Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neural reorganization following sensory loss: the opportunity of change

Key Points

  • Sensory deprivation is associated with striking crossmodal neuroplastic changes in the brain.

  • Following sensory deprivation (for example, blindness or deafness), there is functional recruitment of brain areas that are normally associated with the processing of the lost sense by those sensory modalities that are spared.

  • These changes seem to underlie adaptive and compensatory behaviours in both blind and deaf individuals.

  • In the case of blindness, occipital cortical areas are recruited to process non-visual forms of sensory information such as touch, hearing and verbal memory.

  • In the case of deafness, auditory and language-related areas are recruited to process tactile as well as linguistic and non-linguistic visual information.

  • Experiments in animal models have helped to uncover potential mechanisms underlying these neuroplastic changes, such as the existence of direct cortico-cortical connections between relevant sensory processing areas.

  • Not all neuroplastic changes are beneficial. There is the possibility of maladaptive consequences, particularly in the context of rehabilitation and the restoration of lost sensory function.

Abstract

There is growing evidence that sensory deprivation is associated with crossmodal neuroplastic changes in the brain. After visual or auditory deprivation, brain areas that are normally associated with the lost sense are recruited by spared sensory modalities. These changes underlie adaptive and compensatory behaviours in blind and deaf individuals. Although there are differences between these populations owing to the nature of the deprived sensory modality, there seem to be common principles regarding how the brain copes with sensory loss and the factors that influence neuroplastic changes. Here, we discuss crossmodal neuroplasticity with regards to behavioural adaptation after sensory deprivation and highlight the possibility of maladaptive consequences within the context of rehabilitation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Summary of crossmodal neuroplasticity following sensory loss.
Figure 2: Crossmodal neuroplasticity in dual sensory loss (vision and hearing).
Figure 3: Effects of early visual deprivation in cats.

Similar content being viewed by others

References

  1. Calvert, G. A. & Thesen, T. Multisensory integration: methodological approaches and emerging principles in the human brain. J. Physiol. Paris 98, 191–205 (2004).

    Article  PubMed  Google Scholar 

  2. Stein, B. E. & Stanford, T. R. Multisensory integration: current issues from the perspective of the single neuron. Nature Rev. Neurosci. 9, 255–266 (2008).

    Article  CAS  Google Scholar 

  3. Driver, J. & Noesselt, T. Multisensory interplay reveals crossmodal influences on 'sensory-specific' brain regions, neural responses, and judgments. Neuron 57, 11–23 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Axelrod, S. Effects of Early Blindness; Performance of Blind and Sighted Children on Tactile and Auditory Tasks (American Foundation for the Blind, New York, 1959).

    Google Scholar 

  5. Myklebust, H. R. & Brutten, M. A study of the visual perception of deaf children. Acta Otolaryngol. Suppl. 105, 1–126 (1953).

    CAS  PubMed  Google Scholar 

  6. Rauschecker, J. P. Compensatory plasticity and sensory substitution in the cerebral cortex. Trends Neurosci. 18, 36–43 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Jones, E. G. Cortical and subcortical contributions to activity-dependent plasticity in primate somatosensory cortex. Annu. Rev. Neurosci. 23, 1–37 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Kaas, J. H., Merzenich, M. M. & Killackey, H. P. The reorganization of somatosensory cortex following peripheral nerve damage in adult and developing mammals. Annu. Rev. Neurosci. 6, 325–356 (1983).

    Article  CAS  PubMed  Google Scholar 

  9. Rossignol, S. Plasticity of connections underlying locomotor recovery after central and/or peripheral lesions in the adult mammals. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361, 1647–1671 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Carroll, T. J. Blindness: What It Is, What It Does, And How To Live With It (Little, Boston, 1961). References 10 and 11 give classic descriptions of rehabilitation in the blind and the 'folklore' associated with vision loss.

    Google Scholar 

  11. Wagner-Lampl, A. & Oliver, G. W. Folklore of blindness. J. Vis. Impair. Blind. 88, 267–276 (1994).

    Google Scholar 

  12. Alary, F. et al. Tactile acuity in the blind: a closer look reveals superiority over the sighted in some but not all cutaneous tasks. Neuropsychologia 47, 2037–2043 (2009). References 12–24 describe superior performance on sensory tasks in the blind.

    Article  PubMed  Google Scholar 

  13. Alary, F. et al. Tactile acuity in the blind: a psychophysical study using a two-dimensional angle discrimination task. Exp. Brain Res. 187, 587–594 (2008).

    Article  PubMed  Google Scholar 

  14. Goldreich, D. & Kanics, I. M. Tactile acuity is enhanced in blindness. J. Neurosci. 23, 3439–3445 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Van Boven, R. W., Hamilton, R. H., Kauffman, T., Keenan, J. P. & Pascual-Leone, A. Tactile spatial resolution in blind braille readers. Neurology 54, 2230–2236 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Gougoux, F. et al. Neuropsychology: pitch discrimination in the early blind. Nature 430, 309 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Gougoux, F., Zatorre, R. J., Lassonde, M., Voss, P. & Lepore, F. A functional neuroimaging study of sound localization: visual cortex activity predicts performance in early-blind individuals. PLoS Biol. 3, e27 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Lessard, N., Pare, M., Lepore, F. & Lassonde, M. Early-blind human subjects localize sound sources better than sighted subjects. Nature 395, 278–280 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Roder, B. et al. Improved auditory spatial tuning in blind humans. Nature 400, 162–166 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Voss, P. et al. Early- and late-onset blind individuals show supra-normal auditory abilities in far-space. Curr. Biol. 14, 1734–1738 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Fortin, M. et al. Wayfinding in the blind: larger hippocampal volume and supranormal spatial navigation. Brain 131, 2995–3005 (2008).

    Article  PubMed  Google Scholar 

  22. Niemeyer, W. & Starlinger, I. Do the blind hear better? Investigations on auditory processing in congenital or early acquired blindness. II. Central functions. Audiology 20, 510–515 (1981).

    Article  CAS  PubMed  Google Scholar 

  23. Amedi, A., Raz, N., Pianka, P., Malach, R. & Zohary, E. Early 'visual' cortex activation correlates with superior verbal memory performance in the blind. Nature Neurosci. 6, 758–766 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Roder, B., Rosler, F. & Neville, H. J. Auditory memory in congenitally blind adults: a behavioral-electrophysiological investigation. Brain Res. Cogn. Brain Res. 11, 289–303 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Pascual-Leone, A. & Torres, F. Plasticity of the sensorimotor cortex representation of the reading finger in Braille readers. Brain 116, 39–52 (1993).

    Article  PubMed  Google Scholar 

  26. Sterr, A. et al. Perceptual correlates of changes in cortical representation of fingers in blind multifinger Braille readers. J. Neurosci. 18, 4417–4423 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sterr, A. et al. Changed perceptions in Braille readers. Nature 391, 134–135 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Elbert, T. et al. Expansion of the tonotopic area in the auditory cortex of the blind. J. Neurosci. 22, 9941–9944 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stevens, A. A. & Weaver, K. E. Functional characteristics of auditory cortex in the blind. Behav. Brain Res. 196, 134–138 (2009).

    Article  PubMed  Google Scholar 

  30. Burgess, N., Maguire, E. A. & O'Keefe, J. The human hippocampus and spatial and episodic memory. Neuron 35, 625–641 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Veraart, C. et al. Glucose utilization in human visual cortex is abnormally elevated in blindness of early onset but decreased in blindness of late onset. Brain Res. 510, 115–121 (1990).

    Article  CAS  PubMed  Google Scholar 

  32. Wanet-Defalque, M. C. et al. High metabolic activity in the visual cortex of early blind human subjects. Brain Res. 446, 369–373 (1988).

    Article  CAS  PubMed  Google Scholar 

  33. Buchel, C. Functional neuroimaging studies of Braille reading: cross-modal reorganization and its implications. Brain 121, 1193–1194 (1998).

    Article  PubMed  Google Scholar 

  34. Burton, H. et al. Adaptive changes in early and late blind: a fMRI study of Braille reading. J. Neurophysiol. 87, 589–607 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Sadato, N. et al. Neural networks for Braille reading by the blind. Brain 121, 1213–1229 (1998).

    Article  PubMed  Google Scholar 

  36. Sadato, N. et al. Activation of the primary visual cortex by Braille reading in blind subjects. Nature 380, 526–528 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Pietrini, P. et al. Beyond sensory images: object-based representation in the human ventral pathway. Proc. Natl Acad. Sci. USA 101, 5658–5663 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ptito, M., Moesgaard, S. M., Gjedde, A. & Kupers, R. Cross-modal plasticity revealed by electrotactile stimulation of the tongue in the congenitally blind. Brain 128, 606–614 (2005).

    Article  PubMed  Google Scholar 

  39. Voss, P., Gougoux, F., Zatorre, R. J., Lassonde, M. & Lepore, F. Differential occipital responses in early- and late-blind individuals during a sound-source discrimination task. Neuroimage 40, 746–758 (2008).

    Article  PubMed  Google Scholar 

  40. Poirier, C. et al. Auditory motion perception activates visual motion areas in early blind subjects. Neuroimage 31, 279–285 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Kujala, T. et al. The role of blind humans' visual cortex in auditory change detection. Neurosci. Lett. 379, 127–131 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Weeks, R. et al. A positron emission tomographic study of auditory localization in the congenitally blind. J. Neurosci. 20, 2664–2672 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Roder, B., Stock, O., Bien, S., Neville, H. & Rosler, F. Speech processing activates visual cortex in congenitally blind humans. Eur. J. Neurosci. 16, 930–936 (2002).

    Article  PubMed  Google Scholar 

  44. Burton, H., Diamond, J. B. & McDermott, K. B. Dissociating cortical regions activated by semantic and phonological tasks: a FMRI study in blind and sighted people. J. Neurophysiol. 90, 1965–1982 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Burton, H., Snyder, A. Z., Diamond, J. B. & Raichle, M. E. Adaptive changes in early and late blind: a FMRI study of verb generation to heard nouns. J. Neurophysiol. 88, 3359–3371 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Amedi, A. et al. Shape conveyed by visual-to-auditory sensory substitution activates the lateral occipital complex. Nature Neurosci. 10, 687–689 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Arno, P. et al. Occipital activation by pattern recognition in the early blind using auditory substitution for vision. Neuroimage 13, 632–645 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Collignon, O., Lassonde, M., Lepore, F., Bastien, D. & Veraart, C. Functional cerebral reorganization for auditory spatial processing and auditory substitution of vision in early blind subjects. Cereb. Cortex 17, 457–465 (2007).

    Article  PubMed  Google Scholar 

  49. De Volder, A. G. et al. Changes in occipital cortex activity in early blind humans using a sensory substitution device. Brain Res. 826, 128–134 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Pascual-Leone, A., Walsh, V. & Rothwell, J. Transcranial magnetic stimulation in cognitive neuroscience—virtual lesion, chronometry, and functional connectivity. Curr. Opin. Neurobiol. 10, 232–237 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Cohen, L. G. et al. Functional relevance of cross-modal plasticity in blind humans. Nature 389, 180–183 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Hamilton, R. & Pascual-Leone, A. Cortical plasticity associated with Braille learning. Trends Cogn. Sci. 2, 168–174 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Kupers, R. et al. rTMS of the occipital cortex abolishes Braille reading and repetition priming in blind subjects. Neurology 68, 691–693 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Amedi, A., Floel, A., Knecht, S., Zohary, E. & Cohen, L. G. Transcranial magnetic stimulation of the occipital pole interferes with verbal processing in blind subjects. Nature Neurosci. 7, 1266–1270 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Merabet, L. B. et al. Functional recruitment of visual cortex for sound encoded object identification in the blind. Neuroreport 20, 132–138 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hamilton, R., Keenan, J. P., Catala, M. & Pascual-Leone, A. Alexia for Braille following bilateral occipital stroke in an early blind woman. Neuroreport 11, 237–240 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Merabet, L. et al. Feeling by sight or seeing by touch? Neuron 42, 173–179 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Levanen, S. & Hamdorf, D. Feeling vibrations: enhanced tactile sensitivity in congenitally deaf humans. Neurosci. Lett. 301, 75–77 (2001). References 58–62 describe superior performance on sensory tasks in the deaf.

    Article  CAS  PubMed  Google Scholar 

  59. Arnold, P. & Murray, C. Memory for faces and objects by deaf and hearing signers and hearing nonsigners. J. Psycholinguist. Res. 27, 481–497 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. McCullough, S. & Emmorey, K. Face processing by deaf ASL signers: evidence for expertise in distinguished local features. J. Deaf Stud. Deaf Educ. 2, 212–222 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Bavelier, D. et al. Visual attention to the periphery is enhanced in congenitally deaf individuals. J. Neurosci. 20, RC93 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dye, M. W., Hauser, P. C. & Bavelier, D. Is visual selective attention in deaf individuals enhanced or deficient? The case of the useful field of view. PLoS ONE 4, e5640 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Neville, H. J. & Lawson, D. Attention to central and peripheral visual space in a movement detection task: an event-related potential and behavioral study. II. Congenitally deaf adults. Brain Res. 405, 268–283 (1987).

    Article  CAS  PubMed  Google Scholar 

  64. Proksch, J. & Bavelier, D. Changes in the spatial distribution of visual attention after early deafness. J. Cogn. Neurosci. 14, 687–701 (2002).

    Article  PubMed  Google Scholar 

  65. Bosworth, R. G. & Dobkins, K. R. Visual field asymmetries for motion processing in deaf and hearing signers. Brain Cogn. 49, 170–181 (2002).

    Article  PubMed  Google Scholar 

  66. Bosworth, R. G. & Dobkins, K. R. The effects of spatial attention on motion processing in deaf signers, hearing signers, and hearing nonsigners. Brain Cogn. 49, 152–169 (2002).

    Article  PubMed  Google Scholar 

  67. Fine, I., Finney, E. M., Boynton, G. M. & Dobkins, K. R. Comparing the effects of auditory deprivation and sign language within the auditory and visual cortex. J. Cogn. Neurosci. 17, 1621–1637 (2005).

    Article  PubMed  Google Scholar 

  68. Levanen, S. Neuromagnetic studies of human auditory cortex function and reorganization. Scand. Audiol. Suppl. 49, 1–6 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Auer, E. T. Jr, Bernstein, L. E., Sungkarat, W. & Singh, M. Vibrotactile activation of the auditory cortices in deaf versus hearing adults. Neuroreport 18, 645–648 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  70. MacSweeney, M. et al. Neural systems underlying British Sign Language and audio-visual English processing in native users. Brain 125, 1583–1593 (2002).

    Article  PubMed  Google Scholar 

  71. Nishimura, H. et al. Sign language 'heard' in the auditory cortex. Nature 397, 116 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Petitto, L. A. et al. Speech-like cerebral activity in profoundly deaf people processing signed languages: implications for the neural basis of human language. Proc. Natl Acad. Sci. USA 97, 13961–13966 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Finney, E. M., Clementz, B. A., Hickok, G. & Dobkins, K. R. Visual stimuli activate auditory cortex in deaf subjects: evidence from MEG. Neuroreport 14, 1425–1427 (2003).

    Article  PubMed  Google Scholar 

  74. Finney, E. M., Fine, I. & Dobkins, K. R. Visual stimuli activate auditory cortex in the deaf. Nature Neurosci. 4, 1171–1173 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Bavelier, D. et al. Impact of early deafness and early exposure to sign language on the cerebral organization for motion processing. J. Neurosci. 21, 8931–8942 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Neville, H. J. & Lawson, D. Attention to central and peripheral visual space in a movement detection task. III. Separate effects of auditory deprivation and acquisition of a visual language. Brain Res. 405, 284–294 (1987).

    Article  CAS  PubMed  Google Scholar 

  77. Atkinson, J., Marshall, J., Woll, B. & Thacker, A. Testing comprehension abilities in users of British Sign Language following CVA. Brain Lang. 94, 233–248 (2005).

    Article  PubMed  Google Scholar 

  78. Hickok, G., Love-Geffen, T. & Klima, E. S. Role of the left hemisphere in sign language comprehension. Brain Lang. 82, 167–178 (2002).

    Article  PubMed  Google Scholar 

  79. Hickok, G., Klima, E., Kritchevsky, M. & Bellugi, U. A case of 'sign blindness' following left occipital damage in a deaf signer. Neuropsychologia 33, 1597–1606 (1995).

    Article  CAS  PubMed  Google Scholar 

  80. Saito, K., Otsuki, M. & Ueno, S. Sign language aphasia due to left occipital lesion in a deaf signer. Neurology 69, 1466–1468 (2007).

    Article  PubMed  Google Scholar 

  81. Kosslyn, S. M. et al. The role of area 17 in visual imagery: convergent evidence from PET and rTMS. Science 284, 167–170 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. McGuire, P. K. et al. Functional anatomy of inner speech and auditory verbal imagery. Psychol. Med. 26, 29–38 (1996).

    Article  CAS  PubMed  Google Scholar 

  83. Obretenova, S., Halko, M. A., Plow, E. B., Pascual-Leone, A. & Merabet, L. B. Neuroplasticity associated with tactile language communication in a deaf-blind subject. Front. Hum. Neurosci. (in the press).

  84. Bavelier, D. & Neville, H. J. Cross-modal plasticity: where and how? Nature Rev. Neurosci. 3, 443–452 (2002).

    Article  CAS  Google Scholar 

  85. Schroeder, C. E. et al. Anatomical mechanisms and functional implications of multisensory convergence in early cortical processing. Int. J. Psychophysiol. 50, 5–17 (2003). References 85–94 report key findings from animal studies of crossmodal neuroplasticity.

    Article  PubMed  Google Scholar 

  86. Rauschecker, J. P. & Kniepert, U. Auditory localization behaviour in visually deprived cats. Eur. J. Neurosci. 6, 149–160 (1994).

    Article  CAS  PubMed  Google Scholar 

  87. King, A. J. & Parsons, C. H. Improved auditory spatial acuity in visually deprived ferrets. Eur. J. Neurosci. 11, 3945–3956 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Rauschecker, J. P. & Korte, M. Auditory compensation for early blindness in cat cerebral cortex. J. Neurosci. 13, 4538–4548 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Korte, M. & Rauschecker, J. P. Auditory spatial tuning of cortical neurons is sharpened in cats with early blindness. J. Neurophysiol. 70, 1717–1721 (1993).

    Article  CAS  PubMed  Google Scholar 

  90. Wallace, M. T., Carriere, B. N., Perrault, T. J. Jr, Vaughan, J. W. & Stein, B. E. The development of cortical multisensory integration. J. Neurosci. 26, 11844–11849 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wallace, M. T. & Stein, B. E. Early experience determines how the senses will interact. J. Neurophysiol. 97, 921–926 (2007).

    Article  PubMed  Google Scholar 

  92. Carriere, B. N. et al. Visual deprivation alters the development of cortical multisensory integration. J. Neurophysiol. 98, 2858–2867 (2007).

    Article  PubMed  Google Scholar 

  93. Rauschecker, J. P. Auditory cortical plasticity: a comparison with other sensory systems. Trends Neurosci. 22, 74–80 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Weinberger, N. M. Dynamic regulation of receptive fields and maps in the adult sensory cortex. Annu. Rev. Neurosci. 18, 129–158 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kral, A., Schroder, J. H., Klinke, R. & Engel, A. K. Absence of cross-modal reorganization in the primary auditory cortex of congenitally deaf cats. Exp. Brain Res. 153, 605–613 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Kral, A. Unimodal and cross-modal plasticity in the 'deaf' auditory cortex. Int. J. Audiol. 46, 479–493 (2007).

    Article  PubMed  Google Scholar 

  97. King, A. J. & Nelken, I. Unraveling the principles of auditory cortical processing: can we learn from the visual system? Nature Neurosci. 12, 698–701 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Hall, A. J. & Lomber, S. G. Auditory cortex projections target the peripheral field representation of primary visual cortex. Exp. Brain Res. 190, 413–430 (2008).

    Article  PubMed  Google Scholar 

  99. Falchier, A., Clavagnier, S., Barone, P. & Kennedy, H. Anatomical evidence of multimodal integration in primate striate cortex. J. Neurosci. 22, 5749–5759 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rockland, K. S. & Ojima, H. Multisensory convergence in calcarine visual areas in macaque monkey. Int. J. Psychophysiol. 50, 19–26 (2003).

    Article  PubMed  Google Scholar 

  101. Cappe, C. & Barone, P. Heteromodal connections supporting multisensory integration at low levels of cortical processing in the monkey. Eur. J. Neurosci. 22, 2886–2902 (2005).

    Article  PubMed  Google Scholar 

  102. Wang, Y., Celebrini, S., Trotter, Y. & Barone, P. Visuo-auditory interactions in the primary visual cortex of the behaving monkey: electrophysiological evidence. BMC Neurosci. 9, 79 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Fu, K. M. et al. Auditory cortical neurons respond to somatosensory stimulation. J. Neurosci. 23, 7510–7515 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wittenberg, G. F., Werhahn, K. J., Wassermann, E. M., Herscovitch, P. & Cohen, L. G. Functional connectivity between somatosensory and visual cortex in early blind humans. Eur. J. Neurosci. 20, 1923–1927 (2004).

    Article  PubMed  Google Scholar 

  105. Zangaladze, A., Epstein, C. M., Grafton, S. T. & Sathian, K. Involvement of visual cortex in tactile discrimination of orientation. Nature 401, 587–590 (1999).

    Article  CAS  PubMed  Google Scholar 

  106. Merabet, L. B. et al. Rapid and reversible recruitment of early visual cortex for touch. PLoS ONE 3, e3046 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Pascual-Leone, A., Amedi, A., Fregni, F. & Merabet, L. B. The plastic human brain cortex. Annu. Rev. Neurosci. 28, 377–401 (2005). Review comparing neuroplasticity in both sensory and motor systems, including a discussion of possible underlying neurophysiological mechanisms.

    Article  CAS  PubMed  Google Scholar 

  108. Wiesel, T. N. & Hubel, D. H. Single-cell responses in striate cortex of kittens deprived of vision in one eye. J. Neurophysiol. 26, 1003–1017 (1963). Classic study of visual deprivation highlighting the importance of critical periods.

    Article  CAS  PubMed  Google Scholar 

  109. Hensch, T. K. Critical period plasticity in local cortical circuits. Nature Rev. Neurosci. 6, 877–888 (2005).

    Article  CAS  Google Scholar 

  110. Cohen, L. G. et al. Period of susceptibility for cross-modal plasticity in the blind. Ann. Neurol. 45, 451–460 (1999).

    Article  CAS  PubMed  Google Scholar 

  111. Sadato, N., Okada, T., Honda, M. & Yonekura, Y. Critical period for cross-modal plasticity in blind humans: a functional MRI study. Neuroimage 16, 389–400 (2002).

    Article  PubMed  Google Scholar 

  112. Fieger, A., Roder, B., Teder-Salejarvi, W., Hillyard, S. A. & Neville, H. J. Auditory spatial tuning in late-onset blindness in humans. J. Cogn. Neurosci. 18, 149–157 (2006).

    Article  PubMed  Google Scholar 

  113. Harrison, R. V., Gordon, K. A. & Mount, R. J. Is there a critical period for cochlear implantation in congenitally deaf children? Analyses of hearing and speech perception performance after implantation. Dev. Psychobiol. 46, 252–261 (2005).

    Article  PubMed  Google Scholar 

  114. Kos, M. I., Deriaz, M., Guyot, J. P. & Pelizzone, M. What can be expected from a late cochlear implantation? Int. J. Pediatr. Otorhinolaryngol. 73, 189–193 (2009).

    Article  PubMed  Google Scholar 

  115. Zhou, X. & Merzenich, M. M. Intensive training in adults refines A1 representations degraded in an early postnatal critical period. Proc. Natl Acad. Sci. USA 104, 15935–15940 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhou, X. & Merzenich, M. M. Developmentally degraded cortical temporal processing restored by training. Nature Neurosci. 12, 26–28 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Sterr, A., Green, L. & Elbert, T. Blind Braille readers mislocate tactile stimuli. Biol. Psychol. 63, 117–127 (2003).

    Article  PubMed  Google Scholar 

  118. Ptito, M. et al. TMS of the occipital cortex induces tactile sensations in the fingers of blind Braille readers. Exp. Brain Res. 184, 193–200 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Kupers, R. et al. Transcranial magnetic stimulation of the visual cortex induces somatotopically organized qualia in blind subjects. Proc. Natl Acad. Sci. USA 103, 13256–13260 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Gregory, R. L. Seeing after blindness. Nature Neurosci. 6, 909–910 (2003). With reference 125, this paper describes historical and modern sight restoration surgeries and their behavioural consequences.

    Article  CAS  PubMed  Google Scholar 

  121. Senden, M. V. Space and Sight: the Perception of Space and Shape in the Congenitally Blind Before and After Operation (Free Press, Glencoe, Illinois, 1960).

    Google Scholar 

  122. Fine, I., Smallman, H. S., Doyle, P. & MacLeod, D. I. Visual function before and after the removal of bilateral congenital cataracts in adulthood. Vision Res. 42, 191–210 (2002).

    Article  PubMed  Google Scholar 

  123. Fine, I. et al. Long-term deprivation affects visual perception and cortex. Nature Neurosci. 6, 915–916 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Ostrovsky, Y., Andalman, A. & Sinha, P. Vision following extended congenital blindness. Psychol. Sci. 17, 1009–1014 (2006).

    Article  PubMed  Google Scholar 

  125. Saenz, M., Lewis, L. B., Huth, A. G., Fine, I. & Koch, C. Visual motion area MT+/V5 responds to auditory motion in human sight-recovery subjects. J. Neurosci. 28, 5141–5148 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Mandavilli, A. Visual neuroscience: look and learn. Nature 441, 271–272 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Bavelier, D., Dye, M. W. & Hauser, P. C. Do deaf individuals see better? Trends Cogn. Sci. 10, 512–518 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Giraud, A. L. & Lee, H. J. Predicting cochlear implant outcome from brain organisation in the deaf. Restor. Neurol. Neurosci. 25, 381–390 (2007).

    PubMed  Google Scholar 

  129. Lee, D. S. et al. Cross-modal plasticity and cochlear implants. Nature 409, 149–150 (2001).

    Article  CAS  PubMed  Google Scholar 

  130. Giraud, A. L., Price, C. J., Graham, J. M., Truy, E. & Frackowiak, R. S. Cross-modal plasticity underpins language recovery after cochlear implantation. Neuron 30, 657–663 (2001).

    Article  CAS  PubMed  Google Scholar 

  131. Rouger, J. et al. Evidence that cochlear-implanted deaf patients are better multisensory integrators. Proc. Natl Acad. Sci. USA 104, 7295–7300 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Champoux, F., Lepore, F., Gagne, J. P. & Theoret, H. Visual stimuli can impair auditory processing in cochlear implant users. Neuropsychologia 47, 17–22 (2009).

    Article  PubMed  Google Scholar 

  133. Merabet, L. B., Rizzo, J. F., Amedi, A., Somers, D. C. & Pascual-Leone, A. What blindness can tell us about seeing again: merging neuroplasticity and neuroprostheses. Nature Rev. Neurosci. 6, 71–77 (2005).

    Article  CAS  Google Scholar 

  134. Fox, K. Experience-dependent plasticity mechanisms for neural rehabilitation in somatosensory cortex. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 369–381 (2009).

    Article  PubMed  Google Scholar 

  135. World Health Organization. Visual impairment and blindness. World Health Organization [online], (2009).

  136. World Health Organization. Deafness and hearing impairment. World Health Organization [online], (2006).

  137. Brennan, M. & Bally, S. J. Psychosocial adaptations to dual sensory loss in middle and late adulthood. Trends Amplif. 11, 281–300 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Sadato, N., Okada, T., Kubota, K. & Yonekura, Y. Tactile discrimination activates the visual cortex of the recently blind naive to Braille: a functional magnetic resonance imaging study in humans. Neurosci. Lett. 359, 49–52 (2004).

    Article  CAS  PubMed  Google Scholar 

  139. Collignon, O., Voss, P., Lassonde, M. & Lepore, F. Cross-modal plasticity for the spatial processing of sounds in visually deprived subjects. Exp. Brain Res. 192, 343–358 (2009).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

L.B.M. is supported by a K 23 EY016131 award from the National Eye Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lotfi B. Merabet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Berenson-Allen Center for Noninvasive Brain Stimulation

Glossary

Cooperative advantage

With regards to multisensory integration, refers to the interaction of sensory information from the different sensory modalities that can lead to an enhanced perceptual experience.

Neuroplastic changes

The ability of the nervous system to change its functional and structural organization in response to development, experience, the environment, damage or insult.

N1 potential

A large negative-direction evoked potential (measured by electroencephalography) detected over the fronto-central region of the scalp and peaking between 80 and 120 ms after the onset of a stimulus (typically auditory). This potential has been found to be sensitive to features of sounds associated with speech.

Sensory substitution device

(SSD). A device that transforms the characteristics of one sensory modality (for example, vision) into stimuli that can be perceived by another sensory modality (for example, touch or hearing). This strategy is often used in assistive technology to access sensory information normally perceived by an impaired sensory modality by using the remaining intact senses.

Alexia

A neurological disorder characterized by the loss of the ability to read. Alexia typically occurs following damage to specific language-relevant areas of the brain (particularly within the left hemisphere) as well as the occipital and parietal lobes.

Aphasia

A neurological disorder characterized by impaired expression and understanding of language, as well as reading and writing. It is usually the result of damage to areas of the brain involved with language processing.

Usher syndrome

A relatively rare genetic disorder with clinical subtypes characterizing the degree of severity and a leading cause of combined deafness and blindness. Hearing loss is associated with a defective inner ear whereas the visual loss is associated with degeneration of retinal cell function.

Top-down

Pertaining to information processing strategies, a top-down approach describes the flow of sensory information from higher-order cortical areas to lower-order processing levels. This is opposite to 'bottom-up' processing, in which information being processed from lower-order regions flows to higher-order areas of sensory cortex.

Cochlear implant

A surgically implanted electronic device that provides the sense of sound in individuals with profound hearing loss. The device works by electrically stimulating nerve fibres of the cochlea to transmit sensory information provided by external components including a microphone and speech processor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merabet, L., Pascual-Leone, A. Neural reorganization following sensory loss: the opportunity of change. Nat Rev Neurosci 11, 44–52 (2010). https://doi.org/10.1038/nrn2758

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2758

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing