Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

TrkB signalling pathways in LTP and learning

Key Points

  • TrkB, a neurotrophin receptor tyrosine kinase well known for its functions during nervous system development, has recently emerged as a potent regulator of hippocampal long-term potentiation (LTP) and learning.

  • The signalling pathways that mediate the involvement of TrkB in hippocampal LTP have been dissected genetically. Analyses of mouse models in which a single phosphorylation site on the TrkB receptor was mutated have revealed that signalling through the phospholipase Cγ (PLCγ) site of TrkB, but not the Shc adaptor protein site, is important for both the early and the late phases of hippocampal LTP. Furthermore, point mutations at the PLCγ site impaired the Ca2+-dependent signalling pathway but not mitogen-activated protein kinase activation and nuclear translocation, implicating a novel pathway by which TrkB activates cyclic AMP-responsive element-binding protein (CREB) through the PLCγ site as being responsible for the hippocampal synaptic plasticity downstream of TrkB.

  • The PLCγ site-activated pathways of TrkB have also been shown to underlie both associative learning and LTP triggered at the CA3–CA1 synapse in conscious mice. These experiments are the first to investigate whether the molecular pathways required for learning are also those that generate LTP in a mouse while it is learning a task.

  • Most of the effects of TrkB on synaptic plasticity seem to occur through modulation of ion channel properties through crosstalk between TrkB-activated signalling (either by brain-derived neurotrophic factor or occurring in a neurotrophin-independent manner) and pathways that underlie plasticity at glutamatergic synapses.

  • Given the findings discussed here, the possibility of manipulating signalling downstream of TrkB to enhance learning should be explored.

Abstract

Understanding the mechanisms that underlie learning is one of the most fascinating and central aims of neurobiological research. Hippocampal long-term potentiation (LTP) is widely regarded as a prime candidate for the cellular mechanism of learning. The receptor tyrosine kinase TrkB (also known as NTRK2), known primarily for its function during PNS and CNS development, has emerged in recent years as a potent regulator of hippocampal LTP. Here I describe efforts to understand the signalling pathways and molecular mechanisms that underlie the involvement of TrkB in LTP and learning.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Major TrkB-signalling-activated pathways.
Figure 2: Interactions between TrkB signalling and glutamate receptors.

Similar content being viewed by others

References

  1. Malenka, R. C. The long-term potential of LTP. Nature Rev. Neurosci. 4, 923–926 (2003).

    CAS  Google Scholar 

  2. Lynch, M. A. Long-term potentiation and memory. Physiol. Rev. 84, 87–136 (2004).

    CAS  PubMed  Google Scholar 

  3. Malenka, R. C. & Bear, M. F. LTP and LTD: an embarrassment of riches. Neuron 44, 5–21 (2004).

    CAS  PubMed  Google Scholar 

  4. Sweatt, J. & Mem, L. Toward a molecular explanation for long-term potentiation. Learn. Mem. 6, 399–416 (1999).

    CAS  PubMed  Google Scholar 

  5. Kandel, E. R. The molecular biology of memory storage: a dialogue between genes and synapses. Science 294, 1030–1038 (2001).

    CAS  PubMed  Google Scholar 

  6. Schinder, A. F. & Poo, M. The neurotrophin hypothesis for synaptic plasticity. Trends Neurosci. 23, 639–645 (2000).

    CAS  PubMed  Google Scholar 

  7. Lu, B. & Gottschalk, W. Modulation of hippocampal synaptic transmission and plasticity by neurotrophins. Prog. Brain Res. 128, 231–241 (2000).

    CAS  PubMed  Google Scholar 

  8. Bramham, C. R. & Messaoudi, E. BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog. Neurobiol. 76, 99–125 (2005).

    CAS  PubMed  Google Scholar 

  9. Lu, Y., Christian, K. & Lu, B. BDNF: a key regulator for protein synthesis-dependent LTP and long-term memory? Neurobiol. Learn. Mem. 89, 312–323 (2008).

    CAS  PubMed  Google Scholar 

  10. Bliss, T. V. P. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

    CAS  PubMed  Google Scholar 

  11. Malenka, R. C. & Nicoll, R. A. Long-term potentiation — a decade of progress? Science 285, 1870–1874 (1999).

    CAS  PubMed  Google Scholar 

  12. Lisman, J., Schulman, H. & Cline, H. The molecular basis of CaMKII function in synaptic and behavioural memory. Nature Rev. Neurosci. 3, 175–190 (2002).

    CAS  Google Scholar 

  13. Malenka, R. C. Synaptic plasticity and AMPA receptor trafficking. Ann. NY Acad. Sci. 1003, 1–11 (2003).

    CAS  PubMed  Google Scholar 

  14. Shepherd, J. D. & Huganir, R. L. The cell biology of synaptic plasticity: AMPA receptor trafficking. Annu. Rev. Cell Dev. Biol. 23, 613–643 (2007).

    CAS  PubMed  Google Scholar 

  15. Lin, D. T. et al. Regulation of AMPA receptor extrasynaptic insertion by 4.1N, phosphorylation and palmitoylation. Nature Neurosci. 12, 879–887 (2009).

    CAS  PubMed  Google Scholar 

  16. Grosshans, D. R., Clayton, D. A., Coultrap, S. J. & Browning, M. D. LTP leads to rapid surface expression of NMDA but not AMPA receptors in adult rat CA1. Nature Neurosci. 5, 27–33 (2002).

    CAS  PubMed  Google Scholar 

  17. Lau, C. G. & Zukin, R. S. NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nature Rev. Neurosci. 8, 413–426 (2007).

    CAS  Google Scholar 

  18. Stanton, P. K., Winterer, J., Zhang, X. L. & Müller, W. Imaging LTP of presynaptic release of FM1–43 from the rapidly recycling vesicle pool of Schaffer collateral–CA1 synapses in rat hippocampal slices. Eur. J. Neurosci. 22, 2451–2461 (2005).

    PubMed  Google Scholar 

  19. Magee, J. C. & Johnston, D. A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275, 209–213 (1997).

    CAS  PubMed  Google Scholar 

  20. Spruston, N., Schiller, Y., Stuart, G. & Sakmann, B. Activity-dependent action potential invasion and Ca2+ influx into hippocampal CA1 dendrites. Science 268, 297–300 (1995).

    CAS  PubMed  Google Scholar 

  21. Bi, G. Q. & Poo, M. M. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Schiller, J., Schiller, Y., Stuart, G. & Sakmann, B. Ca2+ action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons. J. Physiol. 505, 605–616 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Golding, N. L., Staff, N. P. & Spruston, N. Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature 418, 326–331 (2002).

    CAS  PubMed  Google Scholar 

  24. Remy, S. & Spruston, N. Dendritic spikes induce single-burst long-term potentiation. Proc. Natl Acad. Sci. USA 104, 17192–17197 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Morris, R. G. et al. Elements of a neurobiological theory of the hippocampus: the role of activity-dependent synaptic plasticity in memory. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358, 773–786 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Whitlock, J. R., Heynen, A. J., Shuler, M. G. & Bear, M. F. Learning induces long-term potentiation in the hippocampus. Science 313, 1093–1097 (2006). This study shows that the use of a one-trial inhibitory-avoidance learning task in rats produced the same changes in hippocampal glutamate receptors as induction of LTP with HFS.

    CAS  PubMed  Google Scholar 

  27. Sutton, M. A. & Schuman, E. M. Dendritic protein synthesis, synaptic plasticity, and memory. Cell 127, 49–58 (2006).

    CAS  PubMed  Google Scholar 

  28. Zhou, Y. et al. Requirement of TORC1 for late-phase long-term potentiation in the hippocampus. PLoS One 1, e16 (2006).

    PubMed  PubMed Central  Google Scholar 

  29. Thomas, G. M. & Huganir, R. L. MAPK cascade signalling and synaptic plasticity. Nature Rev. Neurosci. 5, 173–183 (2004).

    CAS  Google Scholar 

  30. Abraham, W. C. & Williams, J. M. Properties and mechanisms of LTP maintenance. Neuroscientist 6, 463–474 (2003).

    Google Scholar 

  31. Krucker, T., Siggins, G. R. & Halpain, S. Dynamic actin filaments are required for stable long-term potentiation (LTP) in area CA1 of the hippocampus. Proc. Natl Acad. Sci. USA 97, 6856–6861 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Fukazawa, Y. et al. Hippocampal LTP is accompanied by enhanced F-actin content within the dendritic spine that is essential for late LTP maintenance in vivo. Neuron 38, 447–460 (2003).

    CAS  PubMed  Google Scholar 

  33. Cunningham, M. E. & Greene, L. A. A function-structure model for NGF-activated TRK. EMBO J. 17, 7282–7293 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kavanaugh, W. M. & Williams, L. T. An alternative to SH2 domains for binding tyrosine-phosphorylated proteins. Science 266, 1862–1865 (1994).

    CAS  PubMed  Google Scholar 

  35. Kouhara, H. et al. A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway. Cell 89, 693–702 (1997).

    CAS  PubMed  Google Scholar 

  36. Meakin, S. O., MacDonald, J. I., Gryz, E. A., Kubu, C. J. & Verdi, J. M. The signaling adapter FRS-2 competes with Shc for binding to the nerve growth factor receptor TrkA: a model for discriminating proliferation and differentiation. J. Biol. Chem. 274, 9861–9870 (1999).

    CAS  PubMed  Google Scholar 

  37. Qian, X., Riccio, A., Zhang, Y. & Ginty, D. D. Identification and characterization of novel substrates of Trk receptors in developing neurons. Neuron 21, 1017–1029 (1998).

    CAS  PubMed  Google Scholar 

  38. Kaplan, D. R. & Miller, F. D. Neurotrophin signal transduction in the nervous system. Curr. Opin. Neurobiol. 10, 381–391 (2000).

    CAS  PubMed  Google Scholar 

  39. Huang, E. J. & Reichardt, L. F. Trk receptors: roles in neuronal signal transduction. Annu. Rev. Biochem. 72, 609–642 (2003).

    CAS  PubMed  Google Scholar 

  40. Wright, J. H. et al. A role for the SHP-2 tyrosine phosphatase in nerve growth-induced PC12 cell differentiation. Mol. Biol. Cell 8, 1575–1585 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hadari, Y. R., Kouhara, H., Lax, I. & Schlessinger, J. Binding of Shp2 tyrosine phosphatase to FRS2 is essential for fibroblast growth factor-induced PC12 cell differentiation. Mol. Cell. Biol. 18, 3966–3973 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Reichardt, L. F. Neurotrophin-regulated signalling pathways. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361, 1545–1564 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Holgado-Madruga, M., Moscatello, D. K., Emlet, D. R., Dieterich, R. & Wong, A. J. Grb2-associated binder-1 mediates phosphatidylinositol 3-kinase activation and the promotion of cell survival by nerve growth factor. Proc. Natl Acad. Sci. USA 94, 12419–12424 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Yamada, M. et al. Insulin receptor substrate (IRS)-1 and IRS-2 are tyrosine-phosphorylated and associated with phosphatidylinositol 3-kinase in response to brain-derived neurotrophic factor in cultured cerebral cortical neurons. J. Biol. Chem. 272, 30334–30339 (1997).

    CAS  PubMed  Google Scholar 

  45. Franke, T., Kaplan, D. R. & Cantley, L. C. Downstream AKTion blocks apoptosis. Cell 88, 435–437 (1997).

    CAS  PubMed  Google Scholar 

  46. Crowder, R. J. & Freeman, R. S. Phosphatidylinositol 3-kinase and Akt protein kinase are necessary and sufficient for the survival of nerve growth factor-dependent sympathetic neurons. J. Neurosci. 18, 2933–2943 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu, Y. & Rohrschneider, L. The gift of Gab. FEBS Lett. 515, 1–7 (2002).

    CAS  PubMed  Google Scholar 

  48. Gärtner, A. et al. Hippocampal long-term potentiation is supported by presynaptic and postsynaptic tyrosine receptor kinase B-mediated phospholipase Cγ signaling. J. Neurosci. 26, 3496–3504 (2006).

    PubMed  PubMed Central  Google Scholar 

  49. Gruart, A., Munoz, M. D. & Delgado-Garcia, J. M. Involvement of the CA3–CA1 synapse in the acquisition of associative learning in behaving mice. J. Neurosci. 26, 1077–1087 (2006). This study made a significant advance by showing an LTP-like increase in hippocampal synaptic responses in behaving mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Lessmann, V., Gottmann, K. & Malcangio, M. Neurotrophin secretion: current facts and future prospects. Prog. Neurobiol. 69, 341–374 (2003).

    CAS  PubMed  Google Scholar 

  51. Lu, B. BDNF and activity-dependent synaptic modulation. Learn. Mem. 10, 86–98 (2003).

    PubMed  PubMed Central  Google Scholar 

  52. Drake, C. T., Milner, T. A. & Patterson, S. L. Ultrastructural localization of full-length trkB immunoreactivity in rat hippocampus suggests multiple roles in modulating activity-dependent synaptic plasticity. J. Neurosci. 19, 8009–8026 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Patterson, S. L., Grover, L. M., Schwartzkroin, P. A. & Bothwell, M. Neurotrophin expression in rat hippocampal slices: a stimulus paradigm inducing LTP in CA1 evokes increases in BDNF and NT-3 mRNAs. Neuron 9, 1081–1088 (1992).

    CAS  PubMed  Google Scholar 

  54. Dragunow, M. et al. Brain-derived neurotrophic factor expression after long-term potentiation. Neurosci. Lett. 160, 232–236 (1993).

    CAS  PubMed  Google Scholar 

  55. Brigadski, T., Hartmann, M. & Lessmann, V. Differential vesicular targeting and time course of synaptic secretion of the mammalian neurotrophins. J. Neurosci. 25, 7601–7614 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Nakajima, T., Sato, M., Akaza, N. & Umezawa, Y. Cell-based fluorescent indicator to visualize brain-derived neurotrophic factor secreted from living neurons. ACS Chem. Biol. 3, 352–358 (2008).

    CAS  PubMed  Google Scholar 

  57. Kuczewski, N., Porcher, C., Lessmann, V., Medina, I. & Gaiarsa, J. L. Activity-dependent dendritic release of BDNF and biological consequences. Mol. Neurobiol. 39, 37–49 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Tanaka, J. et al. Protein synthesis and neurotrophin-dependent structural plasticity of single dendritic spines. Science 319, 1683–1687 (2008). This study shows that physiological synaptic signals induce the postsynaptic release of endogenous BDNF at the single-cell level.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Bibel, M. & Barde, Y. A. Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev. 14, 2919–2937 (2000).

    CAS  PubMed  Google Scholar 

  60. Minichiello, L. et al. Essential role for TrkB receptors in hippocampus-mediated learning. Neuron 24, 401–414 (1999).

    CAS  PubMed  Google Scholar 

  61. Korte, M. et al. Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc. Natl Acad. Sci. USA 92, 8856–8860 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Korte, M. et al. Virus-mediated gene transfer into hippocampal CA1 region restores long-term potentiation in brain-derived neurotrophic factor mutant mice. Proc. Natl Acad. Sci. USA 93, 12547–12552 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Patterson, S. et al. Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron 16, 1137–1145 (1996).

    CAS  PubMed  Google Scholar 

  64. Pozzo-Miller, L. D. et al. Impairments in high-frequency transmission, synaptic vesicle docking, and synaptic protein distribution in the hippocampus of BDNF knockout mice. J. Neurosci. 19, 4972–4983 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Figurov, A., Pozzo-Miller, L. D., Olafsson, P., Wang, T. & Lu, B. Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature 381, 706–709 (1996).

    CAS  PubMed  Google Scholar 

  66. Maisonpierre, P. C. et al. NT-3, BDNF, and NGF in the developing rat nervous system: parallel as well as reciprocal patterns of expression. Neuron 5, 501–509 (1990).

    CAS  PubMed  Google Scholar 

  67. Friedman, W. J., Olson, L. & Persson, H. Cells that express brain-derived neurotrophic factor mRNA in the developing postnatal rat brain. Eur. J. Neurosci. 7, 688–697 (1991).

    Google Scholar 

  68. Kramár, E. A. et al. A novel mechanism for the facilitation of theta-induced long-term potentiation by brain-derived neurotrophic factor. J. Neurosci. 24, 5151–5161 (2004).

    PubMed  PubMed Central  Google Scholar 

  69. Kang, H. & Schuman, E. M. Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science 267, 1658–1662 (1995).

    CAS  PubMed  Google Scholar 

  70. Korte, M., Kang, H., Bonhoeffer, T. & Schuman, E. A role for BDNF in the late-phase of hippocampal long-term potentiation. Neuropharmacology 37, 553–559 (1998).

    CAS  PubMed  Google Scholar 

  71. Xu, B. et al. The role of brain-derived neurotrophic factor receptors in the mature hippocampus: modulation of long-term potentiation through a presynaptic mechanism involving TrkB. J. Neurosci. 20, 6888–6897 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Minichiello, L. et al. Mechanisms of TrkB-mediated hippocampal long-term potentiation. Neuron 36, 121–137 (2002). This study discusses a genetic approach to identify the signalling pathways involved in TrkB-dependent LTP. Mice carrying a single amino acid change at a specific docking site have shown that the PLCγ docking site is necessary for the TrkB-dependent LTP functions.

    CAS  PubMed  Google Scholar 

  73. Poo, M. M. Neurotrophins as synaptic modulators. Nature Rev. Neurosci. 2, 24–32 (2001).

    CAS  Google Scholar 

  74. Messaoudi, E. et al. Sustained Arc/Arg3.1 synthesis controls long-term potentiation consolidation through regulation of local actin polymerization in the dentate gyrus in vivo. J. Neurosci. 27, 10445–10455 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Bekinschtein, P. et al. Persistence of long-term memory storage requires a late protein synthesis- and BDNF-dependent phase in the hippocampus. Neuron 53, 261–277 (2007).

    CAS  PubMed  Google Scholar 

  76. Kafitz, K. W., Rose, C. R., Thoenen, H. & Konnerth, A. Neurotrophin-evoked rapid exicitation through TrkB receptors. Nature 401, 918–921 (1999).

    CAS  PubMed  Google Scholar 

  77. Blum, R., Kafitz, K. W. & Konnerth, A. Neurotrophin-evoked depolarization requires the sodium channel NaV1.9. Nature 419, 687–693 (2002).

    CAS  PubMed  Google Scholar 

  78. Kovalchuk, Y., Hanse, E., Kafitz, K. W. & Konnerth, A. Postsynaptic induction of BDNF-mediated long-term potentiation. Science 295, 1729–1734 (2002).

    CAS  PubMed  Google Scholar 

  79. Barria, A., Muller, D., Derkach, V., Griffith, L. C. & Soderling, T. R. Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. Science 276, 2042–2045 (1997).

    CAS  PubMed  Google Scholar 

  80. Silva, A. J., Stevens, C. F., Tonegawa, S. & Wang, Y. Deficient hippocampal long-term potentiation in α-Ca2+-calmodulin kinase II mutant mice. Science 257, 201–206 (1992).

    CAS  PubMed  Google Scholar 

  81. Giese, K. P., Fedorov, N. B., Filipkowski, R. K. & Silva, A. J. Autophosphorylation at Thr286 of the α Ca2+-calmodulin kinase II in LTP and learning. Science 279, 870–873 (1998).

    CAS  PubMed  Google Scholar 

  82. Wayman, G. A., Lee, Y. S., Tokumitsu, H., Silva, A. & Soderling, T. R. Calmodulin-kinases: modulators of neuronal development and plasticity. Neuron 59, 914–931 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008).

    PubMed  Google Scholar 

  84. Sweatt, J. D. Mitogen-activated protein kinases in synaptic plasticity and memory. Curr. Opin. Neurobiol. 14, 311–317 (2004).

    CAS  PubMed  Google Scholar 

  85. Adams, P. & Sweatt, J. D. Molecular psychology: roles for the ERK MAP kinase cascade in memory. Annu. Rev. Pharmacol. Toxicol. 42, 135–163 (2002).

    CAS  PubMed  Google Scholar 

  86. Ying, S. W. et al. Brain-derived neurotrophic factor induces long-term potentiation in intact adult hippocampus: requirement for ERK activation coupled to CREB and upregulation of Arc synthesis. J. Neurosci. 22, 1532–1540 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Bekinschtein, P. et al. BDNF is essential to promote persistence of long-term memory storage. Proc. Natl Acad. Sci. USA 105, 2711–2716 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Patterson, S. L. et al. Some forms of cAMP-mediated long-lasting potentiation are associated with release of BDNF and nuclear translocation of phospho-MAP kinase. Neuron 32, 123–140 (2001).

    CAS  PubMed  Google Scholar 

  89. West, A. E. et al. Ca2+ regulation of neuronal gene expression. Proc. Natl Acad. Sci. USA 98, 11024–11031 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Finkbeiner, S. et al. CREB: a major mediator of neuronal neurotrophin responses. Neuron 19, 1031–1047 (1997).

    CAS  PubMed  Google Scholar 

  91. Korte, M., Minichiello, L., Klein, R. & Bonhoeffer, T. Shc-binding site in the TrkB receptor is not required for hippocampal long-term potentiation. Neuropharmacology 39, 717–724 (2000).

    CAS  PubMed  Google Scholar 

  92. Gruart, A., Sciarretta, C., Valenzuela-Harrington, M., Delgado- García, J. & Minichiello, L. Mutation at the TrkB-PLCγ docking site affects hippocampal LTP and associative learning in conscious mice. Learn. Mem. 14, 54–62 (2007). Provided the first evidence that a TrkB–PLCγ site-activated molecular pathway underlies both associative learning and LTP triggered at the CA3–CA1 hippocampal synapse.

    PubMed  PubMed Central  Google Scholar 

  93. Aoki, C. et al. Localization of brain-derived neurotrophic factor and TrkB receptors to postsynaptic densities of adult rat cerebral cortex. J. Neurosci. Res. 59, 454–463 (2000).

    CAS  PubMed  Google Scholar 

  94. Pereira, D. B. et al. Trkb receptors modulation of glutamate release is limited to a subset of nerve terminals in the adult rat hippocampus. J. Neurosci. Res. 83, 832–844 (2006).

    CAS  PubMed  Google Scholar 

  95. Tyler, W. J., Perrett, S. P. & Pozzo-Miller, L. D. The role of neurotrophins in neurotransmitter release. Neuroscientist 8, 524–531 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Pascual, M., Climent, E. & Guerri, C. BDNF induces glutamate release in cerebrocortical nerve terminals and in cortical astrocytes. Neuroreport 12, 2673–2677 (2001).

    CAS  PubMed  Google Scholar 

  97. Sala, R. et al. Nerve growth factor and brain-derived neurotrophic factor increase neurotransmitter release in the rat visual cortex. Eur. J. Neurosci. 10, 2185–2191 (1998).

    CAS  PubMed  Google Scholar 

  98. Carmignoto, G., Pizzorusso, T., Tia, S. & Vicini, S. Brain-derived neurotrophic factor and nerve growth factor potentiate excitatory synaptic transmission in the rat visual cortex. J. Physiol. 498, 153–164 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Lessmann, V. & Heumann, R. Modulation of unitary glutamatergic synapses by neurotrophin-4/5 or brain-derived neurotrophic factor in hippocampal microcultures: presynaptic enhancement depends on pre-established paired pulse facilitation. Neuroscience 86, 399–413 (1998).

    CAS  PubMed  Google Scholar 

  100. Li, Y. X., Zhang, Y., Lester, H. A., Schuman, E. M. & Davidson, N. Enhancement of neurotransmitter release induced by brain-derived neurotrophic factor in cultured hippocampal neurons. J. Neurosci. 18, 10231–10240 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Schinder, A. F., Berninger, B. & Poo, M. Postsynaptic target specificity of neurotrophin-induced presynaptic potentiation. Neuron 25, 151–163 (2000).

    CAS  PubMed  Google Scholar 

  102. Tyler, W. J. & Pozzo-Miller, L. D. BDNF enhances quantal neurotransmitter release and increases the number of docked vesicles at the active zones of hippocampal excitatory synapses. J. Neurosci. 21, 4249–4258 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Tyler, W. J. et al. BDNF increases release probability and the size of a rapidly recycling vesicle pool within rat hippocampal excitatory synapses. J. Physiol. 574, 787–803 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Li, Y. X. et al. Expression of a dominant negative TrkB receptor, T1, reveals a requirement for presynaptic signaling in BDNF-induced synaptic potentiation in cultured hippocampal neurons. Proc. Natl Acad. Sci. USA 95, 10884–10889 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Eide, F. F., Lowenstein, D. H. & Reichardt, L. F. Naturally occurring truncated trkB receptors have dominant inhibitory effects on brain-derived neurotrophic factor signaling. J. Neurosci. 16, 3123–3129 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Jovanovic, J. N., Czernik, A. J., Fienberg, A. A., Greengard, P. & Sihra, T. S. Synapsins as mediators of BDNF-enhanced neurotransmitter release. Nature Neurosci. 3, 323–329 (2000).

    CAS  PubMed  Google Scholar 

  107. Yano, H. et al. BDNF-mediated neurotransmission relies upon a myosin VI motor complex. Nature Neurosci. 9, 1009–1018 (2006).

    CAS  PubMed  Google Scholar 

  108. Kang, H., Jia, L. Z., Suh, K. Y., Tang, L. & Schuman, E. M. Determinants of BDNF-induced hippocampal synaptic plasticity: role of the Trk B receptor and the kinetics of neurotrophin delivery. Learn. Mem. 3, 188–196 (1996).

    CAS  PubMed  Google Scholar 

  109. Tanaka, T., Saito, H. & Matsuki, N. Inhibition of GABAA synaptic responses by brain-derived neurotrophic factor (BDNF) in rat hippocampus. J. Neurosci. 17, 2959–2966 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Kang, H., Welcher, A. A., Shelton, D. & Schuman, E. M. Neurotrophins and time: different roles for TrkB signaling in hippocampal long-term potentiation. Neuron 19, 653–664 (1997).

    CAS  PubMed  Google Scholar 

  111. Frerking, M., Malenka, R. C. & Nicoll, R. A. Brain-derived neurotrophic factor (BDNF) modulates inhibitory, but not excitatory, transmission in the CA1 region of the hippocampus. J. Neurophysiol. 80, 3383–3386 (1998).

    CAS  PubMed  Google Scholar 

  112. Levine, E. S., Dreyfus, C. F., Black, I. B. & Plummer, M. R. Brain-derived neurotrophic factor rapidly enhances synaptic transmission in hippocampal neurons via postsynaptic tyrosine kinase receptors. Proc. Natl Acad. Sci. USA 92, 8074–8077 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Lin, S. Y. et al. BDNF acutely increases tyrosine phosphorylation of the NMDA receptor subunit 2B in cortical and hippocampal postsynaptic densities. Brain Res. Mol. Brain Res. 55, 20–27 (1998).

    CAS  PubMed  Google Scholar 

  114. Levine, E. S., Crozier, R. A., Black, I. B. & Plummer, M. R. Brain-derived neurotrophic factor modulates hippocampal synaptic transmission by increasing N-methyl-D-aspartic acid receptor activity. Proc. Natl Acad. Sci. USA 95, 10235–10239 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Mizuno, M., Yamada, K., He, J., Nakajima, A. & Nabeshima, T. Involvement of BDNF receptor TrkB in spatial memory formation. Learn. Mem. 10, 108–115 (2003).

    PubMed  PubMed Central  Google Scholar 

  116. Caldeira, M. V. et al. BDNF regulates the expression and traffic of NMDA receptors in cultured hippocampal neurons. Mol. Cell. Neurosci. 35, 208–219 (2007).

    CAS  PubMed  Google Scholar 

  117. Carvalho, A. L., Caldeira, M. V., Santos, S. D. & Duarte, C. B. Role of the brain-derived neurotrophic factor at glutamatergic synapses. Br. J. Pharmacol. 153 (Suppl. 1), S310–S324 (2008).

    CAS  PubMed  Google Scholar 

  118. Caldeira, M. V. et al. Brain-derived neurotrophic factor regulates the expression and synaptic delivery of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunits in hippocampal neurons. J. Biol. Chem. 282, 12619–12628 (2007).

    CAS  PubMed  Google Scholar 

  119. Nakata, H. & Nakamura, S. Brain-derived neurotrophic factor regulates AMPA receptor trafficking to post-synaptic densities via IP3R and TRPC Ca2+ signaling. FEBS Lett. 581, 2047–2054 (2007).

    CAS  PubMed  Google Scholar 

  120. Klein, R., Parada, L. F., Coulier, F. & Barbacid, M. trkB, a novel tyrosine protein kinase receptor expressed during mouse development. EMBO J. 8, 3701–3709 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Klein, R., Conway, D., Parada, L. F. & Barbacid, M. The trkB tyrosine protein kinase gene codes for a second neurogenic receptor that lacks the catalytic kinase domain. Cell 61, 647–656 (1990).

    CAS  PubMed  Google Scholar 

  122. Dudek, S. M. & Bear, M. F. Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proc. Natl Acad. Sci. USA 89, 4363–4367 (1992). Provided the first evidence for NMDAR-dependent hippocampal LTD.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Mulkey, R. M. & Malenka, R. C. Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus. Neuron 9, 967–975 (1992).

    CAS  PubMed  Google Scholar 

  124. Nägerl, U. V., Eberhorn, N., Cambridge, S. B. & Bonhoeffer, T. Bidirectional activity-dependent morphological plasticity in hippocampal neurons. Neuron 44, 759–767 (2004).

    PubMed  Google Scholar 

  125. Zhou, Q., Homma, K. J. & Poo, M. M. Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron 44, 749–757 (2004).

    CAS  PubMed  Google Scholar 

  126. Hsieh, H. et al. AMPAR removal underlies Aβ-induced synaptic depression and dendritic spine loss. Neuron 52, 831–843 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Pang, P. T. et al. Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science 306, 487–491 (2004).

    CAS  PubMed  Google Scholar 

  128. Lu, B. Pro-region of neurotrophins: role in synaptic modulation. Neuron 39, 735–738 (2003).

    CAS  PubMed  Google Scholar 

  129. Lee, R., Kermani, P., Teng, K. K. & Hempstead, B. L. Regulation of cell survival by secreted proneurotrophins. Science 294, 1945–1948 (2001).

    CAS  PubMed  Google Scholar 

  130. Teng, H. K. et al. ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J. Neurosci. 25, 5455–5463 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Dechant, G. & Barde, Y. A. The neurotrophin receptor p75NTR: novel functions and implications for diseases of the nervous system. Nature Neurosci. 5, 1131–1136 (2002).

    CAS  PubMed  Google Scholar 

  132. Woo, N. H. et al. Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nature Neurosci. 8, 1069–1077 (2005).

    CAS  PubMed  Google Scholar 

  133. Rösch, H., Schweigreiter, R., Bonhoeffer, T., Barde, Y. A. & Korte, M. The neurotrophin receptor p75NTR modulates long-term depression and regulates the expression of AMPA receptor subunits in the hippocampus. Proc. Natl Acad. Sci. USA 102, 7362–7367 (2005).

    PubMed  PubMed Central  Google Scholar 

  134. Zagrebelsky, M. et al. The p75 neurotrophin receptor negatively modulates dendrite complexity and spine density in hippocampal neurons. J. Neurosci. 25, 9989–9999 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Matsumoto, T. et al. Biosynthesis and processing of endogenous BDNF: CNS neurons store and secrete BDNF, not pro-BDNF. Nature Neurosci. 11, 131–133 (2008).

    CAS  PubMed  Google Scholar 

  136. Yang, J. et al. Neuronal release of proBDNF. Nature Neurosci. 12, 113–115 (2009).

    PubMed  Google Scholar 

  137. Lavond, D. G., Kim, J. J. & Thompson, R. F. Mammalian brain substrates of aversive classical conditioning. Annu. Rev. Psychol. 44, 317–342 (1993).

    CAS  PubMed  Google Scholar 

  138. LeDoux, J. E. The Emotional Brain: The Mysterious Underpinnings of Emotional Life (Simon & Schuster, 1996).

    Google Scholar 

  139. Davis, M. Neurobiology of fear responses: the role of the amygdala. J. Neuropsychiatry Clin. Neurosci. 9, 382–402 (1997).

    CAS  PubMed  Google Scholar 

  140. Fendt, M. & Fanselow, M. S. The neuroanatomical and neurochemical basis of conditioned fear. Neurosci. Biobehav. Rev. 23, 743–760 (1999).

    CAS  PubMed  Google Scholar 

  141. Rogan, M. T., Staubli, U. V. & LeDoux, J. E. Fear conditioning induces associative long-term potentiation in the amygdala. Nature 390, 604–607 (1997).

    CAS  PubMed  Google Scholar 

  142. McKernan, M. G. & Shinnick-Gallagher, P. Fear conditioning induces a lasting potentiation of synaptic currents in vitro. Nature 390, 607–611 (1997).

    CAS  PubMed  Google Scholar 

  143. Rattiner, L. M., Davis, M., French, C. T. & Ressler, K. J. Brain-derived neurotrophic factor and tyrosine kinase receptor B involvement in amygdala-dependent fear conditioning. J. Neurosci. 24, 4796–4806 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Ou, L. C. & Gean, P. W. Regulation of amygdala-dependent learning by brain-derived neurotrophic factor is mediated by extracellular signal-regulated kinase and phosphatidylinositol-3-kinase. Neuropsychopharmacology 31, 287–296 (2006).

    CAS  PubMed  Google Scholar 

  145. Graham, D. L. et al. Dynamic BDNF activity in nucleus accumbens with cocaine use increases self-administration and relapse. Nature Neurosci. 10, 1029–1037 (2007).

    CAS  PubMed  Google Scholar 

  146. Graham, D. L. et al. Tropomyosin-related kinase B in the mesolimbic dopamine system: region-specific effects on cocaine reward. Biol. Psychiatry 65, 696–701 (2009).

    CAS  PubMed  Google Scholar 

  147. Russo, S. J., Mazei-Robison, M. S., Ables, J. L. & Nestler, E. J. Neurotrophic factors and structural plasticity in addiction. Neuropharmacology 56 (Suppl. 1), 73–82 (2009).

    CAS  PubMed  Google Scholar 

  148. Medina, D. L. et al. TrkB regulates neocortex formation through the Shc/PLCγ-mediated control of neuronal migration. EMBO J. 23, 3803–3814 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Li, H.-S., Shawn Xu, X. Z. & Montell, C. Activation of a TRPC3-dependent cation current through the neurotrophin BDNF. Neuron 24, 261–273 (1999).

    CAS  PubMed  Google Scholar 

  150. Amaral, M. D. & Pozzo-Miller, L. TRPC3 channels are necessary for brain-derived neurotrophic factor to activate a nonselective cationic current and to induce dendritic spine formation. J. Neurosci. 27, 5179–5189 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank members of the laboratory for helpful discussions and comments. This work was supported in part by grants from the European Union (EU FP6 MEMORIES, 037831; EU FP6 StemStroke, 037526).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary information S1 (box)

TrkB signalling pathways in LTP and learning (PDF 656 kb)

Related links

Related links

FURTHER INFORMATION

Liliana Minichiello's homepage

Glossary

Long-term potentiation

(LTP). A persistent increase in synaptic strength induced by brief high-frequency electrical stimulation of afferent fibres or coincident activation of pre- and postsynaptic neurons.

Synaptic plasticity

The ability of a synapse to change in strength.

Dendritic spike

An action potential generated in the dendrite of a neuron.

Long-term memory

(LTM). In contrast to short-term memory, LTM has a high capacity for storage of information for potentially unlimited duration.

Adaptor molecules

Molecules containing distinct modular domains, which typically mediate protein–protein interactions, allowing these proteins to form signal transduction complexes.

Phosphotyrosine-binding (PTB) domains

Modular domains within a protein structure. They usually bind to phosphorylated tyrosine residues and are often found in signal transduction proteins.

Src homology 2 (SH2) domains

Modular domains within a protein structure. They usually bind to phosphorylated tyrosine residues and are often found in signal transduction proteins.

Associative learning

Any learning process in which a new response becomes associated with a particular stimulus. In animal behaviour it has mainly been limited to learning that occurs through classical and instrumental conditioning.

Conditional mutagenesis

Regional and temporal control of gene inactivation in mice.

Hyperpolarization

A change in a cell's membrane potential that makes it more negative.

Pavlovian fear conditioning

(FC). A simple form of associative learning that is considered a model system in which to examine the neurobiological basis of learning and memory in the mammalian brain. In this learning paradigm an initially neutral conditioned stimulus (CS), such as a tone, elicits defensive responses on association with an aversive unconditioned stimulus (US), such as a mild electric footshock.

Trace eyeblink conditioning

A form of classical conditioning extensively used to study neural structures and mechanisms that underlie learning and memory. It is based on a relatively simple procedure that often consists of pairing an auditory (or visual) stimulus with an eyeblink-eliciting unconditioned stimulus (such as a mild puff of air to the cornea or a mild shock).

Synaptosome

A subcellular fraction obtained from homogenization of brain tissues that is rich in chemical synapses. Used in biochemical studies.

Open probability

The probability of an individual ion channel protein being in the open state under a given condition, observed as the fraction of the time that an ionic current is flowing. The value can be between zero and one.

Spatial memory formation

A type of learning that is dependent on an intact hippocampus. The primary method of studying spatial learning has been to put a rodent in a maze in which the rodent learns where a particular resource is and how to get to it from the starting location by developing a strategy based on a set of distal visual cues.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minichiello, L. TrkB signalling pathways in LTP and learning. Nat Rev Neurosci 10, 850–860 (2009). https://doi.org/10.1038/nrn2738

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2738

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing