Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Science and Society
  • Published:

Prenatal exposure to drugs: effects on brain development and implications for policy and education

Abstract

The effects of prenatal exposure to drugs on brain development are complex and are modulated by the timing, dose and route of drug exposure. It is difficult to assess these effects in clinical cohorts as these are beset with problems such as multiple exposures and difficulties in documenting use patterns. This can lead to misinterpretation of research findings by the general public, the media and policy makers, who may mistakenly assume that the legal status of a drug correlates with its biological impact on fetal brain development and long-term clinical outcomes. It is important to close the gap between what science tells us about the impact of prenatal drug exposure on the fetus and the mother and what we do programmatically with regard to at-risk populations.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Developmental events and ontogeny of drug targets.

References

  1. Pinto, C. Medical officials question arrest of pregnant patient. The Tennessean A1 (24 Apr 2008).

  2. Seckl, J. R. & Meaney, M. J. Glucocorticoid “programming” and PTSD risk. Ann. NY Acad. Sci. 1071, 351–378 (2006).

    CAS  PubMed  Google Scholar 

  3. Levitt, P. Prenatal effects of drugs of abuse on brain development. Drug Alcohol Depend. 51, 109–125 (1998).

    CAS  PubMed  Google Scholar 

  4. Thadani, P. V. The intersection of stress, drug abuse and development. Psychoneuroendocrinology 27, 221–230 (2002).

    PubMed  Google Scholar 

  5. Randall, C. L. Alcohol and pregnancy: highlights from three decades of research. J. Stud. Alcohol 62, 554–561 (2001).

    CAS  PubMed  Google Scholar 

  6. Malanga, C. J. & Kosofsky, B. E. Mechanisms of action of drugs of abuse on the developing fetal brain. Clin. Perinatol. 26, 17–37, v–vi (1999).

    CAS  PubMed  Google Scholar 

  7. Clancy, B., Darlington, R. B. & Finlay, B. L. Translating developmental time across mammalian species. Neuroscience 105, 7–17 (2001).

    CAS  PubMed  Google Scholar 

  8. Clancy, B., Finlay, B. L., Darlington, R. B. & Anand, K. J. Extrapolating brain development from experimental species to humans. Neurotoxicology 28, 931–937 (2007).

    PubMed  Google Scholar 

  9. Clancy, B. et al. Web-based method for translating neurodevelopment from laboratory species to humans. Neuroinformatics 5, 79–94 (2007).

    PubMed  Google Scholar 

  10. Volkow, N. D., Fowler, J. S., Wang, G. J., Swanson, J. M. & Telang, F. Dopamine in drug abuse and addiction: results of imaging studies and treatment implications. Arch. Neurol. 64, 1575–1579 (2007).

    PubMed  Google Scholar 

  11. Wise, R. A. Dopamine, learning and motivation. Nature Rev. Neurosci. 5, 483–494 (2004).

    CAS  Google Scholar 

  12. Goldman-Rakic, P. S., Lidow, M. S. & Gallager, D. W. Overlap of dopaminergic, adrenergic, and serotoninergic receptors and complementarity of their subtypes in primate prefrontal cortex. J. Neurosci. 10, 2125–2138 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Djamgoz, M. B. & Wagner, H. J. Localization and function of dopamine in the adult vertebrate retina. Neurochem. Int. 20, 139–191 (1992).

    CAS  PubMed  Google Scholar 

  14. De Souza, E. B. & Kuhar, M. J. Dopamine receptors in the anterior lobe of the human pituitary gland: autoradiographic localization. Brain Res. 306, 391–395 (1984).

    CAS  PubMed  Google Scholar 

  15. Murrin, L. C., Gale, K. & Kuhar, M. J. Autoradiographic localization of neuroleptic and dopamine receptors in the caudate-putamen and substantia nigra: effects of lesions. Eur. J. Pharmacol. 60, 229–235 (1979).

    CAS  PubMed  Google Scholar 

  16. Chasnoff, I. J., Burns, W. J., Schnoll, S. H. & Burns, K. A. Cocaine use in pregnancy. N. Engl. J. Med. 313, 666–669 (1985).

    CAS  PubMed  Google Scholar 

  17. Chasnoff, I. J., Burns, K. A. & Burns, W. J. Cocaine use in pregnancy: perinatal morbidity and mortality. Neurotoxicol. Teratol. 9, 291–293 (1987).

    CAS  PubMed  Google Scholar 

  18. Bauchner, H., Zuckerman, B., Amaro, H., Frank, D. A. & Parker, S. Teratogenicity of cocaine. J. Pediatr. 111, 160–161 (1987).

    CAS  PubMed  Google Scholar 

  19. Dow-Edwards, D., Mayes, L., Spear, L. & Hurd, Y. Cocaine and development: clinical, behavioral, and neurobiological perspectives–a symposium report. Neurotoxicol. Teratol. 21, 481–490 (1999).

    CAS  PubMed  Google Scholar 

  20. Gingras, J. L. & O'Donnell, K. J. State control in the substance-exposed fetus. I. The fetal neurobehavioral profile: an assessment of fetal state, arousal, and regulation competency. Ann. NY Acad. Sci. 846, 262–276 (1998).

    CAS  PubMed  Google Scholar 

  21. Karmel, B. Z. & Gardner, J. M. Prenatal cocaine exposure effects on arousal-modulated attention during the neonatal period. Dev. Psychobiol. 29, 463–480 (1996).

    CAS  PubMed  Google Scholar 

  22. Mayes, L. C., Grillon, C., Granger, R. & Schottenfeld, R. Regulation of arousal and attention in preschool children exposed to cocaine prenatally. Ann. NY Acad. Sci. 846, 126–143 (1998).

    CAS  PubMed  Google Scholar 

  23. Richardson, G. A., Hamel, S. C., Goldschmidt, L. & Day, N. L. The effects of prenatal cocaine use on neonatal neurobehavioral status. Neurotoxicol. Teratol. 18, 519–528 (1996).

    CAS  PubMed  Google Scholar 

  24. Singer, L. T. et al. Cognitive outcomes of preschool children with prenatal cocaine exposure. JAMA 291, 2448–2456 (2004).

    CAS  PubMed  Google Scholar 

  25. Mayes, L. C. Exposure to cocaine: behavioral outcomes in preschool and school-age children. NIDA Res. Monogr. 164, 211–229 (1996).

    CAS  PubMed  Google Scholar 

  26. Mayes, L. C., Bornstein, M. H., Chawarska, K. & Granger, R. H. Information processing and developmental assessments in 3-month-old infants exposed prenatally to cocaine. Pediatrics 95, 539–545 (1995).

    CAS  PubMed  Google Scholar 

  27. Mayes, L. C., Cicchetti, D., Acharyya, S. & Zhang, H. Developmental trajectories of cocaine-and-other-drug-exposed and non-cocaine-exposed children. J. Dev. Behav. Pediatr. 24, 323–335 (2003).

    PubMed  Google Scholar 

  28. Richardson, G. A., Conroy, M. L. & Day, N. L. Prenatal cocaine exposure: effects on the development of school-age children. Neurotoxicol. Teratol. 18, 627–634 (1996).

    CAS  PubMed  Google Scholar 

  29. Richardson, G. A. Prenatal cocaine exposure. A longitudinal study of development. Ann. NY Acad. Sci. 846, 144–152 (1998).

    CAS  PubMed  Google Scholar 

  30. Gabriel, M., Taylor, C. & Burhans, L. In utero cocaine, discriminative avoidance learning with low-salient stimuli and learning-related neuronal activity in rabbits (Oryctolagus cuniculus). Behav. Neurosci. 117, 912–926 (2003).

    CAS  PubMed  Google Scholar 

  31. Morrow, B. A., Elsworth, J. D. & Roth, R. H. Prenatal cocaine exposure disrupts non-spatial, short-term memory in adolescent and adult male rats. Behav. Brain Res. 129, 217–223 (2002).

    CAS  PubMed  Google Scholar 

  32. Thompson, B. L., Levitt, P. & Stanwood, G. D. Prenatal cocaine exposure specifically alters spontaneous alternation behavior. Behav. Brain Res. 164, 107–116 (2005).

    CAS  PubMed  Google Scholar 

  33. Levine, T. P. et al. Effects of prenatal cocaine exposure on special education in school-aged children. Pediatrics 122, e83–e91 (2008).

    PubMed  Google Scholar 

  34. Harvey, J. A. Cocaine effects on the developing brain: current status. Neurosci. Biobehav. Rev. 27, 751–764 (2004).

    CAS  PubMed  Google Scholar 

  35. Lidow, M. S. Consequences of prenatal cocaine exposure in nonhuman primates. Brain Res. Dev. Brain Res. 147, 23–36 (2003).

    CAS  PubMed  Google Scholar 

  36. Mayes, L. C. A behavioral teratogenic model of the impact of prenatal cocaine exposure on arousal regulatory systems. Neurotoxicol. Teratol. 24, 385–395 (2002).

    CAS  PubMed  Google Scholar 

  37. Stanwood, G. D. & Levitt, P. Drug exposure early in life: functional repercussions of changing neuropharmacology during sensitive periods of brain development. Curr. Opin. Pharmacol. 4, 65–71 (2004).

    CAS  PubMed  Google Scholar 

  38. Parlaman, J. P., Thompson, B. L., Levitt, P. & Stanwood, G. D. Pharmacokinetic profile of cocaine following intravenous administration in the female rabbit. Eur. J. Pharmacol. 563, 124–129 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Evans, S. M., Cone, E. J. & Henningfield, J. E. Arterial and venous cocaine plasma concentrations in humans: relationship to route of administration, cardiovascular effects and subjective effects. J. Pharmacol. Exp. Ther. 279, 1345–1356 (1996).

    CAS  PubMed  Google Scholar 

  40. Jenkins, A. J., Keenan, R. M., Henningfield, J. E. & Cone, E. J. Correlation between pharmacological effects and plasma cocaine concentrations after smoked administration. J. Anal. Toxicol. 26, 382–392 (2002).

    CAS  PubMed  Google Scholar 

  41. Friedman, E., Yadin, E. & Wang, H. Y. Effect of prenatal cocaine on dopamine receptor-G protein coupling in mesocortical regions of the rabbit brain. Neuroscience 70, 739–747 (1996).

    CAS  PubMed  Google Scholar 

  42. Jones, L. B. et al. In utero cocaine-induced dysfunction of dopamine D1 receptor signaling and abnormal differentiation of cerebral cortical neurons. J. Neurosci. 20, 4606–4614 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang, H. Y., Runyan, S., Yadin, E. & Friedman, E. Prenatal exposure to cocaine selectively reduces D1 dopamine receptor-mediated activation of striatal Gs proteins. J. Pharmacol. Exp. Ther. 273, 492–498 (1995).

    CAS  PubMed  Google Scholar 

  44. Stanwood, G. D., Parlaman, J. P. & Levitt, P. Anatomical abnormalities in dopaminoceptive regions of the cerebral cortex of dopamine D1 receptor mutant mice. J. Comp. Neurol. 487, 270–282 (2005).

    CAS  PubMed  Google Scholar 

  45. Stanwood, G. D., Washington, R. A., Shumsky, J. S. & Levitt, P. Prenatal cocaine exposure produces consistent developmental alterations in dopamine-rich regions of the cerebral cortex. Neuroscience 106, 5–14 (2001).

    CAS  PubMed  Google Scholar 

  46. Murphy, E. H. et al. Cocaine administration in pregnant rabbits alters cortical structure and function in their progeny in the absence of maternal seizures. Exp. Brain Res. 114, 433–441 (1997).

    CAS  PubMed  Google Scholar 

  47. Stanwood, G. D. & Levitt, P. Prenatal exposure to cocaine produces unique developmental and long-term adaptive changes in dopamine D1 receptor activity and subcellular distribution. J. Neurosci. 27, 152–157 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Clark, L., Cools, R. & Robbins, T. W. The neuropsychology of ventral prefrontal cortex: decision-making and reversal learning. Brain Cogn. 55, 41–53 (2004).

    CAS  PubMed  Google Scholar 

  49. Collette, F. & Van der Linden, M. Brain imaging of the central executive component of working memory. Neurosci. Biobehav. Rev. 26, 105–125 (2002).

    PubMed  Google Scholar 

  50. Elliott, R. Executive functions and their disorders. Br. Med. Bull. 65, 49–59 (2003).

    PubMed  Google Scholar 

  51. Elston, G. N. Cortex, cognition and the cell: new insights into the pyramidal neuron and prefrontal function. Cereb. Cortex 13, 1124–1138 (2003).

    PubMed  Google Scholar 

  52. Goldman-Rakic, P. S. Regional and cellular fractionation of working memory. Proc. Natl Acad. Sci. USA 93, 13473–13480 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Goldman-Rakic, P. S. The prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive. Philos. Trans. R. Soc. Lond. B Biol. Sci. 351, 1445–1453 (1996).

    CAS  PubMed  Google Scholar 

  54. Stanwood, G. D., Washington, R. A. & Levitt, P. Identification of a sensitive period of prenatal cocaine exposure that alters the development of the anterior cingulate cortex. Cereb. Cortex 11, 430–440 (2001).

    CAS  PubMed  Google Scholar 

  55. Crandall, J. E., Hackett, H. E., Tobet, S. A., Kosofsky, B. E. & Bhide, P. G. Cocaine exposure decreases GABA neuron migration from the ganglionic eminence to the cerebral cortex in embryonic mice. Cereb. Cortex 14, 665–675 (2004).

    PubMed  Google Scholar 

  56. Gressens, P., Kosofsky, B. E. & Evrard, P. Cocaine-induced disturbances of corticogenesis in the developing murine brain. Neurosci. Lett. 140, 113–116 (1992).

    CAS  PubMed  Google Scholar 

  57. Lidow, M. S. Prenatal cocaine exposure adversely affects development of the primate cerebral cortex. Synapse 21, 332–341 (1995).

    CAS  PubMed  Google Scholar 

  58. Lidow, M. S. & Song, Z. M. Effect of cocaine on cell proliferation in the cerebral wall of monkey fetuses. Cereb. Cortex 11, 545–551 (2001).

    CAS  PubMed  Google Scholar 

  59. Ren, J. Q., Malanga, C. J., Tabit, E. & Kosofsky, B. E. Neuropathological consequences of prenatal cocaine exposure in the mouse. Int. J. Dev. Neurosci. 22, 309–320 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Lidow, M. S. & Song, Z. M. Primates exposed to cocaine in utero display reduced density and number of cerebral cortical neurons. J. Comp. Neurol. 435, 263–275 (2001).

    CAS  PubMed  Google Scholar 

  61. Crandall, J. E. et al. Dopamine receptor activation modulates GABA neuron migration from the basal forebrain to the cerebral cortex. J. Neurosci. 27, 3813–3822 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Ohtani, N., Goto, T., Waeber, C. & Bhide, P. G. Dopamine modulates cell cycle in the lateral ganglionic eminence. J. Neurosci. 23, 2840–2850 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Harvey, J. A. et al. Effects of prenatal exposure to cocaine on the developing brain: anatomical, chemical, physiological and behavioral consequences. Neurotox. Res. 3, 117–143 (2001).

    CAS  PubMed  Google Scholar 

  64. Stanwood, G. D. & Levitt, P. Repeated i.v. cocaine exposure produces long-lasting behavioral sensitization in pregnant adults, but behavioral tolerance in their offspring. Neuroscience 122, 579–583 (2003).

    CAS  PubMed  Google Scholar 

  65. Johnston, L. D., O'Malley, P. M., Bachman, J. G. & Schulenberg, J. E. Monitoring the Future national survey results on drug use, 1975–2007. Volume I: secondary school students. NIH Publication No. 08–6418A (National Institute on Drug Abuse, Bethesda, Maryland, 2008).

  66. Smith, L. M. et al. Prenatal methamphetamine use and neonatal neurobehavioral outcome. Neurotoxicol. Teratol. 30, 20–28 (2008).

    CAS  PubMed  Google Scholar 

  67. Smith, L. M. et al. The infant development, environment, and lifestyle study: effects of prenatal methamphetamine exposure, polydrug exposure, and poverty on intrauterine growth. Pediatrics 118, 1149–1156 (2006).

    PubMed  Google Scholar 

  68. Petrou, S., Sach, T. & Davidson, L. The long-term costs of preterm birth and low birth weight: results of a systematic review. Child Care Health Dev. 27, 97–115 (2001).

    CAS  PubMed  Google Scholar 

  69. Chaikind, S. & Corman, H. The impact of low birthweight on special education costs. J. Health Econ. 10, 291–311 (1991).

    CAS  PubMed  Google Scholar 

  70. Cernerud, L., Eriksson, M., Jonsson, B., Steneroth, G. & Zetterstrom, R. Amphetamine addiction during pregnancy: 14-year follow-up of growth and school performance. Acta Paediatr. 85, 204–208 (1996).

    CAS  PubMed  Google Scholar 

  71. Chang, L. et al. Smaller subcortical volumes and cognitive deficits in children with prenatal methamphetamine exposure. Psychiatry Res. 132, 95–106 (2004).

    CAS  PubMed  Google Scholar 

  72. Chang, L., Alicata, D., Ernst, T. & Volkow, N. Structural and metabolic brain changes in the striatum associated with methamphetamine abuse. Addiction 102 (Suppl. 1), 16–32 (2007).

    PubMed  Google Scholar 

  73. Derauf, C. et al. Demographic and psychosocial characteristics of mothers using methamphetamine during pregnancy: preliminary results of the Infant Development, Environment, And Lifestyle study (IDEAL). Am. J. Drug Alcohol Abuse 33, 281–289 (2007).

    PubMed  PubMed Central  Google Scholar 

  74. Melo, P., Rodrigues, L. G., Silva, M. C. & Tavares, M. A. Effects of prenatal exposure to methamphetamine on the development of the rat retina. Ann. NY Acad. Sci. 1074, 590–603 (2006).

    CAS  PubMed  Google Scholar 

  75. Melo, P., Moreno, V. Z., Vazquez, S. P., Pinazo-Duran, M. D. & Tavares, M. A. Myelination changes in the rat optic nerve after prenatal exposure to methamphetamine. Brain Res. 1106, 21–29 (2006).

    CAS  PubMed  Google Scholar 

  76. Slamberova, R., Pometlova, M. & Charousova, P. Postnatal development of rat pups is altered by prenatal methamphetamine exposure. Prog. Neuropsychopharmacol. Biol. Psychiatry 30, 82–88 (2006).

    CAS  PubMed  Google Scholar 

  77. Slamberova, R., Pometlova, M., Syllabova, L. & Mancuskova, M. Learning in the place navigation task, not the new-learning task, is altered by prenatal methamphetamine exposure. Brain Res. Dev. Brain Res. 157, 217–219 (2005).

    CAS  PubMed  Google Scholar 

  78. Nasif, F. J., Cuadra, G. R. & Ramirez, O. A. Permanent alteration of central noradrenergic system by prenatally administered amphetamine. Brain Res. Dev. Brain Res. 112, 181–188 (1999).

    CAS  PubMed  Google Scholar 

  79. Gomes-da-Silva, J. et al. Prenatal exposure to methamphetamine in the rat: ontogeny of tyrosine hydroxylase mRNA expression in mesencephalic dopaminergic neurons. Ann. NY Acad. Sci. 965, 68–77 (2002).

    CAS  PubMed  Google Scholar 

  80. Cabrera, T. M., Levy, A. D., Li, Q., van de Kar, L. D. & Battaglia, G. Prenatal methamphetamine attenuates serotonin mediated renin secretion in male and female rat progeny: evidence for selective long-term dysfunction of serotonin pathways in brain. Synapse 15, 198–208 (1993).

    CAS  PubMed  Google Scholar 

  81. Slamberova, R., Pometlova, M. & Rokyta, R. Effect of methamphetamine exposure during prenatal and preweaning periods lasts for generations in rats. Dev. Psychobiol. 49, 312–322 (2007).

    CAS  PubMed  Google Scholar 

  82. Rogers, J. M. Tobacco and pregnancy: overview of exposures and effects. Birth Defects Res. C Embryo Today 84, 1–15 (2008).

    CAS  PubMed  Google Scholar 

  83. Hollins, K. Consequences of antenatal mental health problems for child health and development. Curr. Opin. Obstet. Gynecol. 19, 568–572 (2007).

    PubMed  Google Scholar 

  84. Hack, M. Young adult outcomes of very-low-birth-weight children. Semin. Fetal Neonatal Med. 11, 127–137 (2006).

    PubMed  Google Scholar 

  85. Gianni, M. L. et al. Twelve-month neurofunctional assessment and cognitive performance at 36 months of age in extremely low birth weight infants. Pediatrics 120, 1012–1019 (2007).

    PubMed  Google Scholar 

  86. Lambe, M., Hultman, C., Torrang, A., Maccabe, J. & Cnattingius, S. Maternal smoking during pregnancy and school performance at age 15. Epidemiology 17, 524–530 (2006).

    PubMed  Google Scholar 

  87. George, L., Granath, F., Johansson, A. L., Anneren, G. & Cnattingius, S. Environmental tobacco smoke and risk of spontaneous abortion. Epidemiology 17, 500–505 (2006).

    PubMed  Google Scholar 

  88. Cnattingius, S. The epidemiology of smoking during pregnancy: smoking prevalence, maternal characteristics, and pregnancy outcomes. Nicotine Tob. Res. 6 (Suppl. 2), S125–S140 (2004).

    PubMed  Google Scholar 

  89. DiFranza, J. R., Aligne, C. A. & Weitzman, M. Prenatal and postnatal environmental tobacco smoke exposure and children's health. Pediatrics 113, 1007–1015 (2004).

    PubMed  Google Scholar 

  90. Fried, P. A., Watkinson, B. & Gray, R. Differential effects on cognitive functioning in 13- to 16-year-olds prenatally exposed to cigarettes and marihuana. Neurotoxicol. Teratol. 25, 427–436 (2003).

    CAS  PubMed  Google Scholar 

  91. Fried, P. A. & Watkinson, B. Differential effects on facets of attention in adolescents prenatally exposed to cigarettes and marihuana. Neurotoxicol. Teratol. 23, 421–430 (2001).

    CAS  PubMed  Google Scholar 

  92. Makin, J., Fried, P. A. & Watkinson, B. A comparison of active and passive smoking during pregnancy: long-term effects. Neurotoxicol. Teratol. 13, 5–12 (1991).

    CAS  PubMed  Google Scholar 

  93. Eskenazi, B., Prehn, A. W. & Christianson, R. E. Passive and active maternal smoking as measured by serum cotinine: the effect on birthweight. Am. J. Public Health 85, 395–398 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Langley, K., Rice, F., van den Bree, M. B. & Thapar, A. Maternal smoking during pregnancy as an environmental risk factor for attention deficit hyperactivity disorder behaviour. A review. Minerva Pediatr. 57, 359–371 (2005).

    CAS  PubMed  Google Scholar 

  95. Gaither, K. H., Huber, L. R., Thompson, M. E. & Huet-Hudson, Y. M. Does the use of nicotine replacement therapy during pregnancy affect pregnancy outcomes? Matern. Child Health J. 14 May 2008 (doi: 10.1007/s10995-008-0361-1).

    PubMed  Google Scholar 

  96. Schroeder, D. R. et al. Nicotine patch use in pregnant smokers: smoking abstinence and delivery outcomes. J. Matern. Fetal Neonatal Med. 11, 100–107 (2002).

    CAS  PubMed  Google Scholar 

  97. Pauly, J. R. & Slotkin, T. A. Maternal tobacco smoking, nicotine replacement and neurobehavioural development. Acta Paediatr. 97, 1331–1337 (2008).

    PubMed  Google Scholar 

  98. Slotkin, T. A. If nicotine is a developmental neurotoxicant in animal studies, dare we recommend nicotine replacement therapy in pregnant women and adolescents? Neurotoxicol. Teratol. 30, 1–19 (2008).

    CAS  PubMed  Google Scholar 

  99. Sarasin, A. et al. Adrenal-mediated rather than direct effects of nicotine as a basis of altered sex steroid synthesis in fetal and neonatal rat. Reprod. Toxicol. 17, 153–162 (2003).

    CAS  PubMed  Google Scholar 

  100. Dwyer, J. B., Broide, R. S. & Leslie, F. M. Nicotine and brain development. Birth Defects Res. C Embryo Today 84, 30–44 (2008).

    CAS  PubMed  Google Scholar 

  101. Navarro, H. A. et al. Prenatal exposure to nicotine impairs nervous system development at a dose which does not affect viability or growth. Brain Res. Bull. 23, 187–192 (1989).

    CAS  PubMed  Google Scholar 

  102. Roy, T. S., Seidler, F. J. & Slotkin, T. A. Prenatal nicotine exposure evokes alterations of cell structure in hippocampus and somatosensory cortex. J. Pharmacol. Exp. Ther. 300, 124–133 (2002).

    CAS  PubMed  Google Scholar 

  103. Paz, R., Barsness, B., Martenson, T., Tanner, D. & Allan, A. M. Behavioral teratogenicity induced by nonforced maternal nicotine consumption. Neuropsychopharmacology 32, 693–699 (2007).

    CAS  PubMed  Google Scholar 

  104. Levin, E. D. et al. Increased nicotine self-administration following prenatal exposure in female rats. Pharmacol. Biochem. Behav. 85, 669–674 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Vaglenova, J., Birru, S., Pandiella, N. M. & Breese, C. R. An assessment of the long-term developmental and behavioral teratogenicity of prenatal nicotine exposure. Behav. Brain Res. 150, 159–170 (2004).

    CAS  PubMed  Google Scholar 

  106. Slotkin, T. A. Fetal nicotine or cocaine exposure: which one is worse? J. Pharmacol. Exp. Ther. 285, 931–945 (1998).

    CAS  PubMed  Google Scholar 

  107. Sarter, M., Hasselmo, M. E., Bruno, J. P. & Givens, B. Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and cognitive modulation of signal detection. Brain Res. Brain Res. Rev. 48, 98–111 (2005).

    CAS  PubMed  Google Scholar 

  108. Liang, K. et al. Neonatal nicotine exposure impairs nicotinic enhancement of central auditory processing and auditory learning in adult rats. Eur. J. Neurosci. 24, 857–866 (2006).

    PubMed  Google Scholar 

  109. Barbieri, R. L., Gochberg, J. & Ryan, K. J. Nicotine, cotinine, and anabasine inhibit aromatase in human trophoblast in vitro. J. Clin. Invest. 77, 1727–1733 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Fried, P. A., James, D. S. & Watkinson, B. Growth and pubertal milestones during adolescence in offspring prenatally exposed to cigarettes and marihuana. Neurotoxicol. Teratol. 23, 431–436 (2001).

    CAS  PubMed  Google Scholar 

  111. Treiman, D. M. GABAergic mechanisms in epilepsy. Epilepsia 42 (Suppl. 3), 8–12 (2001).

    PubMed  Google Scholar 

  112. Huang, Z. J., Di Cristo, G. & Ango, F. Development of GABA innervation in the cerebral and cerebellar cortices. Nature Rev. Neurosci. 8, 673–686 (2007).

    CAS  Google Scholar 

  113. Feng, M. J., Yan, S. E. & Yan, Q. S. Effects of prenatal alcohol exposure on brain-derived neurotrophic factor and its receptor tyrosine kinase B in offspring. Brain Res. 1042, 125–132 (2005).

    CAS  PubMed  Google Scholar 

  114. Miller, M. W. Expression of transforming growth factor-β in developing rat cerebral cortex: effects of prenatal exposure to ethanol. J. Comp. Neurol. 460, 410–424 (2003).

    CAS  PubMed  Google Scholar 

  115. Borodinsky, L. N. et al. GABA-induced neurite outgrowth of cerebellar granule cells is mediated by GABAA receptor activation, calcium influx and CaMKII and erk1/2 pathways. J. Neurochem. 84, 1411–1420 (2003).

    CAS  PubMed  Google Scholar 

  116. Schwartz, J. P. Neurotransmitters as neurotrophic factors: a new set of functions. Int. Rev. Neurobiol. 34, 1–23 (1992).

    CAS  PubMed  Google Scholar 

  117. Schwartz, M. L. & Meinecke, D. L. Early expression of GABA-containing neurons in the prefrontal and visual cortices of rhesus monkeys. Cereb. Cortex 2, 16–37 (1992).

    CAS  PubMed  Google Scholar 

  118. Walker, A., Rosenberg, M. & Balaban-Gil, K. Neurodevelopmental and neurobehavioral sequelae of selected substances of abuse and psychiatric medications in utero. Child Adolesc. Psychiatr. Clin. N. Am. 8, 845–867 (1999).

    CAS  PubMed  Google Scholar 

  119. Kosofsky, B. E. Specificity of neurobehavioral outcomes associated with prenatal alcohol exposure. J. Womens Health 7, 603–604 (1998).

    CAS  PubMed  Google Scholar 

  120. Chiriboga, C. A. Fetal alcohol and drug effects. Neurologist 9, 267–279 (2003).

    PubMed  Google Scholar 

  121. Bada, H. S. et al. Low birth weight and preterm births: etiologic fraction attributable to prenatal drug exposure. J. Perinatol. 25, 631–637 (2005).

    PubMed  Google Scholar 

  122. Loebstein, R. & Koren, G. Pregnancy outcome and neurodevelopment of children exposed in utero to psychoactive drugs: the Motherisk experience. J. Psychiatry Neurosci. 22, 192–196 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Fried, P. A., Watkinson, B. & Gray, R. A follow-up study of attentional behavior in 6-year-old children exposed prenatally to marihuana, cigarettes, and alcohol. Neurotoxicol. Teratol. 14, 299–311 (1992).

    CAS  PubMed  Google Scholar 

  124. Linnet, K. M. et al. Maternal lifestyle factors in pregnancy risk of attention deficit hyperactivity disorder and associated behaviors: review of the current evidence. Am. J. Psychiatry 160, 1028–1040 (2003).

    PubMed  Google Scholar 

  125. Williams, J. H. & Ross, L. Consequences of prenatal toxin exposure for mental health in children and adolescents: a systematic review. Eur. Child Adolesc. Psychiatry 16, 243–253 (2007).

    PubMed  Google Scholar 

  126. Snow, M. E. & Keiver, K. Prenatal ethanol exposure disrupts the histological stages of fetal bone development. Bone 41, 181–187 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Simpson, M. E., Duggal, S. & Keiver, K. Prenatal ethanol exposure has differential effects on fetal growth and skeletal ossification. Bone 36, 521–532 (2005).

    CAS  PubMed  Google Scholar 

  128. Johnston, M. C. & Bronsky, P. T. Prenatal craniofacial development: new insights on normal and abnormal mechanisms. Crit. Rev. Oral Biol. Med. 6, 368–422 (1995).

    CAS  PubMed  Google Scholar 

  129. Randall, C. L. & Taylor, W. J. Prenatal ethanol exposure in mice: teratogenic effects. Teratology 19, 305–311 (1979).

    CAS  PubMed  Google Scholar 

  130. Miller, M. W. & Dow-Edwards, D. L. Structural and metabolic alterations in rat cerebral cortex induced by prenatal exposure to ethanol. Brain Res. 474, 316–326 (1988).

    CAS  PubMed  Google Scholar 

  131. Miller, M. W. Effect of prenatal exposure to ethanol on glutamate and GABA immunoreactivity in macaque somatosensory and motor cortices: critical timing of exposure. Neuroscience 138, 97–107 (2006).

    CAS  PubMed  Google Scholar 

  132. Miller, M. W. Effect of early exposure to ethanol on the protein and DNA contents of specific brain regions in the rat. Brain Res. 734, 286–294 (1996).

    CAS  PubMed  Google Scholar 

  133. Mooney, S. M. & Miller, M. W. Episodic exposure to ethanol during development differentially affects brainstem nuclei in the macaque. J. Neurocytol. 30, 973–982 (2001).

    CAS  PubMed  Google Scholar 

  134. Barrow Heaton, M. B. et al. Prenatal ethanol exposure reduces spinal cord motoneuron number in the fetal rat but does not affect GDNF target tissue protein. Dev. Neurosci. 21, 444–452 (1999).

    CAS  PubMed  Google Scholar 

  135. Shetty, A. K. & Phillips, D. E. Effects of prenatal ethanol exposure on the development of Bergmann glia and astrocytes in the rat cerebellum: an immunohistochemical study. J. Comp. Neurol. 321, 19–32 (1992).

    CAS  PubMed  Google Scholar 

  136. Redila, V. A. et al. Hippocampal cell proliferation is reduced following prenatal ethanol exposure but can be rescued with voluntary exercise. Hippocampus 16, 305–311 (2006).

    CAS  PubMed  Google Scholar 

  137. Ozer, E., Sarioglu, S. & Gure, A. Effects of prenatal ethanol exposure on neuronal migration, neuronogenesis and brain myelination in the mice brain. Clin. Neuropathol. 19, 21–25 (2000).

    CAS  PubMed  Google Scholar 

  138. Honse, Y., Nixon, K. M., Browning, M. D. & Leslie, S. W. Cell surface expression of NR1 splice variants and NR2 subunits is modified by prenatal ethanol exposure. Neuroscience 122, 689–698 (2003).

    CAS  PubMed  Google Scholar 

  139. Hughes, P. D., Wilson, W. R. & Leslie, S. W. Effect of gestational ethanol exposure on the NMDA receptor complex in rat forebrain: from gene transcription to cell surface. Brain Res. Dev. Brain Res. 129, 135–145 (2001).

    CAS  PubMed  Google Scholar 

  140. Zhang, X., Sliwowska, J. H. & Weinberg, J. Prenatal alcohol exposure and fetal programming: effects on neuroendocrine and immune function. Exp. Biol. Med. (Maywood) 230, 376–388 (2005).

    CAS  Google Scholar 

  141. Wilcoxon, J. S., Kuo, A. G., Disterhoft, J. F. & Redei, E. E. Behavioral deficits associated with fetal alcohol exposure are reversed by prenatal thyroid hormone treatment: a role for maternal thyroid hormone deficiency in FAE. Mol. Psychiatry 10, 961–971 (2005).

    CAS  PubMed  Google Scholar 

  142. Champagne, F. & Meaney, M. J. Like mother, like daughter: evidence for non-genomic transmission of parental behavior and stress responsivity. Prog. Brain Res. 133, 287–302 (2001).

    CAS  PubMed  Google Scholar 

  143. Kallen, B. & Otterblad Olausson, P. Antidepressant drugs during pregnancy and infant congenital heart defect. Reprod. Toxicol. 21, 221–222 (2006).

    PubMed  Google Scholar 

  144. Kallen, B. A. & Otterblad Olausson, P. Maternal drug use in early pregnancy and infant cardiovascular defect. Reprod. Toxicol. 17, 255–261 (2003).

    CAS  PubMed  Google Scholar 

  145. Buznikov, G. A., Shmukler, Y. B. & Lauder, J. M. From oocyte to neuron: do neurotransmitters function in the same way throughout development? Cell. Mol. Neurobiol. 16, 537–559 (1996).

    CAS  PubMed  Google Scholar 

  146. Lauder, J. M. Hormonal and humoral influences on brain development. Psychoneuroendocrinology 8, 121–155 (1983).

    CAS  PubMed  Google Scholar 

  147. Whitaker-Azmitia, P. M., Druse, M., Walker, P. & Lauder, J. M. Serotonin as a developmental signal. Behav. Brain Res. 73, 19–29 (1996).

    CAS  PubMed  Google Scholar 

  148. Bonnin, A., Peng, W., Hewlitt, W. & Levitt, P. Expression mapping of 5-HT1 serotonin receptor subtypes during fetal and early postnatal mouse forebrain development. Neuroscience 141, 781–794 (2006).

    CAS  PubMed  Google Scholar 

  149. Bonnin, A., Torii, M., Wang, L., Rakic, P. & Levitt, P. Serotonin modulates the response of embryonic thalamocortical axons to netrin-1. Nature Neurosci. 10, 588–597 (2007).

    CAS  PubMed  Google Scholar 

  150. Lambe, E. K., Krimer, L. S. & Goldman-Rakic, P. S. Differential postnatal development of catecholamine and serotonin inputs to identified neurons in prefrontal cortex of rhesus monkey. J. Neurosci. 20, 8780–8787 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Whitaker-Azmitia, P. M., Lauder, J. M., Shemmer, A. & Azmitia, E. C. Postnatal changes in serotonin receptors following prenatal alterations in serotonin levels: further evidence for functional fetal serotonin receptors. Brain Res. 430, 285–289 (1987).

    CAS  PubMed  Google Scholar 

  152. Persico, A. M., Di Pino, G. & Levitt, P. Multiple receptors mediate the trophic effects of serotonin on ventroposterior thalamic neurons in vitro. Brain Res. 1095, 17–25 (2006).

    CAS  PubMed  Google Scholar 

  153. Gross, C. et al. Serotonin1A receptor acts during development to establish normal anxiety-like behaviour in the adult. Nature 416, 396–400 (2002).

    CAS  PubMed  Google Scholar 

  154. Ansorge, M. S., Zhou, M., Lira, A., Hen, R. & Gingrich, J. A. Early-life blockade of the 5-HT transporter alters emotional behavior in adult mice. Science 306, 879–881 (2004).

    CAS  PubMed  Google Scholar 

  155. Maschi, S. et al. Neonatal outcome following pregnancy exposure to antidepressants: a prospective controlled cohort study. BJOG 115, 283–289 (2008).

    CAS  PubMed  Google Scholar 

  156. Andrade, S. E. et al. Use of antidepressant medications during pregnancy: a multisite study. Am. J. Obstet. Gynecol. 198, 194 e1–e5 (2008).

    PubMed  Google Scholar 

  157. Pearson, K. H. et al. Birth outcomes following prenatal exposure to antidepressants. J. Clin. Psychiatry 68, 1284–1289 (2007).

    CAS  PubMed  Google Scholar 

  158. Oberlander, T. F. et al. Infant serotonin transporter (SLC6A4) promoter genotype is associated with adverse neonatal outcomes after prenatal exposure to serotonin reuptake inhibitor medications. Mol. Psychiatry 13, 65–73 (2008).

    CAS  PubMed  Google Scholar 

  159. Einarson, A. et al. Evaluation of the risk of congenital cardiovascular defects associated with use of paroxetine during pregnancy. Am. J. Psychiatry 165, 749–752 (2008).

    PubMed  Google Scholar 

  160. Zuo, J. et al. Distinct neurobehavioral consequences of prenatal exposure to sulpiride (SUL) and risperidone (RIS) in rats. Prog. Neuropsychopharmacol. Biol. Psychiatry 32, 387–397 (2008).

    CAS  PubMed  Google Scholar 

  161. Singh, Y., Jaiswal, A. K., Singh, M. & Bhattacharya, S. K. Effect of prenatal haloperidol administration on anxiety patterns in rats. Indian J. Exp. Biol. 35, 1284–1290 (1997).

    CAS  PubMed  Google Scholar 

  162. Castro, R., Brito, B., Segovia, J., Martin-Trujillo, J. M. & Notario, V. Prenatal haloperidol induces a selective reduction in the expression of plasticity-related genes in neonate rat forebrain. Brain Res. Mol. Brain Res. 26, 74–80 (1994).

    CAS  PubMed  Google Scholar 

  163. Leonard, B. E. Effect of psychotropic drugs administered to pregnant rats on the behaviour of the offspring. Neuropharmacology 20, 1237–1242 (1981).

    CAS  PubMed  Google Scholar 

  164. Miller, J. C. & Friedhoff, A. J. Prenatal neurotransmitter programming of postnatal receptor function. Prog. Brain Res. 73, 509–522 (1988).

    CAS  PubMed  Google Scholar 

  165. Trixler, M., Gati, A., Fekete, S. & Tenyi, T. Use of antipsychotics in the management of schizophrenia during pregnancy. Drugs 65, 1193–1206 (2005).

    CAS  PubMed  Google Scholar 

  166. Gentile, S. Clinical utilization of atypical antipsychotics in pregnancy and lactation. Ann. Pharmacother. 38, 1265–1271 (2004).

    CAS  PubMed  Google Scholar 

  167. Landmark, C. J. Targets for antiepileptic drugs in the synapse. Med. Sci. Monit. 13, RA1–RA7 (2007).

    CAS  PubMed  Google Scholar 

  168. Gottlicher, M. Valproic acid: an old drug newly discovered as inhibitor of histone deacetylases. Ann. Hematol. 83 (Suppl. 1), S91–S92 (2004).

    PubMed  Google Scholar 

  169. Carrim, Z. I., McKay, L., Sidiki, S. S. & Lavy, T. E. Early intervention for the ocular and neurodevelopmental sequelae of Fetal Valproate Syndrome. J. Paediatr. Child. Health 43, 643–645 (2007).

    PubMed  Google Scholar 

  170. Duncan, S. Teratogenesis of sodium valproate. Curr. Opin. Neurol. 20, 175–180 (2007).

    CAS  PubMed  Google Scholar 

  171. Schneider, T. et al. Gender-specific behavioral and immunological alterations in an animal model of autism induced by prenatal exposure to valproic acid. Psychoneuroendocrinology 33, 728–740 (2008).

    CAS  PubMed  Google Scholar 

  172. Schneider, T. & Przewlocki, R. Behavioral alterations in rats prenatally exposed to valproic acid: animal model of autism. Neuropsychopharmacology 30, 80–89 (2005).

    CAS  PubMed  Google Scholar 

  173. Rinaldi, T., Kulangara, K., Antoniello, K. & Markram, H. Elevated NMDA receptor levels and enhanced postsynaptic long-term potentiation induced by prenatal exposure to valproic acid. Proc. Natl Acad. Sci. USA 104, 13501–13506 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Rinaldi, T., Silberberg, G. & Markram, H. Hyperconnectivity of local neocortical microcircuitry induced by prenatal exposure to valproic acid. Cereb. Cortex 18, 763–770 (2008).

    PubMed  Google Scholar 

  175. Travis, B. E. & McCullough, J. M. Pharmacotherapy of preterm labor. Pharmacotherapy 13, 28–36 (1993).

    CAS  PubMed  Google Scholar 

  176. Zerrate, M. C. et al. Neuroinflammation and behavioral abnormalities after neonatal terbutaline treatment in rats: implications for autism. J. Pharmacol. Exp. Ther. 322, 16–22 (2007).

    CAS  PubMed  Google Scholar 

  177. Meyer, A., Seidler, F. J., Aldridge, J. E. & Slotkin, T. A. Developmental exposure to terbutaline alters cell signaling in mature rat brain regions and augments the effects of subsequent neonatal exposure to the organophosphorus insecticide chlorpyrifos. Toxicol. Appl. Pharmacol. 203, 154–166 (2005).

    CAS  PubMed  Google Scholar 

  178. Rhodes, M. C. et al. Terbutaline is a developmental neurotoxicant: effects on neuroproteins and morphology in cerebellum, hippocampus, and somatosensory cortex. J. Pharmacol. Exp. Ther. 308, 529–537 (2004).

    CAS  PubMed  Google Scholar 

  179. Pitzer, M., Schmidt, M. H., Esser, G. & Laucht, M. Child development after maternal tocolysis with beta-sympathomimetic drugs. Child Psychiatry Hum. Dev. 31, 165–182 (2001).

    CAS  PubMed  Google Scholar 

  180. Hadders-Algra, M., Touwen, B. C. & Huisjes, H. J. Long-term follow-up of children prenatally exposed to ritodrine. Br. J. Obstet. Gynaecol. 93, 156–161 (1986).

    CAS  PubMed  Google Scholar 

  181. Connors, S. L. et al. beta2-adrenergic receptor activation and genetic polymorphisms in autism: data from dizygotic twins. J. Child Neurol. 20, 876–884 (2005).

    PubMed  Google Scholar 

  182. Thornton, J. G. Maintenance tocolysis. BJOG 112 (Suppl. 1), 118–121 (2005).

    CAS  PubMed  Google Scholar 

  183. Reese, S., Gandy, O. & Grant, A. (eds) Framing Public Life: Perspectives on Media and Our Understanding of the Social World (Lawrence Erlbaum Associates, Philadelphia, 1993).

    Google Scholar 

  184. Entman, R. M. Framing: toward clarification of a fractured paradigm. J. Commun. 43, 51–58 (1993).

    Google Scholar 

  185. Entman, R. M. Projections of Power (Univ. Chicago Press, 2004).

    Google Scholar 

  186. Bales, S. N. Communicating early childhood education: using strategic frame analysis to shape dialogue. Bulletin of Zero to Three 19 (1999).

  187. National Advisory Mental Health Council. Transformative neurodevelopmental research in mental illness. National Institute of Mental Health [online], (2008).

  188. Whitaker-Azmitia, P. M. Serotonin and brain development: role in human developmental diseases. Brain Res. Bull. 56, 479–485 (2001).

    CAS  PubMed  Google Scholar 

  189. Represa, A. & Ben-Ari, Y. Trophic actions of GABA on neuronal development. Trends Neurosci. 28, 278–283 (2005).

    CAS  PubMed  Google Scholar 

  190. Nguyen, L. et al. Neurotransmitters as early signals for central nervous system development. Cell Tissue Res. 305, 187–202 (2001).

    CAS  PubMed  Google Scholar 

  191. Lauder, J. M. & Schambra, U. B. Morphogenetic roles of acetylcholine. Environ. Health Perspect. 107 (Suppl. 1), 65–69 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Levitt, P., Harvey, J. A., Friedman, E., Simansky, K. & Murphy, E. H. New evidence for neurotransmitter influences on brain development. Trends Neurosci. 20, 269–274 (1997).

    CAS  PubMed  Google Scholar 

  193. Song, Z. M. et al. D1 dopamine receptor regulation of microtubule-associated protein-2 phosphorylation in developing cerebral cortical neurons. J. Neurosci. 22, 6092–6105 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Lauder, J. M., Wallace, J. A. & Krebs, H. Roles for serotonin in neuroembryogenesis. Adv. Exp. Med. Biol. 133, 477–506 (1981).

    CAS  PubMed  Google Scholar 

  195. Behar, T. N., Schaffner, A. E., Scott, C. A., Greene, C. L. & Barker, J. L. GABA receptor antagonists modulate postmitotic cell migration in slice cultures of embryonic rat cortex. Cereb. Cortex 10, 899–909 (2000).

    CAS  PubMed  Google Scholar 

  196. Brazel, C. Y., Nunez, J. L., Yang, Z. & Levison, S. W. Glutamate enhances survival and proliferation of neural progenitors derived from the subventricular zone. Neuroscience 131, 55–65 (2005).

    CAS  PubMed  Google Scholar 

  197. Budetti, P. P. et al. ED359734 - An Analysis of Resources to Aid Drug-Exposed Infants and Their Families (George Washington Univ., Washington DC, 1993).

    Google Scholar 

  198. Poland, M. L., Dombrowski, M. P., Ager, J. W. & Sokol, R. J. Punishing pregnant drug users: enhancing the flight from care. Drug Alcohol Depend. 31, 199–203 (1993).

    CAS  PubMed  Google Scholar 

  199. Annas, G. J. Testing poor pregnant patients for cocaine–physicians as police investigators. N. Engl. J. Med. 344, 1729–1732 (2001).

    CAS  PubMed  Google Scholar 

  200. US Supreme Court Center. Ferguson et al. v. City of Charleston et al. 532 U.S. 67. Justia.com[online], (2001).

  201. The State of South Carolina in The Supreme Court. McKnight v. State of South Carolina, 26484. South Carolina Judicial Department [online], (2008).

  202. Rakic, P. A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci. 18, 383–388 (1995).

    CAS  PubMed  Google Scholar 

  203. Stanwood, G. D. & Levitt, P. in Handbook of Developmental Cognitive Neuroscience 2nd edn (eds Nelson, C. A. & Luciana, M.) 83–94 (MIT Press, 2008).

    Google Scholar 

Download references

Acknowledgements

We thank S. Bales of the Frameworks Institute and J. Shonkoff, G. Najarian, A. Race and all the members of the National Scientific Council on the Developing Child for insightful discussions with regard to how scientists and policy makers can work together to solve public problems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pat Levitt.

Related links

Related links

FURTHER INFORMATION

Zilkha Neurogenetic Institute

The National Children's Study

National Scientific Council on the Developing Child

Translating Time

Frameworks Institute

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, B., Levitt, P. & Stanwood, G. Prenatal exposure to drugs: effects on brain development and implications for policy and education. Nat Rev Neurosci 10, 303–312 (2009). https://doi.org/10.1038/nrn2598

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2598

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing