Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The probability of neurotransmitter release: variability and feedback control at single synapses

Abstract

Information transfer at chemical synapses occurs when vesicles fuse with the plasma membrane and release neurotransmitter. This process is stochastic and its likelihood of occurrence is a crucial factor in the regulation of signal propagation in neuronal networks. The reliability of neurotransmitter release can be highly variable: experimental data from electrophysiological, molecular and imaging studies have demonstrated that synaptic terminals can individually set their neurotransmitter release probability dynamically through local feedback regulation. This local tuning of transmission has important implications for current models of single-neuron computation.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Characterizing neuronal connections with paired recordings and morphological reconstructions.
Figure 2: Variability of release probability measured at single synapses.
Figure 3: Postsynaptic influences on release probability.
Figure 4: Consequences of pr adjustments for signal/noise ratio and energy usage.

References

  1. Del Castillo, J. & Katz, B. Quantal components of the end-plate potential. J. Physiol. 124, 560–573 (1954).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Sudhof, T. C. The synaptic vesicle cycle. Annu. Rev. Neurosci. 27, 509–547 (2004).

    Article  PubMed  CAS  Google Scholar 

  3. Tracey, D. J. & Walmsley, B. Synaptic input from identified muscle afferents to neurones of the dorsal spinocerebellar tract in the cat. J. Physiol. 350, 599–614 (1984).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Korn, H., Mallet, A., Triller, A. & Faber, D. S. Transmission at a central inhibitory synapse. II. Quantal description of release, with a physical correlate for binomial n. J. Neurophysiol. 48, 679–707 (1982).

    Article  CAS  PubMed  Google Scholar 

  5. Korn, H., Triller, A., Mallet, A. & Faber, D. S. Fluctuating responses at a central synapse: n of binomial fit predicts number of stained presynaptic boutons. Science 213, 898–901 (1981).

    Article  CAS  PubMed  Google Scholar 

  6. Harvey, R. J. & Napper, R. M. Quantitative study of granule and Purkinje cells in the cerebellar cortex of the rat. J. Comp. Neurol. 274, 151–157 (1988).

    Article  CAS  PubMed  Google Scholar 

  7. Deuchars, J., West, D. C. & Thomson, A. M. Relationships between morphology and physiology of pyramid-pyramid single axon connections in rat neocortex in vitro. J. Physiol. 478, 423–435 (1994).

    Article  PubMed Central  PubMed  Google Scholar 

  8. Feldmeyer, D., Lubke, J. & Sakmann, B. Efficacy and connectivity of intracolumnar pairs of layer 2/3 pyramidal cells in the barrel cortex of juvenile rats. J. Physiol. 575, 583–602 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Buhl, E. H., Halasy, K. & Somogyi, P. Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites. Nature 368, 823–828 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Tamas, G., Buhl, E. H. & Somogyi, P. Fast IPSPs elicited via multiple synaptic release sites by different types of GABAergic neurone in the cat visual cortex. J. Physiol. 500, 715–738 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Llinas, R., Bloedel, J. R. & Hillman, D. E. Functional characterization of neuronal circuitry of frog cerebellar cortex. J. Neurophysiol. 32, 847–870 (1969).

    Article  CAS  PubMed  Google Scholar 

  12. Isaacson, J. S. & Walmsley, B. Counting quanta: direct measurements of transmitter release at a central synapse. Neuron 15, 875–884 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Meyer, A. C., Neher, E. & Schneggenburger, R. Estimation of quantal size and number of functional active zones at the calyx of held synapse by nonstationary EPSC variance analysis. J. Neurosci. 21, 7889–7900 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Branco, T., Staras, K., Darcy, K. J. & Goda, Y. Local dendritic activity sets release probability at hippocampal synapses. Neuron 59, 475–485 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Buhl, E. H. et al. Effect, number and location of synapses made by single pyramidal cells onto aspiny interneurones of cat visual cortex. J. Physiol. 500, 689–713 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Thomson, A. M. & Lamy, C. Functional maps of neocortical local circuitry. Front. Neurosci. 1, 19–42 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Rall, W. in Neural Theory and Modeling (ed. Reiss, R. F.) (Stanford Univ. Press, Palo Alto, 1964).

    Google Scholar 

  18. Polsky, A., Mel, B. W. & Schiller, J. Computational subunits in thin dendrites of pyramidal cells. Nature Neurosci. 7, 621–627 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Katz, B. (ed.) Nerve, Muscle and Synapse (McGraw-Hill, 1966).

    Google Scholar 

  20. Maass, W. & Zador, A. M. Dynamic stochastic synapses as computational units. Neural Comput. 11, 903–917 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Jack, J. J., Redman, S. J. & Wong, K. The components of synaptic potentials evoked in cat spinal motoneurones by impulses in single group Ia afferents. J. Physiol. 321, 65–96 (1981).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Redman, S. & Walmsley, B. Amplitude fluctuations in synaptic potentials evoked in cat spinal motoneurones at identified group Ia synapses. J. Physiol. 343, 135–145 (1983).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Walmsley, B., Edwards, F. R. & Tracey, D. J. Nonuniform release probabilities underlie quantal synaptic transmission at a mammalian excitatory central synapse. J. Neurophysiol. 60, 889–908 (1988).

    Article  CAS  PubMed  Google Scholar 

  24. Clamann, H. P., Mathis, J. & Luscher, H. R. Variance analysis of excitatory postsynaptic potentials in cat spinal motoneurons during posttetanic potentiation. J. Neurophysiol. 61, 403–416 (1989).

    Article  CAS  PubMed  Google Scholar 

  25. Silver, R. A., Momiyama, A. & Cull-Candy, S. G. Locus of frequency-dependent depression identified with multiple-probability fluctuation analysis at rat climbing fibre-Purkinje cell synapses. J. Physiol. 510, 881–902 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Hessler, N. A., Shirke, A. M. & Malinow, R. The probability of transmitter release at a mammalian central synapse. Nature 366, 569–572 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Rosenmund, C., Clements, J. D. & Westbrook, G. L. Nonuniform probability of glutamate release at a hippocampal synapse. Science 262, 754–757 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Murthy, V. N., Sejnowski, T. J. & Stevens, C. F. Heterogeneous release properties of visualized individual hippocampal synapses. Neuron 18, 599–612 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Slutsky, I., Sadeghpour, S., Li, B. & Liu, G. Enhancement of synaptic plasticity through chronically reduced Ca2+ flux during uncorrelated activity. Neuron 44, 835–849 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Granseth, B., Odermatt, B., Royle, S. J. & Lagnado, L. Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses. Neuron 51, 773–786 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Schikorski, T. & Stevens, C. F. Quantitative ultrastructural analysis of hippocampal excitatory synapses. J. Neurosci. 17, 5858–5867 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bittner, G. D. Differentiation of nerve terminals in the crayfish opener muscle and its functional significance. J. Gen. Physiol. 51, 731–758 (1968).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Atwood, H. L. & Bittner, G. D. Matching of excitatory and inhibitory inputs to crustacean muscle fibers. J. Neurophysiol. 34, 157–170 (1971).

    Article  CAS  PubMed  Google Scholar 

  34. Frank, E. Matching of facilitation at the neuromuscular junction of the lobster: a possible case for influence of muscle on nerve. J. Physiol. 233, 635–658 (1973).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Cooper, R. L., Harrington, C. C., Marin, L. & Atwood, H. L. Quantal release at visualized terminals of a crayfish motor axon: intraterminal and regional differences. J. Comp. Neurol. 375, 583–600 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Parnas, I. Differential block at high frequency of branches of a single axon innervating two muscles. J. Neurophysiol. 35, 903–914 (1972).

    Article  CAS  PubMed  Google Scholar 

  37. Bennett, M. R., Jones, P. & Lavidis, N. A. The probability of quantal secretion along visualized terminal branches at amphibian (Bufo marinus) neuromuscular synapses. J. Physiol. 379, 257–274 (1986).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Robitaille, R. & Tremblay, J. P. Non-uniform release at the frog neuromuscular junction: evidence of morphological and physiological plasticity. Brain Res. 434, 95–116 (1987).

    Article  CAS  PubMed  Google Scholar 

  39. Robitaille, R. & Tremblay, J. P. Non-uniform responses to Ca2+ along the frog neuromuscular junction: effects on the probability of spontaneous and evoked transmitter release. Neuroscience 40, 571–585 (1991).

    Article  CAS  PubMed  Google Scholar 

  40. Katz, P. S., Kirk, M. D. & Govind, C. K. Facilitation and depression at different branches of the same motor axon: evidence for presynaptic differences in release. J. Neurosci. 13, 3075–3089 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Muller, K. J. & Nicholls, J. G. Different properties of synapses between a single sensory neurone and two different motor cells in the leech C.N.S. J. Physiol. 238, 357–369 (1974).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Koerber, H. R. & Mendell, L. M. Modulation of synaptic transmission at Ia-afferent fiber connections on motoneurons during high-frequency stimulation: role of postsynaptic target. J. Neurophysiol. 65, 590–597 (1991).

    Article  CAS  PubMed  Google Scholar 

  43. Brodin, L., Shupliakov, O., Pieribone, V. A., Hellgren, J. & Hill, R. H. The reticulospinal glutamate synapse in lamprey: plasticity and presynaptic variability. J. Neurophysiol. 72, 592–604 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Mennerick, S. & Zorumski, C. F. Paired-pulse modulation of fast excitatory synaptic currents in microcultures of rat hippocampal neurons. J. Physiol. 488, 85–101 (1995).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Markram, H., Wang, Y. & Tsodyks, M. Differential signaling via the same axon of neocortical pyramidal neurons. Proc. Natl Acad. Sci. USA 95, 5323–5328 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Reyes, A. et al. Target-cell-specific facilitation and depression in neocortical circuits. Nature Neurosci. 1, 279–285 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Davis, G. W. & Murphey, R. K. A role for postsynaptic neurons in determining presynaptic release properties in the cricket CNS: evidence for retrograde control of facilitation. J. Neurosci. 13, 3827–3838 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Laurent, G. & Sivaramakrishnan, A. Single local interneurons in the locust make central synapses with different properties of transmitter release on distinct postsynaptic neurons. J. Neurosci. 12, 2370–2380 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Koester, H. J. & Johnston, D. Target cell-dependent normalization of transmitter release at neocortical synapses. Science 308, 863–866 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Zucker, R. S. & Regehr, W. G. Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Waters, J. & Smith, S. J. Vesicle pool partitioning influences presynaptic diversity and weighting in rat hippocampal synapses. J. Physiol. 541, 811–823 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. He, L. & Wu, L. G. The debate on the kiss-and-run fusion at synapses. Trends Neurosci. 30, 447–455 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Catterall, W. A. & Few, A. P. Calcium channel regulation and presynaptic plasticity. Neuron 59, 882–901 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Borst, J. G. & Sakmann, B. Effect of changes in action potential shape on calcium currents and transmitter release in a calyx-type synapse of the rat auditory brainstem. Philos. Trans. R. Soc. Lond. B Biol. Sci. 354, 347–355 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Meinrenken, C. J., Borst, J. G. G. & Sakmann, B. Local routes revisited: the space and time dependence of the Ca2+ signal for phasic transmitter release at the rat calyx of Held. J. Physiol. 547, 665–689 (2003).

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Augustine, G. J., Santamaria, F. & Tanaka, K. Local calcium signaling in neurons. Neuron 40, 331–346 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Schneggenburger, R. & Neher, E. Presynaptic calcium and control of vesicle fusion. Curr. Opin. Neurobiol. 15, 266–274 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Reid, C. A., Clements, J. D. & Bekkers, J. M. Nonuniform distribution of Ca2+ channel subtypes on presynaptic terminals of excitatory synapses in hippocampal cultures. J. Neurosci. 17, 2738–2745 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Reuter, H. Measurements of exocytosis from single presynaptic nerve terminals reveal heterogeneous inhibition by Ca2+-channel blockers. Neuron 14, 773–779 (1995).

    Article  CAS  PubMed  Google Scholar 

  60. Sorra, K. E. & Harris, K. M. Occurrence and three-dimensional structure of multiple synapses between individual radiatum axons and their target pyramidal cells in hippocampal area CA1. J. Neurosci. 13, 3736–3748 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shigemoto, R. et al. Target-cell-specific concentration of a metabotropic glutamate receptor in the presynaptic active zone. Nature 381, 523–525 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Scanziani, M., Gahwiler, B. H. & Charpak, S. Target cell-specific modulation of transmitter release at terminals from a single axon. Proc. Natl Acad. Sci. USA 95, 12004–12009 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nicoll, R. A. & Schmitz, D. Synaptic plasticity at hippocampal mossy fibre synapses. Nature Rev. Neurosci. 6, 863–876 (2005).

    Article  CAS  Google Scholar 

  64. Maccaferri, G., Toth, K. & McBain, C. J. Target-specific expression of presynaptic mossy fiber plasticity. Science 279, 1368–1370 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Pelkey, K. A. & McBain, C. J. Target-cell-dependent plasticity within the mossy fibre-CA3 circuit reveals compartmentalized regulation of presynaptic function at divergent release sites. J. Physiol. 586, 1495–1502 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Lei, S. & McBain, C. J. Distinct NMDA receptors provide differential modes of transmission at mossy fiber-interneuron synapses. Neuron 33, 921–933 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Chevaleyre, V. & Castillo, P. E. Heterosynaptic LTD of hippocampal GABAergic synapses: a novel role of endocannabinoids in regulating excitability. Neuron 38, 461–472 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Gerdeman, G. L., Ronesi, J. & Lovinger, D. M. Postsynaptic endocannabinoid release is critical to long-term depression in the striatum. Nature Neurosci. 5, 446–451 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Marsicano, G. et al. The endogenous cannabinoid system controls extinction of aversive memories. Nature 418, 530–534 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Robbe, D., Kopf, M., Remaury, A., Bockaert, J. & Manzoni, O. J. Endogenous cannabinoids mediate long-term synaptic depression in the nucleus accumbens. Proc. Natl Acad. Sci. USA 99, 8384–8388 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Safo, P. K. & Regehr, W. G. Endocannabinoids control the induction of cerebellar LTD. Neuron 48, 647–659 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Sjostrom, P. J., Turrigiano, G. G. & Nelson, S. B. Neocortical LTD via coincident activation of presynaptic NMDA and cannabinoid receptors. Neuron 39, 641–654 (2003).

    Article  PubMed  Google Scholar 

  73. Chevaleyre, V., Takahashi, K. A. & Castillo, P. E. Endocannabinoid-mediated synaptic plasticity in the CNS. Annu. Rev. Neurosci. 29, 37–76 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Davis, G. W. & Goodman, C. S. Synapse-specific control of synaptic efficacy at the terminals of a single neuron. Nature 392, 82–86 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Stewart, B. A., Schuster, C. M., Goodman, C. S. & Atwood, H. L. Homeostasis of synaptic transmission in Drosophila with genetically altered nerve terminal morphology. J. Neurosci. 16, 3877–3886 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Paradis, S., Sweeney, S. T. & Davis, G. W. Homeostatic control of presynaptic release is triggered by postsynaptic membrane depolarization. Neuron 30, 737–749 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Petersen, S. A., Fetter, R. D., Noordermeer, J. N., Goodman, C. S. & DiAntonio, A. Genetic analysis of glutamate receptors in Drosophila reveals a retrograde signal regulating presynaptic transmitter release. Neuron 19, 1237–1248 (1997).

    Article  CAS  PubMed  Google Scholar 

  78. Sandrock, A. W. J. et al. Maintenance of acetylcholine receptor number by neuregulins at the neuromuscular junction in vivo. Science 276, 599–603 (1997).

    Article  PubMed  Google Scholar 

  79. Frank, C. A., Kennedy, M. J., Goold, C. P., Marek, K. W. & Davis, G. W. Mechanisms underlying the rapid induction and sustained expression of synaptic homeostasis. Neuron 52, 663–677 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Frank, C. A., Pielage, J. & Davis, G. W. A presynaptic homeostatic signaling system composed of the Eph receptor, ephexin, Cdc42, and CaV2.1 calcium channels. Neuron 61, 556–569 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Haghighi, A. P. et al. Retrograde control of synaptic transmission by postsynaptic CaMKII at the Drosophila neuromuscular junction. Neuron 39, 255–267 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Bacci, A. et al. Chronic blockade of glutamate receptors enhances presynaptic release and downregulates the interaction between synaptophysin-synaptobrevin-vesicle-associated membrane protein 2. J. Neurosci. 21, 6588–6596 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Thiagarajan, T. C., Lindskog, M. & Tsien, R. W. Adaptation to synaptic inactivity in hippocampal neurons. Neuron 47, 725–737 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Thiagarajan, T. C., Piedras-Renteria, E. S. & Tsien, R. W. α- and βCaMKII. Inverse regulation by neuronal activity and opposing effects on synaptic strength. Neuron 36, 1103–1114 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Murthy, V. N., Schikorski, T., Stevens, C. F. & Zhu, Y. Inactivity produces increases in neurotransmitter release and synapse size. Neuron 32, 673–682 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Darcy, K. J., Staras, K., Collinson, L. M. & Goda, Y. Constitutive sharing of recycling synaptic vesicles between presynaptic boutons. Nature Neurosci. 9, 315–321 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Staras, K. Share and share alike: trading of presynaptic elements between central synapses. Trends Neurosci. 30, 292–298 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Galante, M., Avossa, D., Rosato-Siri, M. & Ballerini, L. Homeostatic plasticity induced by chronic block of AMPA/kainate receptors modulates the generation of rhythmic bursting in rat spinal cord organotypic cultures. Eur. J. Neurosci. 14, 903–917 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Wierenga, C. J., Walsh, M. F. & Turrigiano, G. G. Temporal regulation of the expression locus of homeostatic plasticity. J. Neurophysiol. 96, 2127–2133 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Hardingham, N. R., Hardingham, G. E., Fox, K. D. & Jack, J. J. B. Presynaptic efficacy directs normalization of synaptic strength in layer 2/3 rat neocortex after paired activity. J. Neurophysiol. 97, 2965–2975 (2007).

    Article  PubMed  Google Scholar 

  91. Goold, C. P. & Davis, G. W. The BMP ligand Gbb gates the expression of synaptic homeostasis independent of synaptic growth control. Neuron 56, 109–123 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Futai, K. et al. Retrograde modulation of presynaptic release probability through signaling mediated by PSD-95-neuroligin. Nature Neurosci. 10, 186–195 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Alger, B. E. Retrograde signaling in the regulation of synaptic transmission: focus on endocannabinoids. Prog. Neurobiol. 68, 247–286 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Wilson, R. I., Kunos, G. & Nicoll, R. A. Presynaptic specificity of endocannabinoid signaling in the hippocampus. Neuron 31, 453–462 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Wilson, R. I. & Nicoll, R. A. Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature 410, 588–592 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Beierlein, M., Fioravante, D. & Regehr, W. G. Differential expression of posttetanic potentiation and retrograde signaling mediate target-dependent short-term synaptic plasticity. Neuron 54, 949–959 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Brasier, D. J. & Feldman, D. E. Synapse-specific expression of functional presynaptic NMDA receptors in rat somatosensory cortex. J. Neurosci. 28, 2199–2211 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Brenowitz, S. D. & Regehr, W. G. Reliability and heterogeneity of calcium signaling at single presynaptic boutons of cerebellar granule cells. J. Neurosci. 27, 7888–7898 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Moulder, K. L. et al. Vesicle pool heterogeneity at hippocampal glutamate and GABA synapses. J. Neurosci. 27, 9846–9854 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sun, H. Y., Lyons, S. A. & Dobrunz, L. E. Mechanisms of target-cell specific short-term plasticity at Schaffer collateral synapses onto interneurones versus pyramidal cells in juvenile rats. J. Physiol. 568, 815–840 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Wyatt, R. M. & Balice-Gordon, R. J. Activity-dependent elimination of neuromuscular synapses. J. Neurocytol. 32, 777–794 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Atwood, H. L. & Karunanithi, S. Diversification of synaptic strength: presynaptic elements. Nature Rev. Neurosci. 3, 497–516 (2002).

    Article  CAS  Google Scholar 

  103. Craig, A. M. & Boudin, H. Molecular heterogeneity of central synapses: afferent and target regulation. Nature Neurosci. 4, 569–578 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Tyler, W. J. et al. BDNF increases release probability and the size of a rapidly recycling vesicle pool within rat hippocampal excitatory synapses. J. Physiol. 574, 787–803 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Turrigiano, G. G. The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 135, 422–435 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. Abbott, L. F. & Regehr, W. G. Synaptic computation. Nature 431, 796–803 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Goldman, M. S. Enhancement of information transmission efficiency by synaptic failures. Neural Comput. 16, 1137–1162 (2004).

    Article  PubMed  Google Scholar 

  108. Moore, E. F. & Shannon, C. E. Reliable circuits using less reliable relays. J. Franklin. Inst. 262, 191–208, 281–297 (1956).

    Article  Google Scholar 

  109. Smetters, D. K. & Zador, A. Synaptic transmission: noisy synapses and noisy neurons. Curr. Biol. 6, 1217–1218 (1996).

    Article  CAS  PubMed  Google Scholar 

  110. Stevens, C. F. Neuronal communication. Cooperativity of unreliable neurons. Curr. Biol. 4, 268–269 (1994).

    Article  CAS  PubMed  Google Scholar 

  111. Zador, A. Impact of synaptic unreliability on the information transmitted by spiking neurons. J. Neurophysiol. 79, 1219–1229 (1998).

    Article  CAS  PubMed  Google Scholar 

  112. Lisman, J. & Raghavachari, S. A unified model of the presynaptic and postsynaptic changes during LTP at CA1 synapses. Sci. STKE 2006, re11 (2006).

  113. Thomson, A. M. Presynaptic frequency- and pattern-dependent filtering. J. Comput. Neurosci. 15, 159–202 (2003).

    Article  PubMed  Google Scholar 

  114. Tsodyks, M. V. & Markram, H. The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc. Natl Acad. Sci. USA 94, 719–723 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Stevens, C. F. & Wang, Y. Changes in reliability of synaptic function as a mechanism for plasticity. Nature 371, 704–707 (1994).

    Article  CAS  PubMed  Google Scholar 

  116. Manwani, A. & Koch, C. Detecting and estimating signals over noisy and unreliable synapses: information-theoretic analysis. Neural Comput. 13, 1–33 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Fernandez-Alfonso, T. & Ryan, T. A. The efficiency of the synaptic vesicle cycle at central nervous system synapses. Trends Cell Biol. 16, 413–420 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Saviane, C. & Silver, R. A. Fast vesicle reloading and a large pool sustain high bandwidth transmission at a central synapse. Nature 439, 983–987 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Zhang, Q., Li, Y. & Tsien, R. W. The dynamic control of kiss-and-run and vesicular reuse probed with single nanoparticles. Science 323, 1448–1453 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  120. Attwell, D. & Gibb, A. Neuroenergetics and the kinetic design of excitatory synapses. Nature Rev. Neurosci. 6, 841–849 (2005).

    Article  CAS  Google Scholar 

  121. Attwell, D. & Laughlin, S. B. An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab. 21, 1133–1145 (2001).

    Article  CAS  PubMed  Google Scholar 

  122. Laughlin, S. B., de Ruyter van Steveninck, R. R. & Anderson, J. C. The metabolic cost of neural information. Nature Neurosci. 1, 36–41 (1998).

    Article  CAS  PubMed  Google Scholar 

  123. Levy, W. B. & Baxter, R. A. Energy efficient neural codes. Neural Comput. 8, 531–543 (1996).

    Article  CAS  PubMed  Google Scholar 

  124. Levy, W. B. & Baxter, R. A. Energy-efficient neuronal computation via quantal synaptic failures. J. Neurosci. 22, 4746–4755 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Rabinowitch, I. & Segev, I. The interplay between homeostatic synaptic plasticity and functional dendritic compartments. J. Neurophysiol. 96, 276–283 (2006).

    Article  PubMed  Google Scholar 

  126. Rall, W. & Rinzel, J. Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. Biophys. J. 13, 648–687 (1973).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  127. Rinzel, J. & Rall, W. Transient response in a dendritic neuron model for current injected at one branch. Biophys. J. 14, 759–790 (1974).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  128. Johnston, D. & Narayanan, R. Active dendrites: colorful wings of the mysterious butterflies. Trends Neurosci. 31, 309–316 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Rall, W. Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. J. Neurophysiol. 30, 1138–1168 (1967).

    Article  CAS  PubMed  Google Scholar 

  130. Mel, B. W. Synaptic integration in an excitable dendritic tree. J. Neurophysiol. 70, 1086–1101 (1993).

    Article  CAS  PubMed  Google Scholar 

  131. Poirazi, P., Brannon, T. & Mel, B. W. Pyramidal neuron as two-layer neural network. Neuron 37, 989–999 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Stellwagen, D. & Malenka, R. C. Synaptic scaling mediated by glial TNF-α. Nature 440, 1054–1059 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Redman, S. & Faber, D. S. Editorial. J. Neurosci. Methods 130, 103–104 (2003).

    Article  Google Scholar 

  134. Denk, W. & Horstmann, H. Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol. 2, e329 (2004).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  135. Luo, L., Callaway, E. M. & Svoboda, K. Genetic dissection of neural circuits. Neuron 57, 634–660 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  136. Dobrunz, L. E. & Stevens, C. F. Heterogeneity of release probability, facilitation, and depletion at central synapses. Neuron 18, 995–1008 (1997).

    Article  CAS  PubMed  Google Scholar 

  137. Feldmeyer, D. & Sakmann, B. Synaptic efficacy and reliability of excitatory connections between the principal neurones of the input (layer 4) and output layer (layer 5) of the neocortex. J. Physiol. 525, 31–39 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  138. Markram, H., Lubke, J., Frotscher, M., Roth, A. & Sakmann, B. Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. J. Physiol. 500, 409–440 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  139. Chen, G., Harata, N. C. & Tsien, R. W. Paired-pulse depression of unitary quantal amplitude at single hippocampal synapses. Proc. Natl Acad. Sci. USA 101, 1063–1068 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Oertner, T. G., Sabatini, B. L., Nimchinsky, E. A. & Svoboda, K. Facilitation at single synapses probed with optical quantal analysis. Nature Neurosci. 5, 657–664 (2002).

    Article  CAS  PubMed  Google Scholar 

  141. Zakharenko, S. S., Zablow, L. & Siegelbaum, S. A. Visualization of changes in presynaptic function during long-term synaptic plasticity. Nature Neurosci. 4, 711–717 (2001).

    Article  CAS  PubMed  Google Scholar 

  142. Gandhi, S. P. & Stevens, C. F. Three modes of synaptic vesicular recycling revealed by single-vesicle imaging. Nature 423, 607–613 (2003).

    Article  CAS  PubMed  Google Scholar 

  143. Balaji, J. & Ryan, T. A. Single-vesicle imaging reveals that synaptic vesicle exocytosis and endocytosis are coupled by a single stochastic mode. Proc. Natl Acad. Sci. USA 104, 20576–20581 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Emptage, N. J., Reid, C. A., Fine, A. & Bliss, T. V. P. Optical quantal analysis reveals a presynaptic component of LTP at hippocampal Schaffer-associational synapses. Neuron 38, 797–804 (2003).

    Article  CAS  PubMed  Google Scholar 

  145. Yuste, R., Majewska, A., Cash, S. S. & Denk, W. Mechanisms of calcium influx into hippocampal spines: heterogeneity among spines, coincidence detection by NMDA receptors, and optical quantal analysis. J. Neurosci. 19, 1976–1987 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Brown, A. G. & Fyffe, R. E. Direct observations on the contacts made between Ia afferent fibres and alpha-motoneurones in the cat's lumbosacral spinal cord. J. Physiol. 313, 121–140 (1981).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  147. Grantyn, R., Shapovalov, A. I. & Shiriaev, B. I. Relation between structural and release parameters at the frog sensory-motor synapse. J. Physiol. 349, 459–474 (1984).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  148. Hardingham, N. R. et al. Extracellular calcium regulates postsynaptic efficacy through group 1 metabotropic glutamate receptors. J. Neurosci. 26, 6337–6345 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Bremaud, A., West, D. C. & Thomson, A. M. Binomial parameters differ across neocortical layers and with different classes of connections in adult rat and cat neocortex. Proc. Natl Acad. Sci. USA 104, 14134–14139 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Feldmeyer, D., Lubke, J., Silver, R. A. & Sakmann, B. Synaptic connections between layer 4 spiny neurone-layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column. J. Physiol. 538, 803–822 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  151. Silver, R. A., Lubke, J., Sakmann, B. & Feldmeyer, D. High-probability uniquantal transmission at excitatory synapses in barrel cortex. Science 302, 1981–1984 (2003).

    Article  CAS  PubMed  Google Scholar 

  152. Feldmeyer, D., Egger, V., Lubke, J. & Sakmann, B. Reliable synaptic connections between pairs of excitatory layer 4 neurones within a single 'barrel' of developing rat somatosensory cortex. J. Physiol. 521, 169–190 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  153. Tarczy-Hornoch, K., Martin, K. A., Stratford, K. J. & Jack, J. J. Intracortical excitation of spiny neurons in layer 4 of cat striate cortex in vitro. Cereb. Cortex 9, 833–843 (1999).

    Article  CAS  PubMed  Google Scholar 

  154. Thomson, A. M., Deuchars, J. & West, D. C. Neocortical local synaptic circuitry revealed with dual intracellular recordings and biocytin-filling. J. Physiol. (Paris) 90, 211–215 (1996).

    Article  CAS  Google Scholar 

  155. Deuchars, J. & Thomson, A. M. Innervation of burst firing spiny interneurons by pyramidal cells in deep layers of rat somatomotor cortex: paired intracellular recordings with biocytin filling. Neuroscience 69, 739–755 (1995).

    Article  CAS  PubMed  Google Scholar 

  156. Deuchars, J. & Thomson, A. M. CA1 pyramid-pyramid connections in rat hippocampus in vitro: dual intracellular recordings with biocytin filling. Neuroscience 74, 1009–1018 (1996).

    CAS  PubMed  Google Scholar 

  157. Larkman, A. U., Jack, J. J. & Stratford, K. J. Quantal analysis of excitatory synapses in rat hippocampal CA1 in vitro during low-frequency depression. J. Physiol. 505, 457–471 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  158. Biro, A. A., Holderith, N. B. & Nusser, Z. Release probability-dependent scaling of the postsynaptic responses at single hippocampal GABAergic synapses. J. Neurosci. 26, 12487–12496 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  159. Gulyas, A. I. et al. Hippocampal pyramidal cells excite inhibitory neurons through a single release site. Nature 366, 683–687 (1993).

    Article  CAS  PubMed  Google Scholar 

  160. Dittman, J. S., Kreitzer, A. C. & Regehr, W. G. Interplay between facilitation, depression, and residual calcium at three presynaptic terminals. J. Neurosci. 20, 1374–1385 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Auger, C., Kondo, S. & Marty, A. Multivesicular release at single functional synaptic sites in cerebellar stellate and basket cells. J. Neurosci. 18, 4532–4547 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Ding, J., Peterson, J. D. & Surmeier, D. J. Corticostriatal and thalamostriatal synapses have distinctive properties. J. Neurosci. 28, 6483–6492 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  163. Sahara, Y. & Takahashi, T. Quantal components of the excitatory postsynaptic currents at a rat central auditory synapse. J. Physiol. 536, 189–197 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  164. Sakaba, T., Schneggenburger, R. & Neher, E. Estimation of quantal parameters at the calyx of Held synapse. Neurosci. Res. 44, 343–356 (2002).

    Article  PubMed  Google Scholar 

  165. Murphy, G. J., Glickfeld, L. L., Balsen, Z. & Isaacson, J. S. Sensory neuron signaling to the brain: properties of transmitter release from olfactory nerve terminals. J. Neurosci. 24, 3023–3030 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank D. Attwell, B. Clark, A. Roth and M. Häusser for critical comments on the manuscript, M. London for helpful discussions, and Y. Goda and M. Häusser for support. T.B. is supported by grants from the Wellcome Trust and the Gatsby Charitable Foundation (to M. Häusser). K.S. is supported by the Wellcome Trust (WT084357MF) and the Biotechnology and Biological Sciences Research Council (BB/F018371). We apologise to authors whose work we were unable to include owing to space constraints.

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

Kevin Staras's homepage

Glossary

Active zone

A specialized area of the presynaptic membrane where synaptic vesicle exocytosis occurs.

Dendritic integration

The process through which synaptic inputs interact with each other and with the electrical properties of the dendritic tree to generate patterns of action potential output.

Gain control

Regulation of the relationship between synaptic input and neuronal output.

Miniature excitatory postsynaptic currents

The postsynaptic signals that are produced in response to spontaneous release of a single quantum of transmitter (usually a single vesicle).

Quantal analysis

A statistical approach for decomposing the synaptic response into the underlying quanta, usually involving estimation of quantal size, release probability and number of release sites.

Shunting

A decrease in the size of synaptic responses that results from an increase in the membrane conductance (for example, through neurotransmitter-activated ion channels).

Synaptic homeostasis

A regulatory process that stabilizes synaptic weights around a set point.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Branco, T., Staras, K. The probability of neurotransmitter release: variability and feedback control at single synapses. Nat Rev Neurosci 10, 373–383 (2009). https://doi.org/10.1038/nrn2634

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2634

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing