Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Psychobiology and molecular genetics of resilience

Key Points

  • Resilient individuals demonstrate adaptive psychological and physiological stress responses to acute stress, trauma or more chronic forms of adversity.

  • Resilience is an active process, not simply the absence of changes induced by stress.

  • Examining stress responses at multiple phenotypic levels can help to delineate an integrative model of resilience.

  • Positive emotions and cognitive reappraisal promote adaptive coping strategies and resilience.

  • Complex interactions between an individual's genetic make-up and their history of exposure to environmental stressors influence the adaptability of stress response systems and neural circuitry function.

  • Progress is being made in identifying the neural circuits in the brain that mediate resilience.

  • Recent work has begun to identify specific changes in gene expression and chromatin remodelling (that is, epigenetic adaptations) that underlie resilience.

Abstract

Every individual experiences stressful life events. In some cases acute or chronic stress leads to depression and other psychiatric disorders, but most people are resilient to such effects. Recent research has begun to identify the environmental, genetic, epigenetic and neural mechanisms that underlie resilience, and has shown that resilience is mediated by adaptive changes in several neural circuits involving numerous neurotransmitter and molecular pathways. These changes shape the functioning of the neural circuits that regulate reward, fear, emotion reactivity and social behaviour, which together are thought to mediate successful coping with stress.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Epigenetic mechanisms of stress responsiveness.
Figure 2: Neurobiological mechanisms of resilience in a mouse model.
Figure 3: Neural circuitries of fear and reward.

References

  1. 1

    Rutter, M. Implications of resilience concepts for scientific understanding. Ann. NY Acad. Sci. 1094, 1–12 (2006).

    PubMed  Google Scholar 

  2. 2

    McEwen, B. S. Mood disorders and allostatic load. Biol. Psychiatry 54, 200–207 (2003).

    PubMed  Google Scholar 

  3. 3

    Charney, D. S. Psychobiological mechanisms of resilience and vulnerability: implications for successful adaptation to extreme stress. Am. J. Psychiatry 161, 195–216 (2004). In this review, the author presents a psychobiological model of resilience and vulnerability to extreme stress and reviews neurochemical, neuropeptide, hormonal and neural mechanisms associated with resilience.

    PubMed  Google Scholar 

  4. 4

    Masten, A. S. Ordinary magic. Resilience processes in development. Am. Psychol. 56, 227–238 (2001).

    CAS  PubMed  Google Scholar 

  5. 5

    Masten, A. S. & Coatsworth, J. D. The development of competence in favorable and unfavorable environments. Lessons from research on successful children. Am. Psychol. 53, 205–220 (1998).

    CAS  PubMed  Google Scholar 

  6. 6

    Rutter, M. Resilience in the face of adversity. Protective factors and resistance to psychiatric disorder. Br. J. Psychiatry 147, 598–611 (1985).

    CAS  PubMed  Google Scholar 

  7. 7

    Bonanno, G. A. Loss, trauma, and human resilience: have we underestimated the human capacity to thrive after extremely aversive events? Am. Psychol. 59, 20–28 (2004).

    PubMed  Google Scholar 

  8. 8

    Alim, T. N. et al. Trauma, resilience, and recovery in a high-risk African-American population. Am. J. Psychiatry 165, 1566–1575 (2008). This study identifies psychosocial factors associated with resilience and recovery from psychiatric disorders in a sample of African-American adults exposed to severe trauma.

    PubMed  Google Scholar 

  9. 9

    Cicchetti, D. & Blender, J. A. A multiple-levels-of-analysis perspective on resilience: implications for the developing brain, neural plasticity, and preventive interventions. Ann. NY Acad. Sci. 1094, 248–258 (2006).

    PubMed  Google Scholar 

  10. 10

    Hasler, G., Drevets, W. C., Manji, H. K. & Charney, D. S. Discovering endophenotypes for major depression. Neuropsychopharmacology 29, 1765–1781 (2004).

    CAS  PubMed  Google Scholar 

  11. 11

    Zhou, Z. et al. Genetic variation in human NPY expression affects stress response and emotion. Nature 452, 997–1001 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Krishnan, V. & Nestler, E. J. The molecular neurobiology of depression. Nature 455, 894–902 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Southwick, S. M., Vythilingam, M. & Charney, D. S. The psychobiology of depression and resilience to stress: implications for prevention and treatment. Annu. Rev. Clin. Psychol. 1, 255–291 (2005).

    PubMed  Google Scholar 

  14. 14

    Carver, C. S. You want to measure coping but your protocol's too long: consider the brief COPE. Int. J. Behav. Med. 4, 92–100 (1997).

    CAS  PubMed  Google Scholar 

  15. 15

    Ong, A. D., Bergeman, C. S., Bisconti, T. L. & Wallace, K. A. Psychological resilience, positive emotions, and successful adaptation to stress in later life. J. Pers. Soc. Psychol. 91, 730–749 (2006).

    PubMed  Google Scholar 

  16. 16

    Tugade, M. M. & Fredrickson, B. L. Resilient individuals use positive emotions to bounce back from negative emotional experiences. J. Pers. Soc. Psychol. 86, 320–333 (2004).

    PubMed  PubMed Central  Google Scholar 

  17. 17

    Fredrickson, B. L. The role of positive emotions in positive psychology. The broaden-and-build theory of positive emotions. Am. Psychol. 56, 218–226 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Ryff, C. D. & Keyes, C. L. The structure of psychological well-being revisited. J. Pers. Soc. Psychol. 69, 719–727 (1995).

    CAS  PubMed  Google Scholar 

  19. 19

    Pargament, K. I., Smith, B. W., Koenig, H. G. & Perez, L. Patterns of positive and negative religious coping with major life stressors. J. Sci. Study Relig. 37, 710–724 (1998).

    Google Scholar 

  20. 20

    Heim, C. & Nemeroff, C. B. The role of childhood trauma in the neurobiology of mood and anxiety disorders: preclinical and clinical studies. Biol. Psychiatry 49, 1023–1039 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Karlamangla, A. S., Singer, B. H., McEwen, B. S., Rowe, J. W. & Seeman, T. E. Allostatic load as a predictor of functional decline. MacArthur studies of successful aging. J. Clin. Epidemiol. 55, 696–710 (2002).

    PubMed  Google Scholar 

  22. 22

    McEwen, B. S. & Milner, T. A. Hippocampal formation: shedding light on the influence of sex and stress on the brain. Brain Res. Rev. 55, 343–355 (2007).

    PubMed  PubMed Central  Google Scholar 

  23. 23

    Brown, E. S., Woolston, D. J. & Frol, A. B. Amygdala volume in patients receiving chronic corticosteroid therapy. Biol. Psychiatry 63, 705–709 (2008).

    CAS  PubMed  Google Scholar 

  24. 24

    de Kloet, E. R., Joels, M. & Holsboer, F. Stress and the brain: from adaptation to disease. Nature Rev. Neurosci. 6, 463–475 (2005). This excellent review summarizes reciprocal interactions between limbic networks and the HPA axis and describes how imbalances in mineralocorticoid and GR signalling can increase vulnerability for mental illness.

    CAS  Google Scholar 

  25. 25

    de Kloet, E. R., Derijk, R. H. & Meijer, O. C. Therapy insight: is there an imbalanced response of mineralocorticoid and glucocorticoid receptors in depression? Nature Clin. Pract. Endocrinol. Metab. 3, 168–179 (2007).

    CAS  Google Scholar 

  26. 26

    Lu, A. et al. Conditional mouse mutants highlight mechanisms of corticotropin-releasing hormone effects on stress-coping behavior. Mol. Psychiatry 13, 1028–1042 (2008).

    CAS  PubMed  Google Scholar 

  27. 27

    Korte, S. M., Koolhaas, J. M., Wingfield, J. C. & McEwen, B. S. The Darwinian concept of stress: benefits of allostasis and costs of allostatic load and the trade-offs in health and disease. Neurosci. Biobehav. Rev. 29, 3–38 (2005).

    PubMed  Google Scholar 

  28. 28

    Morgan, C. A. et al. Relationships among plasma dehydroepiandrosterone sulfate and cortisol levels, symptoms of dissociation, and objective performance in humans exposed to acute stress. Arch. Gen. Psychiatry 61, 819–825 (2004). Results from this study of soldiers enrolled in military survival training indicate that the DHEA sulfate/cortisol ratio might correlate with an individual's degree of stress resilience.

    CAS  PubMed  Google Scholar 

  29. 29

    Yehuda, R., Brand, S. R., Golier, J. A. & Yang, R. K. Clinical correlates of DHEA associated with post-traumatic stress disorder. Acta Psychiatr. Scand. 114, 187–193 (2006).

    CAS  PubMed  Google Scholar 

  30. 30

    Dubrovsky, B. O. Steroids, neuroactive steroids and neurosteroids in psychopathology. Prog. Neuropsychopharmacol. Biol. Psychiatry 29, 169–192 (2005).

    CAS  PubMed  Google Scholar 

  31. 31

    Charney, D. S. Neuroanatomical circuits modulating fear and anxiety behaviors. Acta Psychiatr. Scand. Suppl. 38–50 (2003).

    Google Scholar 

  32. 32

    McGaugh, J. L. The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annu. Rev. Neurosci. 27, 1–28 (2004).

    CAS  PubMed  Google Scholar 

  33. 33

    Sajdyk, T. J., Shekhar, A. & Gehlert, D. R. Interactions between NPY and CRF in the amygdala to regulate emotionality. Neuropeptides 38, 225–234 (2004).

    CAS  PubMed  Google Scholar 

  34. 34

    Morgan, C. A. et al. Plasma neuropeptide-Y concentrations in humans exposed to military survival training. Biol. Psychiatry 47, 902–909 (2000).

    CAS  PubMed  Google Scholar 

  35. 35

    Yehuda, R., Brand, S. & Yang, R. K. Plasma neuropeptide Y concentrations in combat exposed veterans: relationship to trauma exposure, recovery from PTSD, and coping. Biol. Psychiatry 59, 660–663 (2006). The authors report higher plasma NPY levels in trauma-exposed veterans without PTSD and in veterans showing recovery from PTSD than in veterans with PTSD, suggesting a relationship between NPY and resistance to or recovery after trauma exposure.

    CAS  PubMed  Google Scholar 

  36. 36

    Gutman, A. R., Yang, Y., Ressler, K. J. & Davis, M. The role of neuropeptide Y in the expression and extinction of fear-potentiated startle. J. Neurosci. 28, 12682–12690 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Sajdyk, T. J. et al. Neuropeptide Y in the amygdala induces long-term resilience to stress-induced reductions in social responses but not hypothalamic-adrenal-pituitary axis activity or hyperthermia. J. Neurosci. 28, 893–903 (2008).

    CAS  PubMed  Google Scholar 

  38. 38

    Duman, R. S. & Monteggia, L. M. A neurotrophic model for stress-related mood disorders. Biol. Psychiatry 59, 1116–1127 (2006).

    CAS  PubMed  Google Scholar 

  39. 39

    Eisch, A. J. et al. Brain-derived neurotrophic factor in the ventral midbrain-nucleus accumbens pathway: a role in depression. Biol. Psychiatry 54, 994–1005 (2003).

    CAS  PubMed  Google Scholar 

  40. 40

    Berton, O. et al. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 311, 864–868 (2006).

    CAS  PubMed  Google Scholar 

  41. 41

    Krishnan, V. et al. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell 131, 391–404 (2007). Using the social defeat paradigm in mice, the authors demonstrate that a subset of inbred C57Bl/56J mice are resilient to many of the deleterious effects of the stress and identify some of the underlying molecular mechanisms.

    CAS  PubMed  Google Scholar 

  42. 42

    Bradley, R. G. et al. Influence of child abuse on adult depression: moderation by the corticotropin-releasing hormone receptor gene. Arch. Gen. Psychiatry 65, 190–200 (2008). This study in two independent populations finds that polymorphisms and haplotypes of the CRH gene moderate the influence of child abuse on depressive symptoms in adulthood.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Derijk, R. H. & de Kloet, E. R. Corticosteroid receptor polymorphisms: determinants of vulnerability and resilience. Eur. J. Pharmacol. 583, 303–311 (2008).

    CAS  PubMed  Google Scholar 

  44. 44

    Binder, E. B. et al. Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults. JAMA 299, 1291–1305 (2008). The authors report a gene–environment interaction between four SNPs of the stress-related FKBP5 gene and severity of child abuse that predicts adult PTSD symptoms.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Ising, M. et al. Polymorphisms in the FKBP5 gene region modulate recovery from psychosocial stress in healthy controls. Eur. J. Neurosci. 28, 389–398 (2008).

    PubMed  Google Scholar 

  46. 46

    Caspi, A. et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301, 386–389 (2003).

    CAS  PubMed  Google Scholar 

  47. 47

    Kendler, K. S., Kuhn, J. W., Vittum, J., Prescott, C. A. & Riley, B. The interaction of stressful life events and a serotonin transporter polymorphism in the prediction of episodes of major depression: a replication. Arch. Gen. Psychiatry 62, 529–535 (2005).

    CAS  PubMed  Google Scholar 

  48. 48

    Gillespie, N. A., Whitfield, J. B., Williams, B., Heath, A. C. & Martin, N. G. The relationship between stressful life events, the serotonin transporter (5-HTTLPR) genotype and major depression. Psychol. Med. 35, 101–111 (2005).

    PubMed  Google Scholar 

  49. 49

    Munafo, M. R., Durrant, C., Lewis, G. & Flint, J. Gene X environment interactions at the serotonin transporter locus. Biol. Psychiatry 65, 211–219 (2009).

    CAS  PubMed  Google Scholar 

  50. 50

    Hariri, A. R. et al. A susceptibility gene for affective disorders and the response of the human amygdala. Arch. Gen. Psychiatry 62, 146–152 (2005).

    CAS  PubMed  Google Scholar 

  51. 51

    Pezawas, L. et al. 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nature Neurosci. 8, 828–834 (2005).

    CAS  PubMed  Google Scholar 

  52. 52

    Munafo, M. R., Brown, S. M. & Hariri, A. R. Serotonin transporter (5-HTTLPR) genotype and amygdala activation: a meta-analysis. Biol. Psychiatry 63, 852–857 (2008).

    CAS  PubMed  Google Scholar 

  53. 53

    Stein, M. B., Campbell-Sills, L. & Gelernter, J. Genetic variation in 5HTTLPR is associated with emotional resilience. Am. J. Med. Genet. B Neuropsychiatr. Genet. 16 Jan 2009 (doi:10.1002/ajmg.b.30916).

    CAS  Google Scholar 

  54. 54

    Heinz, A. & Smolka, M. N. The effects of catechol O-methyltransferase genotype on brain activation elicited by affective stimuli and cognitive tasks. Rev. Neurosci. 17, 359–367 (2006).

    CAS  PubMed  Google Scholar 

  55. 55

    Schmack, K. et al. Catechol-O-methyltransferase val158 met genotype influences neural processing of reward anticipation. Neuroimage 42, 1631–1638 (2008).

    PubMed  Google Scholar 

  56. 56

    Chen, Z. Y. et al. Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science 314, 140–143 (2006). The authors generated mice that duplicate the Val66Met polymorphism in the BDNF gene seen in humans, and demonstrate differences in emotional behaviour and other behavioural domains.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Egan, M. F. et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112, 257–269 (2003).

    CAS  PubMed  Google Scholar 

  58. 58

    Jabbi, M. et al. Convergent genetic modulation of the endocrine stress response involves polymorphic variations of 5-HTT, COMT and MAOA. Mol. Psychiatry 12, 483–490 (2007).

    CAS  PubMed  Google Scholar 

  59. 59

    Mandelli, L. et al. Interaction between serotonin transporter gene, catechol-O-methyltransferase gene and stressful life events in mood disorders. Int. J. Neuropsychopharmacol. 10, 437–447 (2007).

    CAS  PubMed  Google Scholar 

  60. 60

    Smolka, M. N. et al. Gene-gene effects on central processing of aversive stimuli. Mol. Psychiatry 12, 307–317 (2007).

    CAS  PubMed  Google Scholar 

  61. 61

    Kaufman, J. et al. Social supports and serotonin transporter gene moderate depression in maltreated children. Proc. Natl Acad. Sci. USA 101, 17316–17321 (2004).

    CAS  PubMed  Google Scholar 

  62. 62

    Kim, J. M. et al. Interactions between life stressors and susceptibility genes (5-HTTLPR and BDNF) on depression in Korean elders. Biol. Psychiatry 62, 423–428 (2007).

    CAS  PubMed  Google Scholar 

  63. 63

    Kaufman, J. et al. Brain-derived neurotrophic factor-5-HTTLPR gene interactions and environmental modifiers of depression in children. Biol. Psychiatry 59, 673–680 (2006).

    CAS  PubMed  Google Scholar 

  64. 64

    Tsankova, N., Renthal, W., Kumar, A. & Nestler, E. J. Epigenetic regulation in psychiatric disorders. Nature Rev. Neurosci. 8, 355–367 (2007).

    CAS  Google Scholar 

  65. 65

    Meaney, M. J. & Szyf, M. Environmental programming of stress responses through DNA methylation: life at the interface between a dynamic environment and a fixed genome. Dialogues Clin. Neurosci. 7, 103–123 (2005). This review summarizes the authors' elegant work in rats, which has demonstrated a role for methylation of the GR gene in the hippocampus in mediating life-long effects of maternal care on an individual's behaviour.

    PubMed  PubMed Central  Google Scholar 

  66. 66

    Weaver, I. C. et al. Epigenetic programming by maternal behavior. Nature Neurosci. 7, 847–854 (2004).

    CAS  PubMed  Google Scholar 

  67. 67

    Krishnan, V. et al. AKT signaling within the ventral tegmental area regulates cellular and behavioral responses to stressful stimuli. Biol. Psychiatry 64, 691–700 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Berton, O. et al. Induction of ΔFosB in the periaqueductal gray by stress promotes active coping responses. Neuron 55, 289–300 (2007). The authors demonstrate that induction of the transcription factor FOSB in the periaqueductal grey is a mechanism of resilience: such induction, partly through the regulation of substance P neurotransmission, promotes adaptive responses to stress.

    CAS  PubMed  Google Scholar 

  69. 69

    Bandler, R. & Shipley, M. T. Columnar organization in the midbrain periaqueductal gray: modules for emotional expression? Trends Neurosci. 17, 379–389 (1994).

    CAS  PubMed  Google Scholar 

  70. 70

    Ulrich-Lai, Y. M. & Herman, J. P. Neural regulation of endocrine and autonomic stress responses. Nature Rev. Neurosci. 13 May 2009 (doi:10.1038/nrn2647).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Dedovic, K. et al. The Montreal Imaging Stress Task: using functional imaging to investigate the effects of perceiving and processing psychosocial stress in the human brain. J. Psychiatry Neurosci. 30, 319–325 (2005).

    PubMed  PubMed Central  Google Scholar 

  72. 72

    Rauch, S. L., Shin, L. M. & Phelps, E. A. Neurocircuitry models of posttraumatic stress disorder and extinction: human neuroimaging research--past, present, and future. Biol. Psychiatry 60, 376–382 (2006).

    PubMed  Google Scholar 

  73. 73

    Yehuda, R. & LeDoux, J. Response variation following trauma: a translational neuroscience approach to understanding PTSD. Neuron 56, 19–32 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Delgado, M. R., Olsson, A. & Phelps, E. A. Extending animal models of fear conditioning to humans. Biol. Psychol. 73, 39–48 (2006).

    CAS  PubMed  Google Scholar 

  75. 75

    Milad, M. R. et al. Thickness of ventromedial prefrontal cortex in humans is correlated with extinction memory. Proc. Natl Acad. Sci. USA 102, 10706–10711 (2005).

    CAS  PubMed  Google Scholar 

  76. 76

    Schiller, D., Levy, I., Niv, Y., LeDoux, J. E. & Phelps, E. A. From fear to safety and back: reversal of fear in the human brain. J. Neurosci. 28, 11517–11525 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77

    Delgado, M. R., Nearing, K. I., Ledoux, J. E. & Phelps, E. A. Neural circuitry underlying the regulation of conditioned fear and its relation to extinction. Neuron 59, 829–838 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Liberzon, I. & Sripada, C. S. The functional neuroanatomy of PTSD: a critical review. Prog. Brain Res. 167, 151–169 (2008).

    PubMed  Google Scholar 

  79. 79

    Felmingham, K. et al. Changes in anterior cingulate and amygdala after cognitive behavior therapy of posttraumatic stress disorder. Psychol. Sci. 18, 127–129 (2007).

    PubMed  Google Scholar 

  80. 80

    Davis, M. & Whalen, P. J. The amygdala: vigilance and emotion. Mol. Psychiatry 6, 13–34 (2001).

    CAS  PubMed  Google Scholar 

  81. 81

    Everitt, B. J., Cardinal, R. N., Parkinson, J. A. & Robbins, T. W. Appetitive behavior: impact of amygdala-dependent mechanisms of emotional learning. Ann. NY Acad. Sci. 985, 233–250 (2003).

    PubMed  Google Scholar 

  82. 82

    Bast, T. Toward an integrative perspective on hippocampal function: from the rapid encoding of experience to adaptive behavior. Rev. Neurosci. 18, 253–281 (2007).

    PubMed  Google Scholar 

  83. 83

    Pollak, D. D. et al. An animal model of a behavioral intervention for depression. Neuron 60, 149–161 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Roozendaal, B., Schelling, G. & McGaugh, J. L. Corticotropin-releasing factor in the basolateral amygdala enhances memory consolidation via an interaction with the β-adrenoceptor-cAMP pathway: dependence on glucocorticoid receptor activation. J. Neurosci. 28, 6642–6651 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Davis, M. & Myers, K. M. The role of glutamate and γ-aminobutyric acid in fear extinction: clinical implications for exposure therapy. Biol. Psychiatry 52, 998–1007 (2002).

    CAS  PubMed  Google Scholar 

  86. 86

    Davis, M., Ressler, K., Rothbaum, B. O. & Richardson, R. Effects of D-cycloserine on extinction: translation from preclinical to clinical work. Biol. Psychiatry 60, 369–375 (2006). This is an elegant example of applying basic research in animals to early clinical trials, in which the authors demonstrate the ability of an NMDA receptor partial allosteric agonist to promote extinction.

    CAS  PubMed  Google Scholar 

  87. 87

    Stein, M. B., Kerridge, C., Dimsdale, J. E. & Hoyt, D. B. Pharmacotherapy to prevent PTSD: results from a randomized controlled proof-of-concept trial in physically injured patients. J. Trauma. Stress 20, 923–932 (2007).

    PubMed  Google Scholar 

  88. 88

    Cai, W. H., Blundell, J., Han, J., Greene, R. W. & Powell, C. M. Postreactivation glucocorticoids impair recall of established fear memory. J. Neurosci. 26, 9560–9566 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89

    Pizzagalli, D. A. et al. Reduced caudate and nucleus accumbens response to rewards in unmedicated subjects with major depressive disorder. Am. J. Psychiatry 1 May 2009 (doi:10.1176/appi.ajp.2008.08081201).

    PubMed  Google Scholar 

  90. 90

    Sailer, U. et al. Altered reward processing in the nucleus accumbens and mesial prefrontal cortex of patients with posttraumatic stress disorder. Neuropsychologia 46, 2836–2844 (2008).

    PubMed  Google Scholar 

  91. 91

    Drevets, W. C., Price, J. L. & Furey, M. L. Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct. Funct. 213, 93–118 (2008).

    PubMed  PubMed Central  Google Scholar 

  92. 92

    Forbes, E. E. et al. Altered striatal activation predicting real-world positive affect in adolescent major depressive disorder. Am. J. Psychiatry 166, 64–73 (2009). This fMRI study links altered striatal response to monetary reward in depressed adolescents with reports of lower subjective positive affect in natural environments.

    PubMed  Google Scholar 

  93. 93

    Monk, C. S. et al. Amygdala and nucleus accumbens activation to emotional facial expressions in children and adolescents at risk for major depression. Am. J. Psychiatry 165, 90–98 (2008).

    PubMed  Google Scholar 

  94. 94

    Sharot, T., Riccardi, A. M., Raio, C. M. & Phelps, E. A. Neural mechanisms mediating optimism bias. Nature 450, 102–105 (2007).

    CAS  PubMed  Google Scholar 

  95. 95

    Vythilingam, M. et al. Reward circuitry in resilience to severe trauma: an fMRI investigation of resilient special forces soldiers. Psychiatry Res. 172, 75–77 (2009).

    PubMed  PubMed Central  Google Scholar 

  96. 96

    Siegrist, J. et al. Differential brain activation according to chronic social reward frustration. Neuroreport 16, 1899–1903 (2005).

    PubMed  Google Scholar 

  97. 97

    Hyman, S. E., Malenka, R. C. & Nestler, E. J. Neural mechanisms of addiction: the role of reward-related learning and memory. Annu. Rev. Neurosci. 29, 565–598 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98

    Nestler, E. J. & Carlezon, W. A. Jr. The mesolimbic dopamine reward circuit in depression. Biol. Psychiatry 59, 1151–1159 (2006).

    CAS  PubMed  Google Scholar 

  99. 99

    Johnstone, T., van Reekum, C. M., Urry, H. L., Kalin, N. H. & Davidson, R. J. Failure to regulate: counterproductive recruitment of top-down prefrontal-subcortical circuitry in major depression. J. Neurosci. 27, 8877–8884 (2007). In this fMRI study, the authors demonstrate abnormalities in top-down regulation of the amygdala by the PFC in depressed individuals.

    CAS  PubMed  Google Scholar 

  100. 100

    Phillips, M. L., Drevets, W. C., Rauch, S. L. & Lane, R. Neurobiology of emotion perception I: the neural basis of normal emotion perception. Biol. Psychiatry 54, 504–514 (2003).

    PubMed  Google Scholar 

  101. 101

    Phillips, M. L., Drevets, W. C., Rauch, S. L. & Lane, R. Neurobiology of emotion perception II: implications for major psychiatric disorders. Biol. Psychiatry 54, 515–528 (2003).

    PubMed  Google Scholar 

  102. 102

    Ressler, K. J. & Mayberg, H. S. Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nature Neurosci. 10, 1116–1124 (2007).

    CAS  PubMed  Google Scholar 

  103. 103

    Drabant, E. M. et al. Catechol O-methyltransferase val158 met genotype and neural mechanisms related to affective arousal and regulation. Arch. Gen. Psychiatry 63, 1396–1406 (2006).

    CAS  PubMed  Google Scholar 

  104. 104

    Hariri, A. R. et al. Serotonin transporter genetic variation and the response of the human amygdala. Science 297, 400–403 (2002).

    CAS  Google Scholar 

  105. 105

    van der Veen, F. M., Evers, E. A., Deutz, N. E. & Schmitt, J. A. Effects of acute tryptophan depletion on mood and facial emotion perception related brain activation and performance in healthy women with and without a family history of depression. Neuropsychopharmacology 32, 216–224 (2007).

    CAS  PubMed  Google Scholar 

  106. 106

    Goldin, P. R., McRae, K., Ramel, W. & Gross, J. J. The neural bases of emotion regulation: reappraisal and suppression of negative emotion. Biol. Psychiatry 63, 577–586 (2008).

    PubMed  Google Scholar 

  107. 107

    Ochsner, K. N. et al. For better or for worse: neural systems supporting the cognitive down- and up-regulation of negative emotion. Neuroimage 23, 483–499 (2004).

    PubMed  Google Scholar 

  108. 108

    Wager, T. D., Davidson, M. L., Hughes, B. L., Lindquist, M. A. & Ochsner, K. N. Prefrontal-subcortical pathways mediating successful emotion regulation. Neuron 59, 1037–1050 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109

    Drabant, E. M., McRae, K., Manuck, S. B., Hariri, A. R. & Gross, J. J. Individual differences in typical reappraisal use predict amygdala and prefrontal responses. Biol. Psychiatry 65, 367–373 (2009).

    PubMed  Google Scholar 

  110. 110

    New, A. S. et al. An fMRI study of deliberate emotion regulation in PTSD and resilience. Biol. Psychiatry (in the press).

  111. 111

    Iarocci, G., Yager, J. & Elfers, T. What gene-environment interactions can tell us about social competence in typical and atypical populations. Brain Cogn. 65, 112–127 (2007).

    PubMed  Google Scholar 

  112. 112

    Schulte-Ruther, M., Markowitsch, H. J., Fink, G. R. & Piefke, M. Mirror neuron and theory of mind mechanisms involved in face-to-face interactions: a functional magnetic resonance imaging approach to empathy. J. Cogn. Neurosci. 19, 1354–1372 (2007).

    PubMed  Google Scholar 

  113. 113

    Rizzolatti, G. & Craighero, L. The mirror-neuron system. Annu. Rev. Neurosci. 27, 169–192 (2004).

    CAS  PubMed  Google Scholar 

  114. 114

    Pfeifer, J. H., Iacoboni, M., Mazziotta, J. C. & Dapretto, M. Mirroring others' emotions relates to empathy and interpersonal competence in children. Neuroimage 39, 2076–2085 (2008).

    PubMed  Google Scholar 

  115. 115

    Domes, G., Heinrichs, M., Michel, A., Berger, C. & Herpertz, S. C. Oxytocin improves “mind-reading” in humans. Biol. Psychiatry 61, 731–733 (2007).

    CAS  PubMed  Google Scholar 

  116. 116

    Kosfeld, M., Heinrichs, M., Zak, P. J., Fischbacher, U. & Fehr, E. Oxytocin increases trust in humans. Nature 435, 673–676 (2005).

    CAS  PubMed  Google Scholar 

  117. 117

    Rilling, J. et al. A neural basis for social cooperation. Neuron 35, 395–405 (2002).

    CAS  PubMed  Google Scholar 

  118. 118

    Kirsch, P. et al. Oxytocin modulates neural circuitry for social cognition and fear in humans. J. Neurosci. 25, 11489–11493 (2005).

    CAS  PubMed  Google Scholar 

  119. 119

    Skuse, D. H. & Gallagher, L. Dopaminergic-neuropeptide interactions in the social brain. Trends Cogn. Sci. 13, 27–35 (2009).

    CAS  PubMed  Google Scholar 

  120. 120

    Storm, E. E. & Tecott, L. H. Social circuits: peptidergic regulation of mammalian social behavior. Neuron 47, 483–486 (2005).

    CAS  PubMed  Google Scholar 

  121. 121

    Insel, T. R. A neurobiological basis of social attachment. Am. J. Psychiatry 154, 726–735 (1997).

    CAS  PubMed  Google Scholar 

  122. 122

    Bowlby, J. Attachment and Loss (Basic Books, New York, 1982).

    Google Scholar 

  123. 123

    Charuvastra, A. & Cloitre, M. Social bonds and posttraumatic stress disorder. Annu. Rev. Psychol. 59, 301–328 (2008).

    PubMed  PubMed Central  Google Scholar 

  124. 124

    Coan, J. A., Schaefer, H. S. & Davidson, R. J. Lending a hand: social regulation of the neural response to threat. Psychol. Sci. 17, 1032–1039 (2006).

    PubMed  Google Scholar 

  125. 125

    Lee, V., Cohen, S. R., Edgar, L., Laizner, A. M. & Gagnon, A. J. Clarifying “meaning” in the context of cancer research: a systematic literature review. Palliat. Support. Care 2, 291–303 (2004).

    PubMed  Google Scholar 

  126. 126

    Caria, A. et al. Regulation of anterior insular cortex activity using real-time fMRI. Neuroimage 35, 1238–1246 (2007).

    Google Scholar 

  127. 127

    Weiskopf, N. et al. Self-regulation of local brain activity using real-time functional magnetic resonance imaging (fMRI). J. Physiol. Paris 98, 357–373 (2004).

    PubMed  Google Scholar 

  128. 128

    Folkman, S. & Moskowitz, J. T. Positive affect and the other side of coping. Am. Psychol. 55, 647–654 (2000).

    CAS  PubMed  Google Scholar 

  129. 129

    Raine, A. & Yang, Y. Neural foundations to moral reasoning and antisocial behavior. Soc. Cogn. Affect. Neurosci. 1, 203–213 (2006).

    PubMed  PubMed Central  Google Scholar 

  130. 130

    Taylor, S. E., Eisenberger, N. I., Saxbe, D., Lehman, B. J. & Lieberman, M. D. Neural responses to emotional stimuli are associated with childhood family stress. Biol. Psychiatry 60, 296–301 (2006).

    PubMed  Google Scholar 

  131. 131

    Vythilingam, M. et al. Childhood trauma associated with smaller hippocampal volume in women with major depression. Am. J. Psychiatry 159, 2072–2080 (2002).

    PubMed  PubMed Central  Google Scholar 

  132. 132

    Rutter, M. Developmental catch-up, and deficit, following adoption after severe global early privation. English and Romanian Adoptees (ERA) Study Team. J. Child Psychol. Psychiatry 39, 465–476 (1998).

    CAS  PubMed  Google Scholar 

  133. 133

    Green, T. A., Gehrke, B. J. & Bardo, M. T. Environmental enrichment decreases intravenous amphetamine self-administration in rats: dose-response functions for fixed- and progressive-ratio schedules. Psychopharmacology (Berl.) 162, 373–378 (2002).

    CAS  Google Scholar 

  134. 134

    Francis, D. D., Diorio, J., Plotsky, P. M. & Meaney, M. J. Environmental enrichment reverses the effects of maternal separation on stress reactivity. J. Neurosci. 22, 7840–7843 (2002).

    CAS  PubMed  Google Scholar 

  135. 135

    Masten, A. S., Best, K. M. & Garmezy, N. Resilience and development: contributions from the study of children who overcome adversity. Dev. Psychopathol. 2, 425–444 (1991).

    Google Scholar 

  136. 136

    Luthar, S. S., Sawyer, J. A. & Brown, P. J. Conceptual issues in studies of resilience: past, present, and future research. Ann. NY Acad. Sci. 1094, 105–115 (2006).

    PubMed  Google Scholar 

  137. 137

    Parker, G. Parental 'affectionless control' as an antecedent to adult depression. A risk factor delineated. Arch. Gen. Psychiatry 40, 956–960 (1983).

    CAS  PubMed  Google Scholar 

  138. 138

    McGowan, P. O. et al. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nature Neurosci. 12, 342–348 (2009).

    CAS  Google Scholar 

  139. 139

    Lyons, D. M. & Parker, K. J. Stress inoculation-induced indications of resilience in monkeys. J. Trauma. Stress 20, 423–433 (2007).

    PubMed  Google Scholar 

  140. 140

    Parker, K. J., Buckmaster, C. L., Schatzberg, A. F. & Lyons, D. M. Prospective investigation of stress inoculation in young monkeys. Arch. Gen. Psychiatry 61, 933–941 (2004).

    PubMed  Google Scholar 

  141. 141

    Maier, S. F., Amat, J., Baratta, M. V., Paul, E. & Watkins, L. R. Behavioral control, the medial prefrontal cortex, and resilience. Dialogues Clin. Neurosci. 8, 397–406 (2006). In this article the authors review their findings that demonstrate, in animals, that control over stressful events limits the deleterious consequences on the individual.

    PubMed  PubMed Central  Google Scholar 

  142. 142

    Gluckman, P. D., Hanson, M. A., Spencer, H. G. Predictive adaptive responses and human evolution. Trends Ecol. Evol. 20, 527–533 (2005).

    PubMed  Google Scholar 

  143. 143

    Champagne D. L. et al. Maternal care and hippocampal plasticity: evidence for experience-dependent structural plasticity, altered synaptic functioning, and differential responsiveness to glucocorticoids and stress. J. Neurosci. 28, 6037–6045 (2008).

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Adriana Feder.

Supplementary information

Supplementary information S1 (box)

Animal Models of Resilience (PDF 220 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Feder, A., Nestler, E. & Charney, D. Psychobiology and molecular genetics of resilience. Nat Rev Neurosci 10, 446–457 (2009). https://doi.org/10.1038/nrn2649

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing