Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

Centenary of Brodmann's map — conception and fate

Abstract

Rarely in the history of neuroscience has a single illustration been as influential as the cytoarchitectonic map of the human brain published by Korbinian Brodmann in his monograph from 1909. The map presents the segregation of the cerebral cortex into 43 areas, as visible in cell body-stained histological sections. More importantly, Brodmann provided a comparative neuroanatomical approach and discussed ontogenetic and pathological aspects as well as structural–functional correlations. One hundred years later, a large number of neuroscientists still use Brodmann's map for localizing neuroimaging data obtained in the living human brain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Korbinian Brodmann and his work.
Figure 2: Lateral views of the cortical maps of Campbell, Smith, von Economo and Koskinas, Sarkisov, Bailey and von Bonin, and Brodmann.
Figure 3: Probability maps of the human cortex based on quantitative cytoarchitecture and statistical tests for the localization of borders between areas.
Figure 4: Cortical maps based on the quantitative in vitro receptor autoradiography of the regional and laminar distribution of neurotransmitter receptors in the human and macaque brain.

References

  1. Gall, F. J. & Spurzheim, J. C. Anatomie et Physiologie du Systéme Nerveux en Général, et du Cerveau en Particulier (Schoell, Paris, 1810).

    Google Scholar 

  2. Broca, P. in Broca's Region (eds Grodzinsky, Y. & Amunts, K.) 291–304 (Oxford Univ. Press, New York, 2006).

    Google Scholar 

  3. Lichtheim, L. On aphasia. Brain 7, 433–484 (1885).

    Article  Google Scholar 

  4. Hughlings-Jackson, J. Notes on the physiology and pathology of language. The Medical Times and Gazette 1, 659–662 (1866).

    Google Scholar 

  5. Vogt, C. & Vogt, O. Allgemeinere Ergebnisse unserer Hirnforschung. J. Psychol. Neurol. 25, 292–398 (1919).

    Google Scholar 

  6. Foerster, O. Über die Bedeutung und Reichweite des Lokalisationsprinzips im Nervensystem. Verh. Dtsch Ges. Inn. Med. 46, 117–211 (1934).

    Google Scholar 

  7. Campbell, A. W. Histological Studies on the Localisation of Cerebral Function (Cambridge Univ. Press, Cambridge, UK, 1905).

    Google Scholar 

  8. Elliot Smith, G. A new topographical survey of the human cerebral cortex, being an account of the distribution of the anatomically distinct cortical areas and their relationship to the cerebral sulci. J. Anat. 41, 237–254 (1907).

    Google Scholar 

  9. von Economo, C. & Koskinas, G. N. Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen (Springer, Berlin, 1925).

    Google Scholar 

  10. Brodmann, K. Vergleichende Lokalisationslehre der Großhirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues (Barth, Leipzig, 1909); English translation available in Garey, L. J. Brodmann's Localization in the Cerebral Cortex (Smith Gordon, London, 1994).

    Google Scholar 

  11. Brodmann, K. Beiträge zur histologischen lokalisation der Grosshirnrinde. III. Die rindenfelder der niederen affen. J. Psychol. Neurol. 4, 177–226 (1905).

    Google Scholar 

  12. Huxley, T. H. Evidence as to Man's Place in Nature (Williams & Norgate, London, 1863).

    Google Scholar 

  13. Brodmann, K. Neue Forschungsergebnisse der Großhirnrindenanatomie mit besonderer Berücksichtigung anthropologischer Fragen. Verh. Ges. Dtsch Naturf. Ärzte 85, 200–240 (1913).

    Google Scholar 

  14. Gould, S. J. The Mismeasure of Man (Norton, New York, 1981).

    Google Scholar 

  15. Brodmann, K. in Allgemeine Chirurgie der Gehirnkrankheiten (eds Knoblauch, A., Brodmann, K. & Hauptmann, A.) 86–426 (Verlag von Ferdinand Enke, Stuttgart, 1914).

    Google Scholar 

  16. Sarkisov, S. A., Filimonoff, I. N. & Preobrashenskaya, N. S. Cytoarchitecture of the Human Cortex Cerebri (Medgiz, Moscow, 1949) (in Russian).

    Google Scholar 

  17. Bailey, P. & von Bonin, G. The Isocortex of Man (Univ. Illinois Press, Urbana, 1951).

    Google Scholar 

  18. Lashley, K. S. & Clark, G. The cytoarchitecture of the cerebral cortex of Ateles: a critical examination of architectonic studies. J. Comp. Neurol. 85, 223–305 (1946).

    Article  CAS  Google Scholar 

  19. Schleicher, A., Amunts, K., Geyer, S., Morosan, P. & Zilles, K. Observer-independent method for microstructural parcellation of cerebral cortex: a quantitative approach to cytoarchitectonics. Neuroimage 9, 165–177 (1999).

    Article  CAS  Google Scholar 

  20. Annese, J., Gazzaniga, M. S. & Toga, A. W. Localization of the human cortical visual area MT based on computer aided histological analysis. Cereb. Cortex 15, 1044–1053 (2005).

    Article  CAS  Google Scholar 

  21. Schmitt, O. & Böhme, M. A robust transcortical profile scanner for generating 2-D traverses in histological sections of richly curved cortical courses. Neuroimage 16, 1103–1119 (2002).

    Article  CAS  Google Scholar 

  22. Jones, S. E., Buchbinder, B. R. & Aharon, I. Three-dimensional mapping of cortical thickness using Laplace's equation. Hum. Brain Mapp. 11, 12–32 (2000).

    Article  CAS  Google Scholar 

  23. Zilles, K. et al. A quantitative analysis of sulci in the human cerebral cortex: development, regional heterogeneity, gender difference, asymmetry, intersubject variability and cortical architecture. Hum. Brain Mapp. 5, 218–221 (1997).

    Article  CAS  Google Scholar 

  24. Zilles, K., Armstrong, E., Schleicher, A. & Kretschmann, H. J. The human pattern of gyrification in the cerebral cortex. Anat. Embryol. 179, 173–179 (1988).

    Article  CAS  Google Scholar 

  25. Talairach, J. & Tournoux, P. Coplanar Stereotaxic Atlas of the Human Brain (Thieme, Stuttgart, 1988).

    Google Scholar 

  26. Zeki, S. Zu Brodmanns Area 18 und Area 19. Exp. Brain Res. 36, 195–197 (1979).

    Article  CAS  Google Scholar 

  27. Brodmann, K. in Handbuch der Neurologie (ed. Lewandowsky, M.) 206–307 (Springer, Berlin, 1910).

    Book  Google Scholar 

  28. Roland, P. E. & Zilles, K. Structural divisions and functional fields in the human cerebral cortex. Brain Res. Rev. 26, 87–105 (1998).

    Article  CAS  Google Scholar 

  29. Zilles, K., Schleicher, A., Palomero-Gallagher, N. & Amunts, K. in Brain Mapping: The Methods (eds Mazziotta, J. C. & Toga, A.) 573–602 (Elsevier, Amsterdam, 2002).

    Book  Google Scholar 

  30. Eickhoff, S. et al. A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25, 1325–1335 (2005).

    Article  Google Scholar 

  31. Amunts, K. et al. Broca's region revisited: cytoarchitecture and intersubject variability. J. Comp. Neurol. 412, 319–341 (1999).

    Article  CAS  Google Scholar 

  32. Toga, A. W., Thompson, P. M., Mori, S., Amunts, K. & Zilles, K. Towards multimodal atlases of the human brain. Nature Rev. Neurosci. 7, 952–966 (2006).

    Article  CAS  Google Scholar 

  33. Roland, P. E. & Zilles, K. Brain atlases - a new research tool. Trends Neurosci. 17, 458–467 (1994).

    Article  CAS  Google Scholar 

  34. Zilles, K. & Amunts, K. Receptor mapping: architecture of the human cerebral cortex. Curr. Opin. Neurol. 22, 331–339 (2009).

    Article  Google Scholar 

  35. Pierpaoli, C., Jezzard, P., Basser, P. J., Barnett, A. & Di Chiro, G. Diffusion tensor MR imaging of the human brain. Radiology 201, 637–648 (1996).

    Article  CAS  Google Scholar 

  36. Johansen-Berg, H. & Rushworth, M. F. Using diffusion imaging to study human connectional anatomy. Annu. Rev. Neurosci. 32, 75–94 (2009).

    Article  CAS  Google Scholar 

  37. Mori, S. & Zhang, J. Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51, 527–539 (2006).

    Article  CAS  Google Scholar 

  38. Fatterpekar, G. M. et al. Cytoarchitecture of the human cerebral cortex: MR microscopy of excised specimens at 9.4 Tesla. Am. J. Neurorad. 23, 1313–1321 (2002).

    Google Scholar 

  39. Walters, N. et al. In vivo identification of human cortical areas using high resolution MRI: an approach to structure-function correlation. Proc. Natl. Acad. Sci. USA 100, 2981–2986 (2003).

    Article  CAS  Google Scholar 

  40. Fellemann, D. J. & van Essen, D. C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).

    Article  Google Scholar 

  41. Amunts, K., Schleicher, A. & Zilles, K. Cytoarchitecture of the cerebral cortex - more than localization. Neuroimage 37, 1061–1065 (2007).

    Article  CAS  Google Scholar 

  42. Caspers, S. et al. The human inferior parietal cortex: cytoarchitectonic parcellation and interindividual variability. Neuroimage 33, 430–448 (2006).

    Article  Google Scholar 

  43. Amunts, K., Malikovic, A., Mohlberg, H., Schormann, T. & Zilles, K. Brodmann's areas 17 and 18 brought into stereotaxic space - where and how variable? Neuroimage 11, 66–84 (2000).

    Article  CAS  Google Scholar 

  44. Morosan, P. et al. Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system. Neuroimage 13, 684–701 (2001).

    Article  CAS  Google Scholar 

  45. Geyer, S. et al. Two different areas within the primary motor cortex of man. Nature 382, 805–807 (1996).

    Article  CAS  Google Scholar 

  46. Geyer, S., Schleicher, A. & Zilles, K. Areas 3a, 3b, and 1 of human primary somatosensory cortex: I. Microstructural organisation and interindividual variability. Neuroimage 10, 63–83 (1999).

    Article  CAS  Google Scholar 

  47. Zilles, K. et al. Architectonics of the human cerebral cortex and transmitter receptor fingerprints: reconciling functional neuroanatomy and neurochemistry. Eur. Neuropsychopharmacol. 12, 587–599 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the Initiative and Network Fund of the Helmholtz Association within the Helmholtz Alliance on Systems Biology (Human Brain Model project to K.Z.). Further support by the Deutsche Forschungsgemeinschaft (AM 118/1-2, K.A.) and the German Ministry for Education and Research (01GW0613, 01GW0623, 01GW0771 to K.A.) is acknowledged. We thank our teams in Düsseldorf and Jülich, in particular S. Caspers, M. Falk, S. Eickhoff, H. Mohlberg, P. Morosan, N. Palomero-Gallagher and A. Schleicher.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Amunts.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (fig)

Interspecies comparison of cytoarchitectonic brain maps. (PDF 1342 kb)

Related links

Related links

FURTHER INFORMATION

Karl Zilles' homepage

Katrin Amunts' homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zilles, K., Amunts, K. Centenary of Brodmann's map — conception and fate. Nat Rev Neurosci 11, 139–145 (2010). https://doi.org/10.1038/nrn2776

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2776

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing