Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Understanding microRNAs in neurodegeneration

Abstract

Interest in the functions of microRNAs (miRNAs) in the nervous system has recently expanded to include their roles in neurodegeneration. Investigations have begun to reveal the influence of miRNAs on both neuronal survival and the accumulation of toxic proteins that are associated with neurodegeneration, and are providing clues as to how these toxic proteins can influence miRNA expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: mRNA repression by microRNAs and their effect on neurodegeneration.

Similar content being viewed by others

References

  1. Kim, V. N., Han, J. & Siomi, M. C. Biogenesis of small RNAs in animals. Nature Rev. Mol. Cell Biol. 10, 126–139 (2009).

    Article  CAS  Google Scholar 

  2. Vasudevan, S., Tong, Y. & Steitz, J. A. Cell-cycle control of microRNA-mediated translation regulation. Cell Cycle 7, 1545–1549 (2008).

    Article  CAS  Google Scholar 

  3. Filipowicz, W., Bhattacharyya, S. N. & Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nature Rev. Genet. 9, 102–114 (2008).

    Article  CAS  Google Scholar 

  4. Visvanathan, J., Lee, S., Lee, B., Lee, J. W. & Lee, S. K. The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev. 21, 744–749 (2007).

    Article  CAS  Google Scholar 

  5. De Pietri Tonelli, D. et al. miRNAs are essential for survival and differentiation of newborn neurons but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex. Development 135, 3911–3921 (2008).

    Article  CAS  Google Scholar 

  6. Cheng, L. C., Pastrana, E., Tavazoie, M. & Doetsch, F. miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nature Neurosci. 12, 399–408 (2009).

    Article  CAS  Google Scholar 

  7. Fiore, R. et al. Mef2-mediated transcription of the miR379–410 cluster regulates activity-dependent dendritogenesis by fine-tuning Pumilio2 protein levels. EMBO J. 28, 697–710 (2009).

    Article  CAS  Google Scholar 

  8. Vo, N. et al. A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc. Natl Acad. Sci. USA 102, 16426–16431 (2005).

    Article  CAS  Google Scholar 

  9. Siegel, G. et al. A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis. Nature Cell Biol. 11, 705–716 (2009).

    Article  CAS  Google Scholar 

  10. Schratt, G. M. et al. A brain-specific microRNA regulates dendritic spine development. Nature 439, 283–289 (2006).

    Article  CAS  Google Scholar 

  11. Chartier-Harlin, M. C. et al. α-synuclein locus duplication as a cause of familial Parkinson's disease. Lancet 364, 1167–1169 (2004).

    Article  CAS  Google Scholar 

  12. Rovelet-Lecrux, A. et al. APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nature Genet. 38, 24–26 (2006).

    Article  CAS  Google Scholar 

  13. Sleegers, K. et al. APP duplication is sufficient to cause early onset Alzheimer's dementia with cerebral amyloid angiopathy. Brain 129, 2977–2983 (2006).

    Article  Google Scholar 

  14. Theuns, J. et al. Promoter mutations that increase amyloid precursor-protein expression are associated with Alzheimer disease. Am. J. Hum. Genet. 78, 936–946 (2006).

    Article  CAS  Google Scholar 

  15. Brouwers, N. et al. Genetic risk and transcriptional variability of amyloid precursor protein in Alzheimer's disease. Brain 129, 2984–2991 (2006).

    Article  Google Scholar 

  16. Kim, J. et al. A microRNA feedback circuit in midbrain dopamine neurons. Science 317, 1220–1224 (2007).

    Article  CAS  Google Scholar 

  17. Schaefer, A. et al. Cerebellar neurodegeneration in the absence of microRNAs. J. Exp. Med. 204, 1553–1558 (2007).

    Article  CAS  Google Scholar 

  18. Cuellar, T. L. et al. Dicer loss in striatal neurons produces behavioral and neuroanatomical phenotypes in the absence of neurodegeneration. Proc. Natl Acad. Sci. USA 105, 5614–5619 (2008).

    Article  CAS  Google Scholar 

  19. Davis, T. H. et al. Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. J. Neurosci. 28, 4322–4330 (2008).

    Article  CAS  Google Scholar 

  20. Choi, P. S. et al. Members of the miRNA-200 family regulate olfactory neurogenesis. Neuron 57, 41–55 (2008).

    Article  CAS  Google Scholar 

  21. Bateman, A. & Bennett, H. P. The granulin gene family: from cancer to dementia. Bioessays 30 Sep 2009 (doi:10.1002/bies.200900086).

    Article  CAS  Google Scholar 

  22. Cruts, M. et al. Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442, 920–924 (2006).

    Article  CAS  Google Scholar 

  23. Baker, M. et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442, 916–919 (2006).

    Article  CAS  Google Scholar 

  24. Gass, J. et al. Mutations in progranulin are a major cause of ubiquitin-positive frontotemporal lobar degeneration. Hum. Mol. Genet. 15, 2988–3001 (2006).

    Article  CAS  Google Scholar 

  25. Rademakers, R. et al. Common variation in the miR-659 binding-site of GRN is a major risk factor for TDP43-positive frontotemporal dementia. Hum. Mol. Genet. 17, 3631–3642 (2008).

    Article  CAS  Google Scholar 

  26. Hebert, S. S. et al. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer's disease correlates with increased BACE1/β-secretase expression. Proc. Natl Acad. Sci. USA 105, 6415–6420 (2008).

    Article  CAS  Google Scholar 

  27. Bettens, K. et al. APP and BACE1 miRNA genetic variability has no major role in risk for Alzheimer disease. Hum. Mutat. 30, 1207–1213 (2009).

    Article  CAS  Google Scholar 

  28. Wang, G. et al. Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of α-synuclein. Am. J. Hum. Genet. 82, 283–289 (2008).

    Article  CAS  Google Scholar 

  29. Rideout, H. J., Dietrich, P., Savalle, M., Dauer, W. T. & Stefanis, L. Regulation of α-synuclein by bFGF in cultured ventral midbrain dopaminergic neurons. J. Neurochem. 84, 803–813 (2003).

    Article  CAS  Google Scholar 

  30. Skovronsky, D. M., Lee, V. M. & Trojanowski, J. Q. Neurodegenerative diseases: new concepts of pathogenesis and their therapeutic implications. Annu. Rev. Pathol. 1, 151–170 (2006).

    Article  CAS  Google Scholar 

  31. Wider, C. et al. FGF20 and Parkinson's disease: no evidence of association or pathogenicity via α-synuclein expression. Mov. Disord. 24, 455–459 (2009).

    Article  Google Scholar 

  32. Bilen, J., Liu, N., Burnett, B. G., Pittman, R. N. & Bonini, N. M. MicroRNA pathways modulate polyglutamine-induced neurodegeneration. Mol. Cell 24, 157–163 (2006).

    Article  CAS  Google Scholar 

  33. Lee, Y. et al. miR-19, miR-101 and miR-130 co-regulate ATXN1 levels to potentially modulate SCA1 pathogenesis. Nature Neurosci. 11, 1137–1139 (2008).

    Article  CAS  Google Scholar 

  34. Packer, A. N., Xing, Y., Harper, S. Q., Jones, L. & Davidson, B. L. The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington's disease. J. Neurosci. 28, 14341–14346 (2008).

    Article  CAS  Google Scholar 

  35. Zuccato, C. et al. Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nature Genet. 35, 76–83 (2003).

    Article  CAS  Google Scholar 

  36. Conaco, C., Otto, S., Han, J. J. & Mandel, G. Reciprocal actions of REST and a microRNA promote neuronal identity. Proc. Natl Acad. Sci. USA 103, 2422–2427 (2006).

    Article  CAS  Google Scholar 

  37. Johnson, R. et al. A microRNA-based gene dysregulation pathway in Huntington's disease. Neurobiol. Dis. 29, 438–445 (2008).

    Article  CAS  Google Scholar 

  38. Midoux, P., Pichon, C., Yaouanc, J. J. & Jaffres, P. A. Chemical vectors for gene delivery: a current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers. Br. J. Pharmacol. 157, 166–178 (2009).

    Article  CAS  Google Scholar 

  39. Pena, J. T. et al. miRNA in situ hybridization in formaldehyde and EDC-fixed tissues. Nature Methods 6, 139–141 (2009).

    Article  CAS  Google Scholar 

  40. Chi, S. W., Zang, J. B., Mele, A. & Darnell, R. B. Argonaute HITS-CLIP decodes microRNA–mRNA interaction maps. Nature 460, 479–486 (2009).

    Article  CAS  Google Scholar 

  41. Baek, D. et al. The impact of microRNAs on protein output. Nature 455, 64–71 (2008).

    Article  CAS  Google Scholar 

  42. Selbach, M. et al. Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58–63 (2008).

    Article  CAS  Google Scholar 

  43. Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We apologize to authors whose papers were not discussed here owing to the short format. This work was funded by United States Public Health Service grant DA00266. T.M.D. is the Leonard and Madlyn Abramson Professor in Neurodegenerative Diseases at the Johns Hopkins University School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ted M. Dawson or Valina L. Dawson.

Related links

Related links

DATABASES

mirBase

mir-9

miR-124

miR-132

miR-133b

miR-433

miR-659

OMIM

FTLD

FURTHER INFORMATION

Ted M. Dawson's homepage

Valina L. Dawson's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eacker, S., Dawson, T. & Dawson, V. Understanding microRNAs in neurodegeneration. Nat Rev Neurosci 10, 837–841 (2009). https://doi.org/10.1038/nrn2726

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2726

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing