Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

What does the retrosplenial cortex do?

Key Points

  • The main connectional properties of the retrosplenial cortex (RSC) (Brodmann areas 29 and 30) are conserved across mammalian species. Key features include reciprocal links with the hippocampal formation, the parahippocampal region, the limbic thalamus and the parietal cortex.

  • Functional studies of the RSC of rodents consistently point to a role in learning and navigation. These roles are thought to be acted out in concert with the hippocampal formation and the limbic thalamus.

  • Neuropsychological studies of the human RSC remain problematic owing to difficulties in isolating this area. Nevertheless, studies of patients with unilateral retrosplenial damage suggest an important contribution to navigation, whereas bilateral retrosplenial damage is often associated with anterograde and varying degrees of retrograde amnesia.

  • There is consistent evidence that the RSC suffers very early pathological changes in the progression of mild cognitive impairment and Alzheimer's disease. These pathological changes are reflected by a decrease in metabolic activity.

  • Functional neuroimaging studies of healthy volunteers suggest broad involvement of the RSC in an array of cognitive abilities, with an almost ubiquitous engagement by tests of spatial navigation and episodic (autobiographical) memory.

  • These patterns of retrosplenial activity might relate to a key role in scene construction — the process of mentally generating and manipulating a complex or coherent scene. This process may underpin functions such as autobiographical memory, navigation and thinking about the future.

  • One specific hypothesis relating to the retrosplenial cortex is that it translates between different perspectives of the external world, namely viewpoint-dependent and viewpoint-independent frames of reference.


The past decade has seen a transformation in research on the retrosplenial cortex (RSC). This cortical area has emerged as a key member of a core network of brain regions that underpins a range of cognitive functions, including episodic memory, navigation, imagination and planning for the future. It is now also evident that the RSC is consistently compromised in the most common neurological disorders that impair memory. Here we review advances on multiple fronts, most notably in neuroanatomy, animal studies and neuroimaging, that have highlighted the importance of the RSC for cognition, and consider why specifying its precise functions remains problematic.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Retrosplenial neuroanatomy.
Figure 2: Segregating the specific contributions of the retrosplenial cortex using functional MRI.
Figure 3: The key anatomical and functional relationships of the retrosplenial cortex.


  1. 1

    Brodmann, K. Vergleichende Lokalisationslehre der Grosshirnrinde inihren Prinzipien dargestellt auf Grund des Zellenbaues (Barth, Leipzig, 1909).

    Google Scholar 

  2. 2

    Vogt, B. A., Absher, J. R. & Bush, G. Human retrosplenial cortex: where is it and is it involved in emotion? Trends Neurosci. 23, 195–197 (2000).

    CAS  PubMed  Google Scholar 

  3. 3

    Papez, J. W. A proposed mechanism of emotion. Arch. Neurol. Psychiatry 38, 725–743 (1937).

    Google Scholar 

  4. 4

    MacLean, P. Psychosomatic disease and the visceral brain; recent developments bearing on the Papez theory of emotion. Psychosom. Med. 11, 338–353 (1949).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Vogt, B. A., Nimchinsky, E. A., Vogt, L. J. & Hof, P. R. Human cingulate cortex: surface features, flat maps, and cytoarchitecture. J. Comp. Neurol. 359, 490–506 (1995).

    CAS  PubMed  Google Scholar 

  6. 6

    Cavanna, A. E. & Trimble, M. R. The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129, 564–583 (2006).

    PubMed  Google Scholar 

  7. 7

    Kobayashi, Y. & Amaral, D. G. Macaque monkey retrosplenial cortex: II. Cortical afferents. J. Comp. Neurol. 466, 48–79 (2003).

    Google Scholar 

  8. 8

    Kobayashi, Y. & Amaral, D. G. Macaque monkey retrosplenial cortex: I. three-dimensional and cytoarchitectonic organization. J. Comp. Neurol. 426, 339–365 (2000).

    CAS  PubMed  Google Scholar 

  9. 9

    Vogt, B. A., Vogt, L., Farber, N. B. & Bush, G. Architecture and neurocytology of monkey cingulate gyrus. J. Comp. Neurol. 485, 218–239 (2005).

    PubMed  PubMed Central  Google Scholar 

  10. 10

    Morris, R., Petrides, M. & Pandya, D. N. Architecture and connections of retrosplenial area 30 in the rhesus monkey (Macaca mulatta). Eur. J. Neurosci. 11, 2506–2518 (1999).

    CAS  PubMed  Google Scholar 

  11. 11

    Vogt, B. A. in Cingulate Neurobiology and Disease (ed. Vogt, B. A.) 65–93 (Oxford Univ. Press, London, 2009). A chapter from a recent book devoted to the entire cingulate cortex, of which the RSC is a component area. This is the first book devoted to the neurobiology of this region since 1993.

  12. 12

    Vogt, B. A. & Peters, A. Form and distribution of neurons in rat cingulate cortex: areas 32, 24, and 29. J. Comp. Neurol. 195, 603–625 (1981).

    CAS  PubMed  Google Scholar 

  13. 13

    Van Groen, T. & Wyss, J. M. Connections of the retrosplenial granular a cortex in the rat. J. Comp. Neurol. 300, 593–606 (1990).

    CAS  PubMed  Google Scholar 

  14. 14

    Van Groen, T. & Wyss, J. M. Connections of the retrosplenial granular b cortex in the rat. J. Comp. Neurol. 463, 249–263 (2003).

    PubMed  Google Scholar 

  15. 15

    Van Groen, T. & Wyss, J. M. Connections of the retrosplenial dysgranular cortex in the rat. J. Comp. Neurol. 315, 200–216 (1992).

    CAS  PubMed  Google Scholar 

  16. 16

    Kobayashi, Y. & Amaral, D. G. Macaque monkey retrosplenial cortex: III. Cortical efferents. J. Comp. Neurol. 502, 810–833 (2007). The final paper in a series of three that provide the most detailed descriptions to date of the inputs to the RSC in an Old World monkey brain.

    Google Scholar 

  17. 17

    Mufson, E. J. & Pandya, D. N. Some observations on the course and composition of the cingulum bundle in the rhesus monkey. J. Comp. Neurol. 225, 31–43 (1984).

    CAS  PubMed  Google Scholar 

  18. 18

    Morris, R., Pandya, D. N. & Petrides, M. Fiber system linking the mid-dorsolateral frontal cortex with the retrosplenial/presubicular region in the rhesus monkey. J. Comp. Neurol. 407, 183–192 (1999).

    CAS  Google Scholar 

  19. 19

    Jones, B. F., Groenewegen, H. J. & Witter, M. P. Intrinsic connections of the cingulate cortex in the rat suggest the existence of multiple functionally segregated networks. Neuroscience 133, 193–207 (2005).

    CAS  PubMed  Google Scholar 

  20. 20

    Vogt, B. A. & Miller, M. W. Cortical connections between rat cingulate cortex and visual, motor, and postsubicular cortices. J. Comp. Neurol. 216, 192–210 (1983).

    CAS  PubMed  Google Scholar 

  21. 21

    Vogt, B. A. in Cerebral Cortex: Association and Auditory Cortices Vol. 4 (eds Peters, A. & Jones, E.) 89–149 (Plenum, New York, 1985).

    Google Scholar 

  22. 22

    Sutherland, R. J. & Hoesing, J. M. in Neurobiology of Cingulate Cortex and Limbic Thalamus: A Comprehensive Treatise (eds Vogt, B. A. & Gabriel, M.) 461–477 (Birkhauser, Boston, 1993).

    Google Scholar 

  23. 23

    Warburton, E. C., Baird, A., Morgan, A., Muir, J. L. & Aggleton, J. P. The conjoint importance of the hippocampus and anterior thalamic nuclei for allocentric spatial learning: evidence from a disconnection study in the rat. J. Neurosci. 21, 7323–7330 (2001).

    CAS  PubMed  Google Scholar 

  24. 24

    Aggleton, J. P. & Vann, S. D. Testing the importance of the retrosplenial navigation system: lesion size but not strain matters: a reply to Harker and Whishaw. Neurosci. Biobehav. Rev. 28, 525–531 (2004).

    PubMed  Google Scholar 

  25. 25

    Harker, K. T. & Whishaw, I. Q. A reaffirmation of the retrosplenial contribution to rodent navigation: reviewing the influences of lesion, strain, and task. Neurosci. Biobehav. Rev. 28, 485–496 (2004).

    PubMed  Google Scholar 

  26. 26

    Meunier, M. & Destrade, C. Effects of radiofrequency versus neurotoxic cingulate lesions on spatial reversal learning in mice. Hippocampus 7, 355–360 (1997).

    CAS  PubMed  Google Scholar 

  27. 27

    Vann, S. D., Brown, M. W. & Aggleton, J. P. Fos expression in the rostral thalamic nuclei and associated cortical regions in response to different spatial memory tests. Neuroscience 101, 983–991 (2000).

    CAS  PubMed  Google Scholar 

  28. 28

    Taube, J. S. The head direction signal: origins and sensory-motor integration. Annu. Rev. Neurosci. 30, 181–207 (2007).

    CAS  Google Scholar 

  29. 29

    Vann, S. D. & Aggleton, J. P. Testing the importance of the retrosplenial guidance system: effects of different sized retrosplenial cortex lesions on heading direction and spatial working memory. Behav. Brain Res. 155, 97–108 (2004). Here, rats with RSC lesions that differed in size along the RSC's rostrocaudal axis were compared for effects on different aspects of spatial memory. Rats with lesions of the whole RSC were consistently more impaired than rats with the more standard lesion that spared the most caudal extent of the structure. This study clarified some of the previous inconsistencies in the literature.

    PubMed  Google Scholar 

  30. 30

    Cain, D. P., Humpartzoomian, R. & Boon, F. Retrosplenial cortex lesions impair water maze strategies learning or spatial place learning depending on prior experience of the rat. Behav. Brain Res. 170, 316–325 (2006).

    PubMed  Google Scholar 

  31. 31

    Vann, S. D. & Aggleton, J. P. Extensive cytotoxic lesions of the rat retrosplenial cortex reveal consistent deficits on tasks that tax allocentric spatial memory. Behav. Neurosci. 116, 85–94 (2002).

    PubMed  Google Scholar 

  32. 32

    Sutherland, R. J., Whishaw, I. Q. & Kolb, B. Contributions of cingulate cortex to two forms of spatial learning and memory. J. Neurosci. 8, 1863–1872 (1988).

    CAS  PubMed  Google Scholar 

  33. 33

    Harker, K. T. & Whishaw, I. Q. Impaired place navigation in place and matching-to-place swimming pool tasks follows both retrosplenial cortex lesions and cingulum bundle lesions in rats. Hippocampus 14, 224–231 (2004).

    PubMed  Google Scholar 

  34. 34

    Whishaw, I. Q., Maaswinkel, H., Gonzalez, C. L. & Kolb, B. Deficits in allothetic and idiothetic spatial behavior in rats with posterior cingulate cortex lesions. Behav. Brain Res. 118, 67–76 (2001).

    CAS  PubMed  Google Scholar 

  35. 35

    Vann, S. D., Kristina Wilton, L. A., Muir, J. L. & Aggleton, J. P. Testing the importance of the caudal retrosplenial cortex for spatial memory in rats. Behav. Brain Res. 140, 107–118 (2003).

    PubMed  Google Scholar 

  36. 36

    St-Laurent, M., Petrides, M. & Sziklas, V. Does the cingulate cortex contribute to spatial conditional associative learning in the rat? Hippocampus 19, 612–622 (2009).

    PubMed  Google Scholar 

  37. 37

    Pothuizen, H. H., Aggleton, J. P. & Vann, S. D. Do rats with retrosplenial cortex lesions lack direction? Eur. J. Neurosci. 28, 2486–2498 (2008).

    PubMed  Google Scholar 

  38. 38

    Cooper, B. G. & Mizumori, S. J. Retrosplenial cortex inactivation selectively impairs navigation in darkness. Neuroreport 10, 625–630 (1999).

    CAS  PubMed  Google Scholar 

  39. 39

    Cooper, B. G., Manka, T. F. & Mizumori, S. J. Finding your way in the dark: the retrosplenial cortex contributes to spatial memory and navigation without visual cues. Behav. Neurosci. 115, 1012–1028 (2001).

    CAS  PubMed  Google Scholar 

  40. 40

    Cooper, B. G. & Mizumori, S. J. Temporary inactivation of the retrosplenial cortex causes a transient reorganization of spatial coding in the hippocampus. J. Neurosci. 21, 3986–4001 (2001).

    CAS  PubMed  Google Scholar 

  41. 41

    Amin, E., Pearce, J. M., Brown, M. W. & Aggleton, J. P. Novel temporal configurations of stimuli produce discrete changes in immediate-early gene expression in the rat hippocampus. Eur. J. Neurosci. 24, 2611–2621 (2006).

    PubMed  Google Scholar 

  42. 42

    Markowska, A. L., Olton, D. S., Murray, E. A. & Gaffan, D. A comparative analysis of the role of fornix and cingulate cortex in memory: rats. Exp. Brain Res. 74, 187–201 (1989).

    CAS  PubMed  Google Scholar 

  43. 43

    Sziklas, V., Petrides, M. & Leri, F. The effects of lesions to the mammillary region and the hippocampus on conditional associative learning by rats. Eur. J. Neurosci. 8, 106–115 (1996).

    CAS  PubMed  Google Scholar 

  44. 44

    Dumont, J., Petrides, M. & Sziklas, V. Functional dissociation between fornix and hippocampus in spatial conditional learning. Hippocampus 17, 1170–1179 (2007).

    CAS  PubMed  Google Scholar 

  45. 45

    Keene, C. S. & Bucci, D. J. Involvement of the retrosplenial cortex in processing multiple conditioned stimuli. Behav. Neurosci. 122, 651–658 (2008).

    PubMed  Google Scholar 

  46. 46

    Keene, C. S. & Bucci, D. J. Contributions of the retrosplenial and posterior parietal cortices to cue-specific and contextual fear conditioning. Behav. Neurosci. 122, 89–97 (2008).

    PubMed  Google Scholar 

  47. 47

    Lukoyanov, N. V. & Lukoyanova, E. A. Retrosplenial cortex lesions impair acquisition of active avoidance while sparing fear-based emotional memory. Behav. Brain Res. 173, 229–236 (2006).

    PubMed  Google Scholar 

  48. 48

    Gabriel, M. & Talk, A. C. in Model Systems and the neurobiology of associative learning (eds Steinmetz, J. A., Gluck, M. & Soloman, R. R.) 149–185 (Erlbaum, Mahwah, New Jersey, 2001).

    Google Scholar 

  49. 49

    Pothuizen, H. H., Davies, M., Albasser, M. M., Aggleton, J. P. & Vann, S. D. Granular and dysgranular retrosplenial cortices provide qualitatively different contributions to spatial working memory: evidence from immediate-early gene imaging in rats. Eur. J. Neurosci. 30, 877–888 (2009). Rats were trained on spatial working memory tasks or control tasks, in the radial-arm maze, in either the presence or the absence of visual cues (that is, in the light or in the dark). There was increased immediate-early gene activity in the granular RSC in the working memory group both in the light and in the dark conditions, but the dysgranular RSC was involved in spatial memory only in the presence of visual cues (that is, in the light).

    PubMed  Google Scholar 

  50. 50

    Van Groen, T., Kadish, I. & Wyss, J. M. Retrosplenial cortex lesions of area Rgb (but not of area Rga) impair spatial learning and memory in the rat. Behav. Brain Res. 154, 483–491 (2004).

    PubMed  Google Scholar 

  51. 51

    Vann, S. D. & Aggleton, J. P. Selective dysgranular retrosplenial cortex lesions in rats disrupt allocentric performance of the radial-arm maze task. Behav. Neurosci. 119, 1682–1686 (2005).

    PubMed  Google Scholar 

  52. 52

    Chen, L. L., Lin, L. H., Green, E. J., Barnes, C. A. & McNaughton, B. L. Head-direction cells in the rat posterior cortex. I. Anatomical distribution and behavioral modulation. Exp. Brain Res. 101, 8–23 (1994).

    CAS  Google Scholar 

  53. 53

    Cho, J. W. & Sharp, P. E. Head direction, place, and movement correlates for cells in the rat retrosplenial cortex. Behav. Neurosci. 115, 3–25 (2001).

    CAS  PubMed  Google Scholar 

  54. 54

    Borst, J. G., Leung, L. W. & MacFabe, D. F. Electrical activity of the cingulate cortex. II. Cholinergic modulation. Brain Res. 407, 81–93 (1987).

    CAS  PubMed  Google Scholar 

  55. 55

    Talk, A., Kang, E. & Gabriel, M. Independent generation of theta rhythm in the hippocampus and posterior cingulate cortex. Brain Res. 1015, 15–24 (2004). A dissociation was found between the theta activity of cue-elicited field potentials and multiple-unit activity recordings in the RSC. Retrosplenial theta activity, as recorded by field potentials, was attenuated by dorsal hippocampal lesions. By contrast, theta-like unit activity in the granular b (29b) RSC was unaffected by the same lesions and, therefore, occurs independently of the hippocampus.

    CAS  PubMed  Google Scholar 

  56. 56

    Destrade, C. & Ott, T. Is a retrosplenial (cingulate) pathway involved in the mediation of high frequency hippocampal rhythmical slow activity (theta)? Brain Res. 252, 29–37 (1982).

    CAS  PubMed  Google Scholar 

  57. 57

    Tabuchi, E. et al. Neural correlates to action and rewards in the rat posterior cingulate cortex. Neuroreport 16, 949–953 (2005).

    PubMed  Google Scholar 

  58. 58

    Ironside, R. & Guttmacher, M. The corpus callosum and its tumours. Brain 52, 442–483 (1929).

    Google Scholar 

  59. 59

    Valenstein, E. et al. Retrosplenial amnesia. Brain 110, 1631–1646 (1987).

    PubMed  Google Scholar 

  60. 60

    Rudge, P. & Warrington, E. K. Selective impairment of memory and visual perception in splenial tumours. Brain 114, 349–360 (1991).

    PubMed  Google Scholar 

  61. 61

    Maguire, E. A. The retrosplenial contribution to human navigation: a review of lesion and neuroimaging findings. Scand. J. Psychol. 42, 225–238 (2001). A range of single case reports of patients with RSC damage are reviewed. The effect on the patients' spatial navigation is considered in conjunction with functional neuroimaging studies of navigation that results in RSC activation.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Gainotti, G., Almonti, S., Betta, A. M. D. & Silveri, M. C. Retrograde amnesia in a patient with retrosplenial tumour. Neurocase 4, 519–526 (1998).

    Google Scholar 

  63. 63

    McDonald, C. R., Crosson, B., Valenstein, E. & Bowers, D. Verbal encoding deficits in a patient with a left retrosplenial lesion. Neurocase 7, 407–417 (2001).

    CAS  PubMed  Google Scholar 

  64. 64

    Ino, T. et al. Directional disorientation following left retrosplenial hemorrhage: a case report with fMRI studies. Cortex 43, 248–254 (2007).

    Google Scholar 

  65. 65

    Oka, Y. et al. A case of amnesia caused by a subcortical hematoma in the left retrosplenial region. No Shinkei Geka 31, 289–295 (2003) (in Japanese).

    PubMed  Google Scholar 

  66. 66

    Osawa, A., Maeshima, S., Kubo, K. & Itakura, T. Neuropsychological deficits associated with a tumour in the posterior corpus callosum: a report of two cases. Brain Inj. 20, 673–676 (2006).

    PubMed  Google Scholar 

  67. 67

    Aguirre, G. K. & D'Esposito, M. Topographical disorientation: a synthesis and taxonomy. Brain 122, 1613–1628 (1999).

    Google Scholar 

  68. 68

    Epstein, R. A. Parahippocampal and retrosplenial contributions to human spatial navigation. Trends Cogn. Sci. 12, 388–396 (2008).

    PubMed  PubMed Central  Google Scholar 

  69. 69

    Takahashi, N., Kawamura, M., Shiota, J., Kasahata, N. & Hirayama, K. Pure topographic disorientation due to right retrosplenial lesion. Neurology 49, 464–469 (1997).

    CAS  Google Scholar 

  70. 70

    Alsaadi, T., Binder, J. R., Lazar, R. M., Doorani, T. & Mohr, J. P. Pure topographic disorientation: a distinctive syndrome with varied localization. Neurology 54, 1864–1866 (2000).

    CAS  PubMed  Google Scholar 

  71. 71

    Greene, K. K., Donders, J. & Thoits, T. Topographical heading disorientation: a case study. Appl. Neuropsychol. 13, 269–274 (2006).

    PubMed  Google Scholar 

  72. 72

    Osawa, A., Maeshima, S. & Kunishio, K. Topographic disorientation and amnesia due to cerebral hemorrhage in the left retrosplenial region. Eur. Neurol. 59, 79–82 (2008).

    PubMed  Google Scholar 

  73. 73

    Maguire, E. A., Nannery, R. & Spiers, H. J. Navigation around London by a taxi driver with bilateral hippocampal lesions. Brain 129, 2894–2907 (2006).

    PubMed  PubMed Central  Google Scholar 

  74. 74

    Spiers, H. J. & Maguire, E. A. The neuroscience of remote spatial memory: a tale of two cities. Neuroscience 149, 7–27 (2007).

    CAS  PubMed  Google Scholar 

  75. 75

    Obi, T., Bando, M., Takeda, K. & Sakuta, M. A case of topographical disturbance following a left medial parieto-occipital lobe infarction. Rinsho Shinkeigaku 32, 426–429 (1992) (in Japanese).

    CAS  PubMed  Google Scholar 

  76. 76

    Maeshima, S. et al. Memory impairment and spatial disorientation following a left retrosplenial lesion. J. Clin. Neurosci. 8, 450–451 (2001).

    CAS  PubMed  Google Scholar 

  77. 77

    Burgess, N., Becker, S., King, J. A. & O'Keefe, J. Memory for events and their spatial context: models and experiments. Philos. Trans. R. Soc. Lond. B Biol. Sci. 356, 1493–1503 (2001). Presents a neural-level model of the medial temporal and parietal roles in retrieval of the spatial context of an event. The central tenet is that medial temporal allocentric representations are used in long-term storage, whereas parietal egocentric representations are used to imagine, manipulate and re-experience the products of retrieval, with the RSC translating between the two codes.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Byrne, P., Becker, S. & Burgess, N. Remembering the past and imagining the future: a neural model of spatial memory and imagery. Psychol. Rev. 114, 340–375 (2007). The authors modelled the neural mechanisms underlying spatial cognition by integrating neuronal systems and behavioural data, and addressed the relationships between long-term memory, short-term memory and imagery, between egocentric and allocentric representations and between visual and ideothetic representations. A key role for the RSC is outlined in translating between reference frames.

    PubMed  PubMed Central  Google Scholar 

  79. 79

    Awad, M., Warren, J. E., Scott, S. K., Turkheimer, F. E. & Wise, R. J. A common system for the comprehension and production of narrative speech. J. Neurosci. 27, 11455–11464 (2007).

    CAS  PubMed  Google Scholar 

  80. 80

    Small, D. M., Zatorre, R. J., Dagher, A., Evans, A. C. & Jones-Gotman, M. Changes in brain activity related to eating chocolate: from pleasure to aversion. Brain 124, 1720–1733 (2001).

    CAS  PubMed  Google Scholar 

  81. 81

    Wik, G. et al. Retrospenial cortical deactivation during painful stimulation of fibromyalgic patients. Int. J. Neurosci. 116, 1–8 (2006).

    PubMed  Google Scholar 

  82. 82

    Svoboda, E., McKinnon, M. C. & Levine, B. The functional neuroanatomy of autobiographical memory: a meta-analysis. Neuropsychologia 44, 2189–2208 (2006).

    PubMed  PubMed Central  Google Scholar 

  83. 83

    Maguire, E. A. Neuroimaging studies of autobiographical event memory. Philos. Trans. R. Soc. Lond. B Biol. Sci. 356, 1441–1451 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Gilboa, A., Winocur, G., Grady, C. L., Hevenor, S. J. & Moscovitch, M. Remembering our past: functional neuroanatomy of recollection of recent and very remote personal events. Cereb. Cortex 14, 1214–1225 (2004).

    PubMed  Google Scholar 

  85. 85

    Woodard, J. L. et al. Temporally graded activation of neocortical regions in response to memories of different ages. J. Cogn. Neurosci. 19, 1113–1124 (2007).

    PubMed  PubMed Central  Google Scholar 

  86. 86

    Oddo, S. et al. Specific role of medial prefrontal cortex in retrieving recent autobiographical memories: an fMRI study of young female subjects. Cortex 7 Nov 2008 (doi:10.1016/j.cortex.2008.07.003).

    PubMed  Google Scholar 

  87. 87

    Maddock, R. J. The retrosplenial cortex and emotion: new insights from functional neuroimaging of the human brain. Trends Neurosci. 22, 310–316 (1999).

    CAS  PubMed  Google Scholar 

  88. 88

    Burgess, N., Maguire, E. A. & O'Keefe, J. The human hippocampus and spatial and episodic memory. Neuron 35, 625–641 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89

    Bird, C. M. & Burgess, N. The hippocampus and memory: insights from spatial processing. Nature Rev. Neurosci. 9, 182–194 (2008).

    CAS  Google Scholar 

  90. 90

    Spiers, H. J. & Maguire, E. A. Thoughts, behaviour, and brain dynamics during navigation in the real world. Neuroimage 31, 1826–1840 (2006).

    PubMed  Google Scholar 

  91. 91

    Rosenbaum, R. S., Winocur, G., Grady, C. L., Ziegler, M. & Moscovitch, M. Memory for familiar environments learned in the remote past: fMRI studies of healthy people and an amnesic person with extensive bilateral hippocampal lesions. Hippocampus 17, 1241–1251 (2007).

    PubMed  Google Scholar 

  92. 92

    Epstein, R. A., Parker, W. E. & Feiler, A. M. Where am I now? Distinct roles for parahippocampal and retrosplenial cortices in place recognition. J. Neurosci. 27, 6141–6149 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Wolbers, T. & Buchel, C. Dissociable retrosplenial and hippocampal contributions to successful formation of survey representations. J. Neurosci. 25, 3333–3340 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94

    Bar, M. Visual objects in context. Nature Rev. Neurosci. 5, 617–629 (2004).

    CAS  Google Scholar 

  95. 95

    Bar, M. & Aminoff, E. Cortical analysis of visual context. Neuron 38, 347–358 (2003).

    CAS  PubMed  Google Scholar 

  96. 96

    Henderson, J. M., Larson, C. L. & Zhu, D. C. Full scenes produce more activation than close-up scenes and scene-diagnostic objects in parahippocampal and retrosplenial cortex: an fMRI study. Brain Cogn. 66, 40–49 (2008).

    PubMed  Google Scholar 

  97. 97

    Hassabis, D., Kumaran, D., Vann, S. D. & Maguire, E. A. Patients with hippocampal amnesia cannot imagine new experiences. Proc. Natl Acad. Sci. USA 104, 1726–1731 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98

    Addis, D. R., Wong, A. T. & Schacter, D. L. Remembering the past and imagining the future: common and distinct neural substrates during event construction and elaboration. Neuropsychologia 45, 1363–1377 (2007).

    PubMed  PubMed Central  Google Scholar 

  99. 99

    Szpunar, K. K., Watson, J. M. & McDermott, K. B. Neural substrates of envisioning the future. Proc. Natl Acad. Sci. USA 104, 642–647 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100

    Okuda, J. et al. Thinking of the future and past: the roles of the frontal pole and the medial temporal lobes. Neuroimage 19, 1369–1380 (2003).

    PubMed  Google Scholar 

  101. 101

    Botzung, A., Denkova, E. & Manning, L. Experiencing past and future personal events: functional neuroimaging evidence on the neural bases of mental time travel. Brain Cogn. 66, 202–212 (2008).

    PubMed  Google Scholar 

  102. 102

    D'Argembeau, A., Xue, G., Lu, Z. L., Van der Linden, M. & Bechara, A. Neural correlates of envisioning emotional events in the near and far future. Neuroimage 40, 398–407 (2008).

    PubMed  Google Scholar 

  103. 103

    Hassabis, D., Kumaran, D. & Maguire, E. A. Using imagination to understand the neural basis of episodic memory. J. Neurosci. 27, 14365–14374 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104

    Buckner, R. L. & Carroll, D. C. Self-projection and the brain. Trends Cogn. Sci. 11, 49–57 (2007).

    PubMed  PubMed Central  Google Scholar 

  105. 105

    Mason, M. F. et al. Wandering minds: the default network and stimulus-independent thought. Science 315, 393–395 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106

    Spreng, R. N., Mar, R. A. & Kim, A. S. The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis. J. Cogn. Neurosci. 21, 489–510 (2009).

    PubMed  PubMed Central  Google Scholar 

  107. 107

    Hassabis, D. & Maguire, E. A. Deconstructing episodic memory with construction. Trends Cogn. Sci. 11, 299–306 (2007).

    PubMed  PubMed Central  Google Scholar 

  108. 108

    Schacter, D. L. & Addis, D. R. The cognitive neuroscience of constructive memory: remembering the past and imagining the future. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362, 773–786 (2007).

    PubMed  PubMed Central  Google Scholar 

  109. 109

    Summerfield, J. J., Hassabis, D. & Maguire, E. A. Cortical midline involvement in autobiographical memory. Neuroimage 44, 1188–1200 (2009). In this fMRI study of autobiographical memory, the factors of 'realness' and 'self-relevance' were manipulated and resulted in a relatively clear distinction between activations in the RSC and those in the neighbouring PCC. This finding highlights the importance of designing fMRI experiments to delineate the specific role of the RSC.

    PubMed  PubMed Central  Google Scholar 

  110. 110

    Desgranges, B. et al. The neural substrates of episodic memory impairment in Alzheimer's disease as revealed by FDG-PET: relationship to degree of deterioration. Brain 125, 1116–1124 (2002).

    PubMed  Google Scholar 

  111. 111

    Nestor, P. J., Fryer, T. D., Ikeda, M. & Hodges, J. R. Retrosplenial cortex (BA 29/30) hypometabolism in mild cognitive impairment (prodromal Alzheimer's disease). Eur. J. Neurosci. 18, 2663–2667 (2003).

    CAS  PubMed  Google Scholar 

  112. 112

    Aggleton, J. P. & Brown, M. W. Episodic memory, amnesia, and the hippocampal-anterior thalamic axis. Behav. Brain Sci. 22, 425–444 (1999).

    CAS  PubMed  Google Scholar 

  113. 113

    Wagner, A. D., Shannon, B. J., Kahn, I. & Buckner, R. L. Parietal lobe contributions to episodic memory retrieval. Trends Cogn. Sci. 9, 445–453 (2005).

    PubMed  PubMed Central  Google Scholar 

  114. 114

    Moscovitch, M. et al. Functional neuroanatomy of remote episodic, semantic and spatial memory: a unified account based on multiple trace theory. J. Anat. 207, 35–66 (2005).

    PubMed  PubMed Central  Google Scholar 

  115. 115

    Squire, L. R. & Bayley, P. J. The neuroscience of remote memory. Curr. Opin. Neurobiol. 17, 185–196 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116

    Levine, B., Svoboda, E., Hay, J. F., Winocur, G. & Moscovitch, M. Aging and autobiographical memory: dissociating episodic from semantic retrieval. Psychol. Aging 17, 677–689 (2002).

    PubMed  PubMed Central  Google Scholar 

  117. 117

    Maviel, T., Durkin, T. P., Menzaghi, F. & Bontempi, B. Sites of neocortical reorganization critical for remote spatial memory. Science 305, 96–99 (2004).

    CAS  PubMed  Google Scholar 

  118. 118

    Wesierska, M., Adamska, I. & Malinowska, M. Retrosplenial cortex lesion affected segregation of spatial information in place avoidance task in the rat. Neurobiol. Learn. Mem. 91, 41–49 (2009).

    PubMed  Google Scholar 

  119. 119

    Albasser, M. M., Poirier, G. L., Warburton, E. C. & Aggleton, J. P. Hippocampal lesions halve immediate-early gene protein counts in retrosplenial cortex: distal dysfunctions in a spatial memory system. Eur. J. Neurosci. 26, 1254–1266 (2007).

    PubMed  Google Scholar 

  120. 120

    Jenkins, T. A., Vann, S. D., Amin, E. & Aggleton, J. P. Anterior thalamic lesions stop immediate early gene activation in selective laminae of the retrosplenial cortex: evidence of covert pathology in rats? Eur. J. Neurosci. 19, 3291–3304 (2004).

    PubMed  Google Scholar 

  121. 121

    Aggleton, J. P. EPS Mid-Career Award 2006. Understanding anterograde amnesia: disconnections and hidden lesions. Q. J. Exp. Psychol. (Colchester) 61, 1441–1471 (2008).

    Google Scholar 

  122. 122

    Vann, S. D. & Albasser, M. M. Hippocampal, retrosplenial, and prefrontal hypoactivity in a model of diencephalic amnesia: evidence towards an interdependent subcortical-cortical memory network. Hippocampus 11 Mar 2009 (doi:10.1002/hipo.20574).

    PubMed  Google Scholar 

  123. 123

    Poirier, G. L. et al. Anterior thalamic lesions produce chronic and profuse transcriptional de-regulation in retrosplenial cortex: a model of retrosplenial hypoactivity and covert pathology. Thal. Relat. Syst. 4, 59–77 (2008).

    CAS  Google Scholar 

  124. 124

    Poirier, G. L. & Aggleton, J. P. Post-surgical interval and lesion location within the limbic thalamus determine extent of retrosplenial cortex immediate-early gene hypoactivity. Neuroscience 160, 452–469 (2009).

    CAS  PubMed  Google Scholar 

  125. 125

    Garden, D. L. et al. Anterior thalamic lesions stop synaptic plasticity in retrosplenial cortex slices: expanding the pathology of diencephalic amnesia. Brain 132, 1847–1857 (2009). Slice recording study showing the loss of a form of synaptic plasticity in the RSC following anterior thalamic lesions. The results are striking as the loss of plasticity is due not to a failure to stimulate the target neurons in the RSC but rather to a local change in the properties of these RSC neurons following deafferentation.

    PubMed  Google Scholar 

  126. 126

    Mitelman, S. A., Shihabuddin, L., Brickman, A. M., Hazlett, E. A. & Buchsbaum, M. S. Volume of the cingulate and outcome in schizophrenia. Schizophr. Res. 72, 91–108 (2005).

    PubMed  Google Scholar 

  127. 127

    Nugent, A. C. et al. Cortical abnormalities in bipolar disorder investigated with MRI and voxel-based morphometry. Neuroimage 30, 485–497 (2006).

    PubMed  Google Scholar 

  128. 128

    Liberzon, I. et al. Brain activation in PTSD in response to trauma-related stimuli. Biol. Psychiatry 45, 817–826 (1999).

    CAS  PubMed  Google Scholar 

  129. 129

    Temple, E. et al. Neural deficits in children with dyslexia ameliorated by behavioral remediation: evidence from functional MRI. Proc. Natl Acad. Sci. USA 100, 2860–2865 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130

    Fazio, F. et al. Metabolic impairment in human amnesia: a PET study of memory networks. J. Cereb. Blood Flow Metab. 12, 353–358 (1992).

    CAS  PubMed  Google Scholar 

  131. 131

    Joyce, E. M. et al. Decreased cingulate and precuneate glucose utilization in alcoholic Korsakoff's syndrome. Psychiatry Res. 54, 225–239 (1994).

    CAS  PubMed  Google Scholar 

  132. 132

    Minoshima, S. et al. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease. Ann. Neurol. 42, 85–94 (1997).

    CAS  Google Scholar 

  133. 133

    Villain, N. et al. Relationships between hippocampal atrophy, white matter disruption, and gray matter hypometabolism in Alzheimer's disease. J. Neurosci. 28, 6174–6181 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. 134

    Scahill, R. I., Schott, J. M., Stevens, J. M., Rossor, M. N. & Fox, N. C. Mapping the evolution of regional atrophy in Alzheimer's disease: unbiased analysis of fluid-registered serial MRI. Proc. Natl Acad. Sci. USA 99, 4703–4707 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. 135

    Pengas, G., Hodges, J. R., Watson, P. & Nestor, P. J. Focal posterior cingulate atrophy in incipient Alzheimer's disease. Neurobiol. Aging 1 May 2008 (doi:10.1016/j.neurobiolaging.2008.03.014).

    PubMed  Google Scholar 

  136. 136

    Buckner, R. L., Andrews-Hanna, J. R. & Schacter, D. L. The brain's default network: anatomy, function, and relevance to disease. Ann. NY Acad. Sci. 1124, 1–38 (2008).

    PubMed  PubMed Central  Google Scholar 

  137. 137

    Raichle, M. E. et al. A default mode of brain function. Proc. Natl Acad. Sci. USA 98, 676–682 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. 138

    Biswal, B., Yetkin, F. Z., Haughton, V. M. & Hyde, J. S. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34, 537–541 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. 139

    Uddin, L. Q., Clare Kelly, A. M., Biswal, B. B., Xavier Castellanos, F. & Milham, M. P. Functional connectivity of default mode network components: correlation, anticorrelation, and causality. Hum. Brain Mapp. 30, 625–637 (2009).

    PubMed  Google Scholar 

  140. 140

    Gao, W. et al. Evidence on the emergence of the brain's default network from 2-week-old to 2-year-old healthy pediatric subjects. Proc. Natl Acad. Sci. USA 106, 6790–6795 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. 141

    Greicius, M. D., Supekar, K., Menon, V. & Dougherty, R. F. Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb. Cortex 19, 72–78 (2009).

    PubMed  PubMed Central  Google Scholar 

  142. 142

    Zilles, K. & Palomero-Gallagher, N. Cyto-, myelo-, and receptor architectonics of the human parietal cortex. Neuroimage 14, S8–S20 (2001).

    CAS  PubMed  Google Scholar 

Download references


The authors would like to thank A. Perrotin, N. Burgess, M. Greicius and L. Woods. E.A.M. is supported by the Wellcome Trust. S.D.V. is supported by a Biotechnology and Biological Sciences Research Council (BBSRC) David Phillips Research Fellowship. S.D.V. and J.P.A.'s contributions have also been supported by a BBSRC grant (BB/D002001/1).

Author information



Corresponding author

Correspondence to Seralynne D. Vann.

Related links

Related links


Seralynne D. Vann's homepage

John P. Aggleton's homepage

Eleanor A. Maguire's homepage


Head-direction cells

Cells that can distinguish, by altering their firing rate, the direction that an animal is facing.

Executive function

The planning and sequencing of future actions, selected from multiple options.

Immediate-early genes

Genes that encode transcription factors that are induced within minutes of raised neuronal activity without requiring a protein signal. Immediate-early gene activation is, therefore, used as an indirect marker of neuronal activation.

Working memory

In animal research this term refers to information that is required within a trial but may well prove to be misleading across trials or sessions.

Ideothetic information

Internal feedback information that can be used to monitor progress and, hence, position in space.

Path integration

The continuous integration of self-movement (ideothetic) cues to update representations of current position (and so plot a direct path back to the start of a journey). Also known as 'dead reckoning'.

Visuospatial conditional tasks

Tasks in which animals are required to learn fixed associations between visual stimuli or spatial contexts and either spatial locations or objects to gain a reward.

Compound-feature negative-discrimination task

A task in which animals are given two types of trial: one in which a stimulus (for example, a tone) is followed by a reward and a second in which the same stimulus is presented with another stimulus (for example, a light) but no reward. Control animals learn to respond to the tone only but not the tone and light combinations.

Contextual fear conditioning

When animals learn to associate a specific context or environment with the administration of an aversive stimulus, for example a shock. When re-exposed to the same context or environment control animals will demonstrate a fear response, for example freezing.

Active avoidance in a two-way shuttle box

When animals avoid a shock that they have learnt — through prior conditioning — is associated with a stimulus by entering the compartment in which they know they will not be shocked.

Place cells

Cells that fire differentially depending on the animal's location in an environment.

Grid cells

Neurons that fire strongly when an animal is at one of several specific locations in an environment and that are organized in a grid-like fashion.

Episodic memory

The recollection of events with a specific spatial and temporal context, such as personal experiences. Often referred to as autobiographical memory.

Rotational offset

Subtraction of the allocentric heading direction from the allocentric direction of an environmental landmark.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vann, S., Aggleton, J. & Maguire, E. What does the retrosplenial cortex do?. Nat Rev Neurosci 10, 792–802 (2009).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing