The bright side of the glial scar in CNS repair

Abstract

Following CNS injury, in an apparently counterintuitive response, scar tissue formation inhibits axonal growth, imposing a major barrier to regeneration. Accordingly, scar-modulating treatments have become a leading therapeutic goal in the field of spinal cord injury. However, increasing evidence suggests a beneficial role for this scar tissue as part of the endogenous local immune regulation and repair process. How can these opposing effects be reconciled? Perhaps it is all a matter of timing.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Scar components and potential therapeutic interventions.
Figure 2: The repair process as a function of time and the effects of the scar.

References

  1. 1

    Nesathurai, S. Steroids and spinal cord injury: revisiting the NASCIS 2 and NASCIS 3 trials. J. Trauma 45, 1088–1093 (1998).

  2. 2

    Caroni, P. & Schwab, M. E. Antibody against myelin-associated inhibitor of neurite growth neutralizes nonpermissive substrate properties of CNS white matter. Neuron 1, 85–96 (1988).

  3. 3

    McKerracher, L. et al. Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron 13, 805–811 (1994).

  4. 4

    Mukhopadhyay, G., Doherty, P., Walsh, F. S., Crocker, P. R. & Filbin, M. T. A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron 13, 757–767 (1994).

  5. 5

    Jones, L. L., Margolis, R. U. & Tuszynski, M. H. The chondroitin sulfate proteoglycans neurocan, brevican, phosphacan, and versican are differentially regulated following spinal cord injury. Exp. Neurol. 182, 399–411 (2003).

  6. 6

    Gallo, V., Bertolotto, A. & Levi, G. The proteoglycan chondroitin sulfate is present in a subpopulation of cultured astrocytes and in their precursors. Dev. Biol. 123, 282–285 (1987).

  7. 7

    Katoh-Semba, R., Matsuda, M., Kato, K. & Oohira, A. Chondroitin sulphate proteoglycans in the rat brain: candidates for axon barriers of sensory neurons and the possible modification by laminin of their actions. Eur. J. Neurosci. 7, 613–621 (1995).

  8. 8

    Tang, X., Davies, J. E. & Davies, S. J. Changes in distribution, cell associations, and protein expression levels of NG2, neurocan, phosphacan, brevican, versican V2, and tenascin-C during acute to chronic maturation of spinal cord scar tissue. J. Neurosci. Res. 71, 427–444 (2003).

  9. 9

    McKeon, R. J., Jurynec, M. J. & Buck, C. R. The chondroitin sulfate proteoglycans neurocan and phosphacan are expressed by reactive astrocytes in the chronic CNS glial scar. J. Neurosci. 19, 10778–10788 (1999).

  10. 10

    Tester, N. J. & Howland, D. R. Chondroitinase ABC improves basic and skilled locomotion in spinal cord injured cats. Exp. Neurol. 209, 483–496 (2008).

  11. 11

    Moon, L. D., Asher, R. A., Rhodes, K. E. & Fawcett, J. W. Regeneration of CNS axons back to their target following treatment of adult rat brain with chondroitinase ABC. Nature Neurosci. 4, 465–466 (2001).

  12. 12

    Bradbury, E. J. et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416, 636–640 (2002).

  13. 13

    Caggiano, A. O., Zimber, M. P., Ganguly, A., Blight, A. R. & Gruskin, E. A. Chondroitinase ABCI improves locomotion and bladder function following contusion injury of the rat spinal cord. J. Neurotrauma 22, 226–239 (2005).

  14. 14

    Tan, A. M., Colletti, M., Rorai, A. T., Skene, J. H. & Levine, J. M. Antibodies against the NG2 proteoglycan promote the regeneration of sensory axons within the dorsal columns of the spinal cord. J. Neurosci. 26, 4729–4739 (2006).

  15. 15

    Neumann, S., Bradke, F., Tessier-Lavigne, M. & Basbaum, A. I. Regeneration of sensory axons within the injured spinal cord induced by intraganglionic cAMP elevation. Neuron 34, 885–893 (2002).

  16. 16

    Borisoff, J. F. et al. Suppression of Rho-kinase activity promotes axonal growth on inhibitory CNS substrates. Mol. Cell. Neurosci. 22, 405–416 (2003).

  17. 17

    Dergham, P. et al. Rho signaling pathway targeted to promote spinal cord repair. J. Neurosci. 22, 6570–6577 (2002).

  18. 18

    Monnier, P. P., Sierra, A., Schwab, J. M., Henke-Fahle, S. & Mueller, B. K. The Rho/ROCK pathway mediates neurite growth-inhibitory activity associated with the chondroitin sulfate proteoglycans of the CNS glial scar. Mol. Cell. Neurosci. 22, 319–330 (2003).

  19. 19

    Tian, D. S. et al. Attenuation of astrogliosis by suppressing of microglial proliferation with the cell cycle inhibitor olomoucine in rat spinal cord injury model. Brain Res. 1154, 206–214 (2007).

  20. 20

    Zhang, Y., Dijkhuizen, P. A., Anderson, P. N., Lieberman, A. R. & Verhaagen, J. NT-3 delivered by an adenoviral vector induces injured dorsal root axons to regenerate into the spinal cord of adult rats. J. Neurosci. Res. 54, 554–562 (1998).

  21. 21

    Romero, M. I., Rangappa, N., Garry, M. G. & Smith, G. M. Functional regeneration of chronically injured sensory afferents into adult spinal cord after neurotrophin gene therapy. J. Neurosci. 21, 8408–8416 (2001).

  22. 22

    Grimpe, B. & Silver, J. A novel DNA enzyme reduces glycosaminoglycan chains in the glial scar and allows microtransplanted dorsal root ganglia axons to regenerate beyond lesions in the spinal cord. J. Neurosci. 24, 1393–1397 (2004).

  23. 23

    Silver, J. & Miller, J. H. Regeneration beyond the glial scar. Nature Rev. Neurosci. 5, 146–156 (2004).

  24. 24

    Fawcett, J. W. Overcoming inhibition in the damaged spinal cord. J. Neurotrauma 23, 371–383 (2006).

  25. 25

    Yiu, G. & He, Z. Glial inhibition of CNS axon regeneration. Nature Rev. Neurosci. 7, 617–627 (2006).

  26. 26

    McKeon, R. J., Schreiber, R. C., Rudge, J. S. & Silver, J. Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J. Neurosci. 11, 3398–3411 (1991).

  27. 27

    Smith-Thomas, L. C. et al. An inhibitor of neurite outgrowth produced by astrocytes. J. Cell Sci. 107, 1687–1695 (1994).

  28. 28

    Fidler, P. S. et al. Comparing astrocytic cell lines that are inhibitory or permissive for axon growth: the major axon-inhibitory proteoglycan is NG2. J. Neurosci. 19, 8778–8788 (1999).

  29. 29

    Snow, D. M., Steindler, D. A. & Silver, J. Molecular and cellular characterization of the glial roof plate of the spinal cord and optic tectum: a possible role for a proteoglycan in the development of an axon barrier. Dev. Biol. 138, 359–376 (1990).

  30. 30

    Faissner, A. et al. Isolation of a neural chondroitin sulfate proteoglycan with neurite outgrowth promoting properties. J. Cell Biol. 126, 783–799 (1994).

  31. 31

    Smith-Thomas, L. C. et al. Increased axon regeneration in astrocytes grown in the presence of proteoglycan synthesis inhibitors. J. Cell Sci. 108, 1307–1315 (1995).

  32. 32

    Tom, V. J. & Houle, J. D. Intraspinal microinjection of chondroitinase ABC following injury promotes axonal regeneration out of a peripheral nerve graft bridge. Exp. Neurol. 211, 315–319 (2008).

  33. 33

    Hikino, M. et al. Oversulfated dermatan sulfate exhibits neurite outgrowth-promoting activity toward embryonic mouse hippocampal neurons: implications of dermatan sulfate in neuritogenesis in the brain. J. Biol. Chem. 278, 43744–43754 (2003).

  34. 34

    Bicknese, A. R., Sheppard, A. M., O'Leary, D. D. & Pearlman, A. L. Thalamocortical axons extend along a chondroitin sulfate proteoglycan-enriched pathway coincident with the neocortical subplate and distinct from the efferent path. J. Neurosci. 14, 3500–3510 (1994).

  35. 35

    Sato, Y. et al. A highly sulfated chondroitin sulfate preparation, CS-E, prevents excitatory amino acid-induced neuronal cell death. J. Neurochem. 104, 1565–1576 (2008).

  36. 36

    Nakanishi, K. et al. Identification of neurite outgrowth-promoting domains of neuroglycan C, a brain-specific chondroitin sulfate proteoglycan, and involvement of phosphatidylinositol 3-kinase and protein kinase C signaling pathways in neuritogenesis. J. Biol. Chem. 281, 24970–24978 (2006).

  37. 37

    Brittis, P. A. & Silver, J. Exogenous glycosaminoglycans induce complete inversion of retinal ganglion cell bodies and their axons within the retinal neuroepithelium. Proc. Natl Acad. Sci. USA 91, 7539–7542 (1994).

  38. 38

    Greenfield, B. et al. Characterization of the heparan sulfate and chondroitin sulfate assembly sites in CD44. J. Biol. Chem. 274, 2511–2517 (1999).

  39. 39

    Nichol, K. A., Everett, A. W., Schulz, M. & Bennett, M. R. Retinal ganglion cell survival in vitro maintained by a chondroitin sulfate proteoglycan from the superior colliculus carrying the HNK-1 epitope. J. Neurosci. Res. 37, 623–632 (1994).

  40. 40

    Fitch, M. T. & Silver, J. Activated macrophages and the blood-brain barrier: inflammation after CNS injury leads to increases in putative inhibitory molecules. Exp. Neurol. 148, 587–603 (1997).

  41. 41

    Reier, P. J. & Houle, J. D. The glial scar: its bearing on axonal elongation and transplantation approaches to CNS repair. Adv. Neurol. 47, 87–138 (1988).

  42. 42

    Cui, W., Allen, N. D., Skynner, M., Gusterson, B. & Clark, A. J. Inducible ablation of astrocytes shows that these cells are required for neuronal survival in the adult brain. Glia 34, 272–282 (2001).

  43. 43

    Chen, Y. et al. Astrocytes protect neurons from nitric oxide toxicity by a glutathione-dependent mechanism. J. Neurochem. 77, 1601–1610 (2001).

  44. 44

    Roitbak, T. & Sykova, E. Diffusion barriers evoked in the rat cortex by reactive astrogliosis. Glia 28, 40–48 (1999).

  45. 45

    Vorisek, I., Hajek, M., Tintera, J., Nicolay, K. & Sykova, E. Water ADC, extracellular space volume, and tortuosity in the rat cortex after traumatic injury. Magn. Reson. Med. 48, 994–1003 (2002).

  46. 46

    do Carmo Cunha, J. et al. Responses of reactive astrocytes containing S100β protein and fibroblast growth factor-2 in the border and in the adjacent preserved tissue after a contusion injury of the spinal cord in rats: implications for wound repair and neuroregeneration. Wound Repair Regen. 15, 134–146 (2007).

  47. 47

    White, R. E., Yin, F. Q. & Jakeman, L. B. TGF-a increases astrocyte invasion and promotes axonal growth into the lesion following spinal cord injury in mice. Exp. Neurol. 214, 10–24 (2008).

  48. 48

    Wu, V. W., Nishiyama, N. & Schwartz, J. P. A culture model of reactive astrocytes: increased nerve growth factor synthesis and reexpression of cytokine responsiveness. J. Neurochem. 71, 749–756 (1998).

  49. 49

    Schwartz, J. P. & Nishiyama, N. Neurotrophic factor gene expression in astrocytes during development and following injury. Brain Res. Bull. 35, 403–407 (1994).

  50. 50

    Stichel, C. C. & Muller, H. W. The CNS lesion scar: new vistas on an old regeneration barrier. Cell Tissue Res. 294, 1–9 (1998).

  51. 51

    Parri, R. & Crunelli, V. An astrocyte bridge from synapse to blood flow. Nature Neurosci. 6, 5–6 (2003).

  52. 52

    Faulkner, J. R. et al. Reactive astrocytes protect tissue and preserve function after spinal cord injury. J. Neurosci. 24, 2143–2155 (2004).

  53. 53

    Bush, T. G. et al. Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron 23, 297–308 (1999).

  54. 54

    Schwartz, M., Butovsky, O. & Kipnis, J. Does inflammation in an autoimmune disease differ from inflammation in neurodegenerative diseases? Possible implications for therapy. J. Neuroimmune Pharmacol. 1, 4–10 (2006).

  55. 55

    Glezer, I., Simard, A. R. & Rivest, S. Neuroprotective role of the innate immune system by microglia. Neuroscience 147, 867–883 (2007).

  56. 56

    Garg, S. K., Banerjee, R. & Kipnis, J. Neuroprotective immunity: T cell-derived glutamate endows astrocytes with a neuroprotective phenotype. J. Immunol. 180, 3866–3873 (2008).

  57. 57

    Horn, K. P., Busch, S. A., Hawthorne, A. L., van Rooijen, N. & Silver, J. Another barrier to regeneration in the CNS: activated macrophages induce extensive retraction of dystrophic axons through direct physical interactions. J. Neurosci. 28, 9330–9341 (2008).

  58. 58

    Popovich, P. G. et al. Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury. Exp. Neurol. 158, 351–365 (1999).

  59. 59

    Prewitt, C. M., Niesman, I. R., Kane, C. J. & Houle, J. D. Activated macrophage/microglial cells can promote the regeneration of sensory axons into the injured spinal cord. Exp. Neurol. 148, 433–443 (1997).

  60. 60

    Rapalino, O. et al. Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nature Med. 4, 814–821 (1998).

  61. 61

    Rhodes, K. E., Moon, L. D. & Fawcett, J. W. Inhibiting cell proliferation during formation of the glial scar: effects on axon regeneration in the CNS. Neuroscience 120, 41–56 (2003).

  62. 62

    Myer, D. J., Gurkoff, G. G., Lee, S. M., Hovda, D. A. & Sofroniew, M. V. Essential protective roles of reactive astrocytes in traumatic brain injury. Brain 129, 2761–2772 (2006).

  63. 63

    Okada, S. et al. Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrocytes after spinal cord injury. Nature Med. 12, 829–834 (2006).

  64. 64

    Herrmann, J. E. et al. STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury. J. Neurosci. 28, 7231–7243 (2008).

  65. 65

    Chung, I. Y. & Benveniste, E. N. Tumor necrosis factor-alpha production by astrocytes. Induction by lipopolysaccharide, IFN-gamma, and IL-1 beta. J. Immunol. 144, 2999–3007 (1990).

  66. 66

    Nandini, C. D. & Sugahara, K. Role of the sulfation pattern of chondroitin sulfate in its biological activities and in the binding of growth factors. Adv. Pharmacol. 53, 253–279 (2006).

  67. 67

    Rolls, A. et al. Two faces of chondroitin sulfate proteoglycan in spinal cord repair: a role in microglia/macrophage activation. PLoS Med. 5, e171 (2008).

  68. 68

    Hayashi, K., Kadomatsu, K. & Muramatsu, T. Requirement of chondroitin sulfate/dermatan sulfate recognition in midkine-dependent migration of macrophages. Glycoconj. J. 18, 401–406 (2001).

  69. 69

    Kodaira, Y., Nair, S. K., Wrenshall, L. E., Gilboa, E. & Platt, J. L. Phenotypic and functional maturation of dendritic cells mediated by heparan sulfate. J. Immunol. 165, 1599–1604 (2000).

  70. 70

    Rolls, A. et al. A sulfated disaccharide derived from chondroitin sulfate proteoglycan protects against inflammation-associated neurodegeneration. FASEB J. 20, 547–549 (2006).

  71. 71

    Laywell, E. D., Steindler, D. A. & Silver, D. J. Astrocytic stem cells in the adult brain. Neurosurg. Clin. N. Am. 18, 21–30 (2007).

  72. 72

    Walton, N. M. et al. Derivation and large-scale expansion of multipotent astroglial neural progenitors from adult human brain. Development 133, 3671–3681 (2006).

  73. 73

    Ma, D. K., Ming, G. L. & Song, H. Glial influences on neural stem cell development: cellular niches for adult neurogenesis. Curr. Opin. Neurobiol. 15, 514–520 (2005).

  74. 74

    Ulloa, F. & Briscoe, J. Morphogens and the control of cell proliferation and patterning in the spinal cord. Cell Cycle 6, 2640–2649 (2007).

  75. 75

    Gates, M. A. et al. Cell and molecular analysis of the developing and adult mouse subventricular zone of the cerebral hemispheres. J. Comp. Neurol. 361, 249–266 (1995).

  76. 76

    Ida, M. et al. Identification and functions of chondroitin sulfate in the milieu of neural stem cells. J. Biol. Chem. 281, 5982–5991 (2006).

  77. 77

    Akita, K. et al. Expression of multiple chondroitin/dermatan sulfotransferases in the neurogenic regions of the embryonic and adult central nervous system implies that complex chondroitin sulfates have a role in neural stem cell maintenance. Stem Cells 26, 798–809 (2008).

  78. 78

    Garwood, J. et al. The extracellular matrix glycoprotein Tenascin-C is expressed by oligodendrocyte precursor cells and required for the regulation of maturation rate, survival and responsiveness to platelet-derived growth factor. Eur. J. Neurosci. 20, 2524–2540 (2004).

  79. 79

    Garcion, E., Faissner, A. & ffrench-Constant, C. Knockout mice reveal a contribution of the extracellular matrix molecule tenascin-C to neural precursor proliferation and migration. Development 128, 2485–2496 (2001).

  80. 80

    Sirko, S., von Holst, A., Wizenmann, A., Gotz, M. & Faissner, A. Chondroitin sulfate glycosaminoglycans control proliferation, radial glia cell differentiation and neurogenesis in neural stem/progenitor cells. Development 134, 2727–2738 (2007).

  81. 81

    Sato, Y. et al. Reduction of brain injury in neonatal hypoxic-ischemic rats by intracerebroventricular injection of neural stem/progenitor cells together with chondroitinase ABC. Reprod. Sci. 15, 613–620 (2008).

  82. 82

    Rolls, A. et al. Toll-like receptors modulate adult hippocampal neurogenesis. Nature Cell. Biol. 9, 1081–1088 (2007).

  83. 83

    Shechter, R. et al. Toll-like receptor 4 restricts retinal progenitor cell proliferation. J. Cell Biol. 183, 393–400 (2008).

  84. 84

    Ebert, S. et al. Chondroitin sulfate disaccharide stimulates microglia to adopt a novel regulatory phenotype. J. Leukoc. Biol. 84, 736–740 (2008).

  85. 85

    Rolls, A. et al. A disaccharide derived from chondroitin sulphate proteoglycan promotes central nervous system repair in rats and mice. Eur. J. Neurosci. 20, 1973–1983 (2004).

  86. 86

    Coumans, J. V. et al. Axonal regeneration and functional recovery after complete spinal cord transection in rats by delayed treatment with transplants and neurotrophins. J. Neurosci. 21, 9334–9344 (2001).

  87. 87

    Iarikov, D. E. et al. Delayed transplantation with exogenous neurotrophin administration enhances plasticity of corticofugal projections after spinal cord injury. J. Neurotrauma 24, 690–702 (2007).

  88. 88

    Sofroniew, M. V. Reactive astrocytes in neural repair and protection. Neuroscientist 11, 400–407 (2005).

  89. 89

    Rapalino, O. et al. Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nature Med. 4, 814–821 (1998).

  90. 90

    Moalem, G. et al. Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nature Med. 5, 49–55 (1999).

  91. 91

    Ziv, Y. et al. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nature Neurosci. 9, 268–275 (2006).

  92. 92

    Ziv, Y., Avidan, H., Pluchino, S., Martino, G. & Schwartz, M. Synergy between immune cells and adult neural stem/progenitor cells promotes functional recovery from spinal cord injury. Proc. Natl Acad. Sci. USA 103, 13174–13179 (2006).

  93. 93

    Kipnis, J., Derecki, N. C., Yang, C. & Scrable, H. Immunity and cognition: what do age-related dementia, HIV-dementia and 'chemo-brain' have in common? Trends Immunol. 29, 455–463 (2008).

  94. 94

    Butovsky, O., Kunis, G., Koronyo-Hamaoui, M. & Schwartz, M. Selective ablation of bone marrow-derived dendritic cells increases amyloid plaques in a mouse Alzheimer's disease model. Eur. J. Neurosci. 26, 413–416 (2007).

  95. 95

    Simard, A. R., Soulet, D., Gowing, G., Julien, J. P. & Rivest, S. Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer's disease. Neuron 49, 489–502 (2006).

Download references

Acknowledgements

We would like to thank U. Nevo, for his invaluable contribution to concept development when he was a graduate student in this group, and S. Schwarzbaum. The work was supported in part by the High Q foundation and by IsrALS.

Author information

Correspondence to Michal Schwartz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rolls, A., Shechter, R. & Schwartz, M. The bright side of the glial scar in CNS repair. Nat Rev Neurosci 10, 235–241 (2009). https://doi.org/10.1038/nrn2591

Download citation

Further reading