Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

microRNAs at the synapse

An Erratum to this article was published on 18 March 2011

This article has been updated

Key Points

  • MicroRNAs (miRNAs) are an extensive class of small non-coding RNAs that act as post-transcriptional regulators of gene expression in most cell types, including neurons. In animals, miRNAs mostly regulate gene expression at the level of mRNA translation through a mechanism that is still controversial.

  • A subset of neuronal miRNAs are localized in the synaptodendritic compartment, where they participate in the local control of protein synthesis during synapse development and plasticity. Currently, more than 20 different miRNAs have been identified in dendrites of vertebrate neurons, but this is probably just the tip of the iceberg.

  • The ability of miRNAs to regulate neuronal mRNA translation is itself subject to activity-dependent control. Neural activity controls miRNA transcription, subcellular localization and processing and the function of miRNA-associated multiprotein complexes.

  • During the early stages of synaptogenesis, miRNA-regulated mechanisms are involved in the growth, remodelling and targeting of dendrites in both vertebrate and invertebrate model systems. The initial formation of synaptic contacts seems to be independent of miRNA activity.

  • At least two miRNAs, miR-134 and miR-138, regulate the morphology of dendritic spines, the major sites of excitatory synaptic transmission in the vertebrate brain. miRNA-regulated pathways that are relevant for spine plasticity seem to converge on the actin cytoskeleton.

  • Examples of a function of miRNAs in synaptic plasticity relevant to learning and memory have now been provided by several studies from invertebrates (Caenorhabditis elegans, Drosophila melanogaster and Aplysia californica). The miRNA-dependent regulation of important plasticity proteins, such as the neurotransmitter receptors CAMKII and CREB, might underlie this function.

  • Several forms of higher-order processing, such as regulation of the circadian clock and neuroadaptations to drugs of abuse, have been shown to be influenced by miRNA activity. However, the relevance of miRNAs for synaptic plasticity in the mammalian system in vivo is yet to be determined.

  • Several neuronal miRNA targets have been implicated in neurological diseases that are connected to synaptic dysfunction, for example autism-spectrum disorders and mental retardation. Impaired miRNA-dependent fine-tuning of synaptic proteins could result in defective neuronal homeostasis, a hallmark of these diseases.

Abstract

MicroRNAs (miRNAs) are emerging as key modulators of post-transcriptional gene regulation in a plethora of tissues, including the nervous system. Recent evidence points to a widespread role for neural miRNAs at various stages of synaptic development, including dendritogenesis, synapse formation and synapse maturation. Furthermore, studies from invertebrates indicate that miRNAs might contribute to the control of synapse function and plasticity in the adult. Key features of synapse-relevant miRNAs include their ability to regulate mRNA translation locally in the synaptodendritic compartment and the modulation of their expression and function by neuronal activity. The potentially huge impact of miRNA-based mechanisms on higher-order processing, memory and neuropsychiatric disorders in vertebrates is just starting to be recognized.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RNA biogenesis and mode of action.
Figure 2: miRNA regulation by neuronal activity.
Figure 3: miRNA regulatory pathways in the control of the actin cytoskeleton in dendritic spines.
Figure 4: miR-1 function at the C. elegans NMJ.

Similar content being viewed by others

Change history

  • 04 March 2011

    On page 846 of the above article, the references listed in Table 1 are incorrect. This has been corrected on both the html and pdf versions.

References

  1. McAllister, A. K. Dynamic aspects of CNS synapse formation. Annu. Rev. Neurosci. 30, 425–450 (2007).

    Article  CAS  Google Scholar 

  2. Waites, C. L., Craig, A. M. & Garner, C. C. Mechanisms of vertebrate synaptogenesis. Annu. Rev. Neurosci. 28, 251–274 (2005).

    Article  CAS  Google Scholar 

  3. Kandel, E. R. The molecular biology of memory storage: a dialogue between genes and synapses. Science 294, 1030–1038 (2001).

    Article  CAS  Google Scholar 

  4. Flavell, S. W. & Greenberg, M. E. Signaling mechanisms linking neuronal activity to gene expression and plasticity of the nervous system. Annu. Rev. Neurosci. 31, 563–590 (2008).

    Article  CAS  Google Scholar 

  5. Sutton, M. A. & Schuman, E. M. Dendritic protein synthesis, synaptic plasticity, and memory. Cell 127, 49–58 (2006).

    Article  CAS  Google Scholar 

  6. Kim, V. N. MicroRNA biogenesis: coordinated cropping and dicing. Nature Rev. Mol. Cell Biol. 6, 376–385 (2005).

    Article  CAS  Google Scholar 

  7. Filipowicz, W., Bhattacharyya, S. N. & Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nature Rev. Genet. 9, 102–114 (2008).

    Article  CAS  Google Scholar 

  8. Ambros, V. A hierarchy of regulatory genes controls a larva-to-adult developmental switch in C. elegans. Cell 57, 49–57 (1989).

    Article  CAS  Google Scholar 

  9. Reinhart, B. J. et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901–906 (2000).

    Article  CAS  Google Scholar 

  10. Kosik, K. S. The neuronal microRNA system. Nature Rev. Neurosci. 7, 911–920 (2006).

    Article  CAS  Google Scholar 

  11. Kim, J. et al. Identification of many microRNAs that copurify with polyribosomes in mammalian neurons. Proc. Natl Acad. Sci. USA 101, 360–365 (2004).

    Article  CAS  Google Scholar 

  12. Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Article  CAS  Google Scholar 

  13. Karres, J. S., Hilgers, V., Carrera, I., Treisman, J. & Cohen, S. M. The conserved microRNA miR-8 tunes atrophin levels to prevent neurodegeneration in Drosophila. Cell 131, 136–145 (2007). This study demonstrates that both loss and gain of function of miRNAs, or their target mRNAs, can lead to similar phenotypes, leading to the concept of 'fine-tuning' of gene expression by miRNAs.

    Article  CAS  Google Scholar 

  14. Bartel, D. P. & Chen, C. Z. Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nature Rev. Genet. 5, 396–400 (2004).

    Article  CAS  Google Scholar 

  15. Bhattacharyya, S. N., Habermacher, R., Martine, U., Closs, E. I. & Filipowicz, W. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 125, 1111–1124 (2006).

    Article  CAS  Google Scholar 

  16. Vasudevan, S., Tong, Y. & Steitz, J. A. Switching from repression to activation: microRNAs can up-regulate translation. Science 318, 1931–1934 (2007).

    Article  CAS  Google Scholar 

  17. Tsang, J., Zhu, J. & van Oudenaarden, A. MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol. Cell 26, 753–767 (2007).

    Article  CAS  Google Scholar 

  18. Wang, D. O. et al. Synapse- and stimulus-specific local translation during long-term neuronal plasticity. Science 324, 1536–1540 (2009). This study uses imaging of photoconvertible reporter genes to demonstrate regulated local translation at A. californica sensorimotor synapses during long-term synaptic plasticity.

    Article  CAS  Google Scholar 

  19. Barbee, S. A. et al. Staufen- and FMRP-containing neuronal RNPs are structurally and functionally related to somatic P bodies. Neuron 52, 997–1009 (2006).

    Article  CAS  Google Scholar 

  20. Lugli, G., Larson, J., Martone, M. E., Jones, Y. & Smalheiser, N. R. Dicer and eIF2c are enriched at postsynaptic densities in adult mouse brain and are modified by neuronal activity in a calpain-dependent manner. J. Neurochem. 94, 896–905 (2005).

    Article  CAS  Google Scholar 

  21. Cougot, N. et al. Dendrites of mammalian neurons contain specialized P-body-like structures that respond to neuronal activation. J. Neurosci. 28, 13793–13804 (2008).

    Article  CAS  Google Scholar 

  22. Schratt, G. M. et al. A brain-specific microRNA regulates dendritic spine development. Nature 439, 283–289 (2006).

    Article  CAS  Google Scholar 

  23. Kye, M. J. et al. Somatodendritic microRNAs identified by laser capture and multiplex RT-PCR. RNA 13, 1224–1234 (2007).

    Article  CAS  Google Scholar 

  24. Siegel, G. et al. A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis. Nature Cell Biol. 11, 705–716 (2009). This paper describes a large-scale approach to identify miRNAs that function during dendritic spine development of rat hippocampal neurons.

    Article  CAS  Google Scholar 

  25. Lugli, G., Torvik, V. I., Larson, J. & Smalheiser, N. R. Expression of microRNAs and their precursors in synaptic fractions of adult mouse forebrain. J. Neurochem. 106, 650–661 (2008).

    Article  CAS  Google Scholar 

  26. Wang, H. et al. Dendritic BC1 RNA in translational control mechanisms. J. Cell Biol. 171, 811–821 (2005).

    Article  CAS  Google Scholar 

  27. Obernosterer, G., Martinez, J. & Alenius, M. Locked nucleic acid-based in situ detection of microRNAs in mouse tissue sections. Nature Protoc. 2, 1508–1514 (2007).

    Article  CAS  Google Scholar 

  28. Silahtaroglu, A. N. et al. Detection of microRNAs in frozen tissue sections by fluorescence in situ hybridization using locked nucleic acid probes and tyramide signal amplification. Nature Protoc. 2, 2520–2528 (2007).

    Article  CAS  Google Scholar 

  29. Vo, N. et al. A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc. Natl Acad. Sci. USA 102, 16426–16431 (2005).

    Article  CAS  Google Scholar 

  30. Fiore, R. et al. Mef2-mediated transcription of the miR379–410 cluster regulates activity-dependent dendritogenesis by fine-tuning Pumilio2 protein levels. EMBO J. 28, 697–710 (2009).

    Article  CAS  Google Scholar 

  31. Obernosterer, G., Leuschner, P. J., Alenius, M. & Martinez, J. Post-transcriptional regulation of microRNA expression. RNA 12, 1161–1167 (2006).

    Article  CAS  Google Scholar 

  32. Thomson, J. M. et al. Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev. 20, 2202–2207 (2006).

    Article  CAS  Google Scholar 

  33. Heo, I. et al. Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol. Cell 32, 276–284 (2008).

    Article  CAS  Google Scholar 

  34. Ashraf, S. I., McLoon, A. L., Sclarsic, S. M. & Kunes, S. Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila. Cell 124, 191–205 (2006). This paper, together with reference 55, provides evidence that miRNA regulation is important for long-term memory formation in invertebrates.

    Article  CAS  Google Scholar 

  35. Chen, Y. & Ghosh, A. Regulation of dendritic development by neuronal activity. J. Neurobiol. 64, 4–10 (2005).

    Article  CAS  Google Scholar 

  36. Jaworski, J., Spangler, S., Seeburg, D. P., Hoogenraad, C. C. & Sheng, M. Control of dendritic arborization by the phosphoinositide-3′-kinase-Akt-mammalian target of rapamycin pathway. J. Neurosci. 25, 11300–11312 (2005).

    Article  CAS  Google Scholar 

  37. Yu, J. Y., Chung, K. H., Deo, M., Thompson, R. C. & Turner, D. L. MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation. Exp. Cell Res. 314, 2618–2633 (2008).

    Article  CAS  Google Scholar 

  38. Xu, X. L., Li, Y., Wang, F. & Gao, F. B. The steady-state level of the nervous-system-specific microRNA-124a is regulated by dFMR1 in Drosophila. J. Neurosci. 28, 11883–11889 (2008).

    Article  CAS  Google Scholar 

  39. Davis, T. H. et al. Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. J. Neurosci. 28, 4322–4330 (2008).

    Article  CAS  Google Scholar 

  40. Wayman, G. A. et al. An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proc. Natl Acad. Sci. USA 105, 9093–9098 (2008).

    Article  CAS  Google Scholar 

  41. Vessey, J. P. et al. Dendritic localization of the translational repressor Pumilio 2 and its contribution to dendritic stress granules. J. Neurosci. 26, 6496–6508 (2006).

    Article  CAS  Google Scholar 

  42. Nolde, M. J., Saka, N., Reinert, K. L. & Slack, F. J. The Caenorhabditis elegans pumilio homolog, puf-9, is required for the 3′UTR-mediated repression of the let-7 microRNA target gene, hbl-1. Dev. Biol. 305, 551–563 (2007).

    Article  CAS  Google Scholar 

  43. Berdnik, D., Fan, A. P., Potter, C. J. & Luo, L. MicroRNA processing pathway regulates olfactory neuron morphogenesis. Curr. Biol. 18, 1754–1759 (2008).

    Article  CAS  Google Scholar 

  44. Landthaler, M. et al. Molecular characterization of human Argonaute-containing ribonucleoprotein complexes and their bound target mRNAs. RNA 14, 2580–2596 (2008).

    Article  CAS  Google Scholar 

  45. Tops, B. B., Plasterk, R. H. & Ketting, R. F. The Caenorhabditis elegans Argonautes ALG-1 and ALG-2: almost identical yet different. Cold Spring Harb. Symp. Quant. Biol. 71, 189–194 (2006).

    Article  CAS  Google Scholar 

  46. Jin, P. et al. Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nature Neurosci. 7, 113–117 (2004).

    Article  CAS  Google Scholar 

  47. Caygill, E. E. & Johnston, L. A. Temporal regulation of metamorphic processes in Drosophila by the let-7 and miR-125 heterochronic microRNAs. Curr. Biol. 18, 943–950 (2008).

    Article  CAS  Google Scholar 

  48. Hering, H. & Sheng, M. Dendritic spines: structure, dynamics and regulation. Nature Rev. Neurosci. 2, 880–888 (2001).

    Article  CAS  Google Scholar 

  49. Fukazawa, Y. et al. Hippocampal LTP is accompanied by enhanced F-actin content within the dendritic spine that is essential for late LTP maintenance in vivo. Neuron 38, 447–460 (2003).

    Article  CAS  Google Scholar 

  50. Sajikumar, S., Navakkode, S. & Frey, J. U. Protein synthesis-dependent long-term functional plasticity: methods and techniques. Curr. Opin. Neurobiol. 15, 607–613 (2005).

    Article  CAS  Google Scholar 

  51. Simon, D. J. et al. The microRNA miR-1 regulates a MEF-2-dependent retrograde signal at neuromuscular junctions. Cell 133, 903–915 (2008). This paper describes an elegant mechanism whereby a muscle-specific miRNA can affect presynaptic function by regulating a retrograde signalling pathway at the C. elegans NMJ.

    Article  CAS  Google Scholar 

  52. Shi, S. H. et al. Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284, 1811–1816 (1999).

    Article  CAS  Google Scholar 

  53. Karr, J. et al. Regulation of glutamate receptor subunit availability by microRNAs. J. Cell Biol. 185, 685–697 (2009).

    Article  CAS  Google Scholar 

  54. Ju, W. et al. Activity-dependent regulation of dendritic synthesis and trafficking of AMPA receptors. Nature Neurosci. 7, 244–253 (2004).

    Article  CAS  Google Scholar 

  55. Rajasethupathy, P. et al. Characterization of small RNAs in Aplysia reveals a role for miR-124 in constraining synaptic plasticity through CREB. Neuron 63, 803–817 (2009).

    Article  CAS  Google Scholar 

  56. Cheng, H. Y. et al. microRNA modulation of circadian-clock period and entrainment. Neuron 54, 813–829 (2007).

    Article  CAS  Google Scholar 

  57. Ron, D. & Jurd, R. The “ups and downs” of signaling cascades in addiction. Sci. STKE 2005, re14 (2005).

    PubMed  Google Scholar 

  58. Pietrzykowski, A. Z. et al. Posttranscriptional regulation of BK channel splice variant stability by miR-9 underlies neuroadaptation to alcohol. Neuron 59, 274–287 (2008).

    Article  CAS  Google Scholar 

  59. Zoghbi, H. Y. Postnatal neurodevelopmental disorders: meeting at the synapse? Science 302, 826–830 (2003).

    Article  CAS  Google Scholar 

  60. Stark, K. L. et al. Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nature Genet. 40, 751–760 (2008). This paper provides evidence that deregulated miRNA expression in a mouse model of schizophrenia coincides with defective dendrite arborization and spine development.

    Article  CAS  Google Scholar 

  61. Kocerha, J. et al. MicroRNA-219 modulates NMDA receptor-mediated neurobehavioral dysfunction. Proc. Natl Acad. Sci. USA 106, 3507–3512 (2009).

    Article  CAS  Google Scholar 

  62. Hoogenraad, C. C., Akhmanova, A., Galjart, N. & De Zeeuw, C. I. LIMK1 and CLIP-115: linking cytoskeletal defects to Williams syndrome. Bioessays 26, 141–150 (2004).

    Article  CAS  Google Scholar 

  63. Klein, M. E. et al. Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA. Nature Neurosci. 10, 1513–1514 (2007).

    Article  CAS  Google Scholar 

  64. Turrigiano, G. Homeostatic signaling: the positive side of negative feedback. Curr. Opin. Neurobiol. 17, 318–324 (2007).

    Article  CAS  Google Scholar 

  65. Ramocki, M. B. & Zoghbi, H. Y. Failure of neuronal homeostasis results in common neuropsychiatric phenotypes. Nature 455, 912–918 (2008).

    Article  CAS  Google Scholar 

  66. Schratt, G. Fine-tuning neural gene expression with microRNAs. Curr. Opin. Neurobiol. 19, 213–219 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank K. Kosik for sharing unpublished data, D. Simon and G. Siegel for help with the illustrations, R. Fiore for comments on the manuscript and all members of the Schratt laboratory for continuous discussion. Work in my laboratory was supported by grants from the Deutsche Forschungsgemeinschaft (SFB488), the National Institute on Drug Abuse (1R21DA025102-01) and the Human Frontier Science Program (Career Developmental Award).

Author information

Authors and Affiliations

Authors

Supplementary information

Supplementary information S1 (fig)

Model for an involvement of miRNA regulation in synapse homeostasis (PDF 267 kb)

Related links

Related links

DATABASES

miRBase 

miR-124

miR-132

miR-134

FURTHER INFORMATION

Gerhard Schratt's homepage

Glossary

P-body

(Processing body; also known as the GW body). A cytoplasmic structure in eukaryotic cells that contains mRNAs and protein components of mRNA decay complexes, such as decapping enzymes, deadenylases and exonucleases.

Deep sequencing

Sequencing carried out using high-throughput sequencing technologies that are based on parallel pyrosequencing technology and allow the discovery of rare sequences (for example, small RNAs).

LNA-based in situ hybridization

A highly sensitive in situ hybridization method using locked nucleic acid (LNA)-modified oligonucleotides, which display higher binding affinity than standard DNA oligonucleotides, as detection probes.

Neuroadaptation

The cellular mechanisms that neurons use to adapt to changes in the activity of neural networks in response to environmental cues (for example, drug abuse).

Synaptic tagging

A process by which synaptic activity evokes a transient synapse-specific change that allows the synapse to capture proteins or mRNAs that are needed for stable long-term potentiation and long-term depression.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schratt, G. microRNAs at the synapse. Nat Rev Neurosci 10, 842–849 (2009). https://doi.org/10.1038/nrn2763

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2763

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing