RESEARCH HIGHLIGHTS

Exchange to migrate

Activation of GABA_ARs

(γ -aminobutyric acid type A receptors) leads to the elevation of intracellular Ca²⁺ concentration ($[Ca^{2+}]_i$ in immature neurons, through a well-established signalling pathway that is important for neuronal migration. NG2 cells — a group of glial precursors — also express GABA_ARs; however, the function of these receptors in NG2 cells was unknown. Tong *et al.* have now shown that the

activation of GABA_ARs in NG2 cells triggers a different Ca^{2+} signalling pathway that involves reversal of the activity of the Na⁺-Ca²⁺ exchanger 1 (NCX1) and is required for the migration of NG2 cells during development.

The authors showed that activation of GABA, Rs led to increased [Ca²⁺], in cultured NG2 cells as well as in hippocampal slice preparations from juvenile rats, but not if the expression of non-inactivating Na⁺ channels or NCX1 was downregulated by small interfering RNAs or if these proteins were inhibited pharmacologically. They concluded that stimulation of GABA, Rs in NG2 cells activates non-inactivating Na+ channels, resulting in increased [Na⁺], that triggers reversal of the activity of NCXs and ultimately leads to increased [Ca2+], by exchanging intracellular Na⁺ for extracellular Ca²⁺.

The authors next tested whether this signalling mechanism is important for the migration of NG2 cells. NG2 cells in culture and from brain explants migrated towards a source of GABA. Pharmacological inhibition of GABA_ARs, Na⁺ channels or NCX1, or downregulation of Na⁺ channels or NCX1 expression using small interfering RNAs, impaired migration, providing evidence that the Ca²⁺ signalling mechanism investigated is important for the migration of NG2 cells.

This study shows that the signalling mechanisms that underlie GABA-induced Ca^{2+} elevation in NG2 cells and immature neurons, which is required for their migration, are very different. In neurons Ca^{2+} elevation is driven by voltage-gated Ca^{2+} channels and activation of *N*-methyl-D-aspartate receptors, whereas NG2 cells use the Ca^{2+} signalling pathway described above. It will be interesting to determine whether this signalling mechanism is also used by other migrating cells. *Claudia Wiedemann*

ORIGINAL RESEARCH PAPER Tong, X.-p. et al. Ca²⁺ signaling evoked by activation of Na⁺ channels and Na⁺/Ca²⁺ exchangers is required for GABA-induced NG2 cell migration. J. Cell Biol. **186**, 113–128 (2009)