B. I. et al. Chronic traumatic encephalopathy in a national football league player: part II. Neurosurgery 59, 1086–1092; discussion 1092–1093 (2006).

    PubMed  Google Scholar 

  165. McKee, A. C. et al. Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. J. Neuropathol. Exp. Neurol. 68, 709–735 (2009).

    PubMed  Google Scholar 

  166. Tokuda, T., Ikeda, S., Yanagisawa, N., Ihara, Y. & Glenner, G. G. Re-examination of ex-boxers' brains using immunohistochemistry with antibodies to amyloid β-protein and tau protein. Acta Neuropathol. 82, 280–285 (1991).

    CAS  PubMed  Google Scholar 

  167. Uryu, K. et al. Repetitive mild brain trauma accelerates Aβ deposition, lipid peroxidation, and cognitive impairment in a transgenic mouse model of Alzheimer amyloidosis. J. Neurosci. 22, 446–454 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Conte, V. et al. Vitamin E reduces amyloidosis and improves cognitive function in Tg2576 mice following repetitive concussive brain injury. J. Neurochem. 90, 758–764 (2004).

    CAS  PubMed  Google Scholar 

  169. Selkoe, D. J. Alzheimer's disease: genes, proteins, and therapy. Physiol. Rev. 81, 741–766 (2001).

    CAS  PubMed  Google Scholar 

  170. Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259 (1991).

    CAS  PubMed  Google Scholar 

  171. Forman, M. S., Trojanowski, J. Q. & Lee, V. M. Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs. Nature Med. 10, 1055–1063 (2004).

    CAS  PubMed  Google Scholar 

  172. Corsellis, J. A., Bruton, C. J. & Freeman-Browne, D. The aftermath of boxing. Psychol. Med. 3, 270–303 (1973).

    CAS  PubMed  Google Scholar 

  173. Dale, G. E., Leigh, P. N., Luthert, P., Anderton, B. H. & Roberts, G. W. Neurofibrillary tangles in dementia pugilistica are ubiquitinated. J. Neurol. Neurosurg. Psychiatry 54, 116–118 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Schmidt, M. L., Zhukareva, V., Newell, K. L., Lee, V. M. & Trojanowski, J. Q. Tau isoform profile and phosphorylation state in dementia pugilistica recapitulate Alzheimer's disease. Acta Neuropathol. 101, 518–524 (2001).

    CAS  PubMed  Google Scholar 

  175. Smith, C., Graham, D. I., Murray, L. S. & Nicoll, J. A. Tau immunohistochemistry in acute brain injury. Neuropathol. Appl. Neurobiol. 29, 496–502 (2003).

    CAS  PubMed  Google Scholar 

  176. Hoshino, S. et al. Emergence of immunoreactivities for phosphorylated tau and amyloid-β protein in chronic stage of fluid percussion injury in rat brain. Neuroreport 9, 1879–1883 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grants NS038104 and NS056202.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas H. Smith.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

OMIM

Alzheimer's disease

FURTHER INFORMATION

Penn Center for Brain injury and Repair

Smith Laboratory Homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, V., Stewart, W. & Smith, D. Traumatic brain injury and amyloid-β pathology: a link to Alzheimer's disease?. Nat Rev Neurosci 11, 361–370 (2010). https://doi.org/10.1038/nrn2808

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2808

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing