Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

How can we realize the promise of personalized antidepressant medicines?

Abstract

Personalized medication that is based on pharmacogenetic data has long been expected to improve the efficacy of treatments for neurological and psychiatric disorders, including depression. However, the complexity of the regulation of gene transcription and its interactions with environmental factors means that straightforward translation of individual genetic information into tailored treatment is unlikely. Nevertheless, when data from genomics, proteomics, metabolomics, neuroimaging and neuroendocrinology are used in combination, they could lead to the development of effective personalized antidepressant treatment that is based on both genotypes and biomarkers. This process will require many further steps and collaboration between basic and clinical neuroscience.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: An example of how genetic variation can predict antidepressant responses.
Figure 2: A potential neuroendocrine biomarker for screening antidepressant drug candidates.

References

  1. Roses, A. D. Genome-based pharmacogenetics and the pharmaceutical industry. Nature Rev. Drug Discov. 1, 541–549 (2002).

    CAS  Google Scholar 

  2. Roses, A. D. Pharmacogenetics and the practice of medicine. Nature 405, 857–865 (2000).

    CAS  PubMed  Google Scholar 

  3. Binder, E. B. & Holsboer, F. Pharmacogenomics and antidepressant drugs. Ann. Med. 38, 82–94 (2006).

    CAS  PubMed  Google Scholar 

  4. Perlis, R. H. et al. Association between treatment-emergent suicidal ideation with citalopram and polymorphisms near cyclic adenosine monophosphate response element binding protein in the STAR*D study. Arch. Gen. Psychiatry 64, 689–697 (2007).

    CAS  PubMed  Google Scholar 

  5. Serretti, A., Drago, A. & De, R. D. HTR2A gene variants and psychiatric disorders: a review of current literature and selection of SNPs for future studies. Curr. Med. Chem. 14, 2053–2069 (2007).

    CAS  PubMed  Google Scholar 

  6. Lesch, K. P. et al. The 5-HT transporter gene-linked polymorphic region (5-HTTLPR) in evolutionary perspective: alternative biallelic variation in rhesus monkeys. Rapid communication. J. Neural Transm. 104, 1259–1266 (1997).

    CAS  PubMed  Google Scholar 

  7. Serretti, A. et al. The influence of Serotonin Transporter Promoter Polymorphism (SERTPR) and other polymorphisms of the serotonin pathway on the efficacy of antidepressant treatments. Prog. Neuropsychopharmacol. Biol. Psychiatry 29, 1074–1084 (2005).

    CAS  PubMed  Google Scholar 

  8. Kraft, J. B. et al. Analysis of association between the serotonin transporter and antidepressant response in a large clinical sample. Biol. Psychiatry 61, 734–742 (2007).

    CAS  PubMed  Google Scholar 

  9. Murphy, G. M. Jr et al. Effects of the serotonin transporter gene promoter polymorphism on mirtazapine and paroxetine efficacy and adverse events in geriatric major depression. Arch. Gen. Psychiatry 61, 1163–1169 (2004).

    CAS  PubMed  Google Scholar 

  10. Binder, E. B. et al. Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nature Genet. 36, 1319–1325 (2004).

    CAS  PubMed  Google Scholar 

  11. Lekman, M. et al. The FKBP5-gene in depression and treatment response—an association study in the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) cohort. Biol. Psychiatry 63, 1103–1110 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kirchheiner, J. F. et al. Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol. Psychiatry 9, 442–473 (2004).

    CAS  PubMed  Google Scholar 

  13. Li, J. Y., Boado, R. J. & Pardridge, W. M. Blood–brain barrier genomics. J. Cereb. Blood Flow Metab. 21, 61–68 (2001).

    CAS  PubMed  Google Scholar 

  14. Uhr, M. F. et al. Polymorphisms in the drug transporter gene ABCB1 predict antidepressant treatment response in depression. Neuron 57, 203–209 (2008).

    CAS  PubMed  Google Scholar 

  15. Birney, E. et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007).

    CAS  PubMed  Google Scholar 

  16. Carmell, M. A., Xuan, Z., Zhang, M. Q. & Hannon, G. J. The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev. 16, 2733–2742 (2002).

    CAS  PubMed  Google Scholar 

  17. Vasudevan, S., Tong, Y. & Steitz, J. A. Switching from repression to activation: microRNAs can up-regulate translation. Science 318, 1931–1934 (2007).

    CAS  PubMed  Google Scholar 

  18. Greco, S. J. & Rameshwar, P. MicroRNAs regulate synthesis of the neurotransmitter substance P in human mesenchymal stem cell-derived neuronal cells. Proc. Natl Acad. Sci. USA 104, 15484–15489 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    CAS  PubMed  Google Scholar 

  20. Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    CAS  PubMed  Google Scholar 

  21. Dermitzakis, E. T., Reymond, A. & Antonarakis, S. E. Conserved non-genic sequences — an unexpected feature of mammalian genomes. Nature Rev. Genet. 6, 151–157 (2005).

    CAS  PubMed  Google Scholar 

  22. Nobrega, M. A., Zhu, Y., Plajzer-Frick, I., Afzal, V. & Rubin, E. M. Megabase deletions of gene deserts result in viable mice. Nature 431, 988–993 (2004).

    CAS  PubMed  Google Scholar 

  23. Redon, R. F. et al. Global variation in copy number in the human genome. Nature 444, 444–454 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hollox, E. J. et al. Psoriasis is associated with increased β-defensin genomic copy number. Nature Genet. 40, 23–25 (2008).

    CAS  PubMed  Google Scholar 

  25. Mill, J. & Petronis, A. Molecular studies of major depressive disorder: the epigenetic perspective. Mol. Psychiatry 12, 799–814 (2007).

    CAS  PubMed  Google Scholar 

  26. Tsankova, N., Renthal, W., Kumar, A. & Nestler, E. J. Epigenetic regulation in psychiatric disorders. Nature Rev. Neurosci. 8, 355–367 (2007).

    CAS  Google Scholar 

  27. Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).

    CAS  PubMed  Google Scholar 

  28. Kouzarides, T. Histone methylation in transcriptional control. Curr. Opin. Genet. Dev. 12, 198–209 (2002).

    CAS  PubMed  Google Scholar 

  29. Cheung, W. L., Briggs, S. D. & Allis, C. D. Acetylation and chromosomal functions. Curr. Opin. Cell Biol. 12, 326–333 (2000).

    CAS  PubMed  Google Scholar 

  30. Robzyk, K., Recht, J. & Osley, M. A. Rad6-dependent ubiquitination of histone H2B in yeast. Science 287, 501–504 (2000).

    CAS  PubMed  Google Scholar 

  31. Nathan, D., Sterner, D. E. & Berger, S. L. Histone modifications: Now summoning sumoylation. Proc. Natl Acad. Sci. USA 100, 13118–13120 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Carbia-Nagashima, A. et al. RSUME, a small RWD-containing protein, enhances SUMO conjugation and stabilizes HIF-1α during hypoxia. Cell 131, 309–323 (2007).

    CAS  PubMed  Google Scholar 

  33. Cheng, J., Kang, X., Zhang, S. & Yeh, E. T. SUMO-specific protease 1 is essential for stabilization of HIF1α during hypoxia. Cell 131, 584–595 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Renthal, W. et al. Histone deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional stimuli. Neuron 56, 517–529 (2007).

    CAS  PubMed  Google Scholar 

  35. Tsankova, N. M. et al. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nature Neurosci. 9, 519–525 (2006).

    CAS  PubMed  Google Scholar 

  36. Jaenisch, R. & Bird, A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature Genet. 33 (Suppl.), 245–254 (2003).

    CAS  PubMed  Google Scholar 

  37. Weaver, I. C. et al. Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life. J. Neurosci. 25, 11045–11054 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Heim, C. & Nemeroff, C. B. The role of childhood trauma in the neurobiology of mood and anxiety disorders: preclinical and clinical studies. Biol. Psychiatry 49, 1023–1039 (2001).

    CAS  PubMed  Google Scholar 

  39. Fraga, M. F. et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl Acad. Sci. USA 102, 10604–10609 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Stratton, M. R. & Rahman, N. The emerging landscape of breast cancer susceptibility. Nature Genet. 40, 17–22 (2008).

    CAS  PubMed  Google Scholar 

  41. Hyman, S. E. Can neuroscience be integrated into the DSM-V? Nature Rev. Neurosci. 8, 725–732 (2007).

    CAS  Google Scholar 

  42. Matigian, N. et al. Expression profiling in monozygotic twins discordant for bipolar disorder reveals dysregulation of the WNT signalling pathway. Mol. Psychiatry 12, 815–825 (2007).

    CAS  PubMed  Google Scholar 

  43. Mirnics, K., Levitt, P. & Lewis, D. A. Critical appraisal of DNA microarrays in psychiatric genomics. Biol. Psychiatry 60, 163–176 (2006).

    CAS  PubMed  Google Scholar 

  44. Hakonarson, H. et al. Profiling of genes expressed in peripheral blood mononuclear cells predicts glucocorticoid sensitivity in asthma patients. Proc. Natl Acad. Sci. USA 102, 14789–14794 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Holsboer, F. The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology 23, 477–501 (2000).

    CAS  PubMed  Google Scholar 

  46. Karssen, A. M. et al. Stress-induced changes in primate prefrontal profiles of gene expression. Mol. Psychiatry 12, 1089–1102 (2007).

    CAS  PubMed  Google Scholar 

  47. Krishnan, V. et al. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell 131, 391–404 (2007).

    CAS  PubMed  Google Scholar 

  48. Kromer, S. A. et al. Identification of glyoxalase-I as a protein marker in a mouse model of extremes in trait anxiety. J. Neurosci. 25, 4375–4384 (2005).

    PubMed  PubMed Central  Google Scholar 

  49. Hovatta, I. et al. Glyoxalase 1 and glutathione reductase 1 regulate anxiety in mice. Nature 438, 662–666 (2005).

    CAS  PubMed  Google Scholar 

  50. Ditzen, C. et al. Protein biomarkers in a mouse model of extremes in trait anxiety. Mol. Cell. Proteomics 5, 1914–1920 (2006).

    CAS  PubMed  Google Scholar 

  51. Weaver, I. C. et al. Epigenetic programming by maternal behavior. Nature Neurosci. 7, 847–854 (2004).

    CAS  PubMed  Google Scholar 

  52. Kagan, B. L., Sultzer, D. L., Rosenlicht, N. & Gerner, R. H. Oral S-adenosylmethionine in depression: a randomized, double-blind, placebo-controlled trial. Am. J. Psychiatry 147, 591–595 (1990).

    CAS  PubMed  Google Scholar 

  53. Wishart, D. S. Proteomics and the human metabolome project. Expert Rev. Proteomics 4, 333–335 (2007).

    CAS  PubMed  Google Scholar 

  54. Fernie, A. R., Trethewey, R. N., Krotzky, A. J. & Willmitzer, L. Metabolite profiling: from diagnostics to systems biology. Nature Rev. Mol. Cell Biol. 5, 763–769 (2004).

    CAS  Google Scholar 

  55. Holmes, E. et al. Metabolic profiling of CSF: evidence that early intervention may impact on disease progression and outcome in schizophrenia. PLoS Med. 3, e327 (2006).

    PubMed  PubMed Central  Google Scholar 

  56. Kaddurah-Daouk, R. et al. Metabolomic mapping of atypical antipsychotic effects in schizophrenia. Mol. Psychiatry 12, 934–945 (2007).

    CAS  PubMed  Google Scholar 

  57. Borsook, D., Becerra, L. & Hargreaves, R. A role for fMRI in optimizing CNS drug development. Nature Rev. Drug Discov. 5, 411–424 (2006).

    CAS  Google Scholar 

  58. Jacobs, L. D. et al. Intramuscular interferon beta-1a therapy initiated during a first demyelinating event in multiple sclerosis. CHAMPS study group. N. Engl. J. Med. 343, 898–904 (2000).

    CAS  PubMed  Google Scholar 

  59. Sheline, Y. I. et al. Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment: an fMRI study. Biol. Psychiatry 50, 651–658 (2001).

    CAS  PubMed  Google Scholar 

  60. Aravanis, A. M. et al. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J. Neural Eng. 4, S143–S156 (2007).

    PubMed  Google Scholar 

  61. Airan, R. D. et al. High-speed imaging reveals neurophysiological links to behavior in an animal model of depression. Science 317, 819–823 (2007).

    CAS  PubMed  Google Scholar 

  62. Drevets, W. C. et al. Subgenual prefrontal cortex abnormalities in mood disorders. Nature 386, 824–827 (1997).

    CAS  PubMed  Google Scholar 

  63. Herrmann, W. M., Scharer, E., Wendt, G. & Delini-Stula, A. Pharmaco-EEG profile of maroxepine: third example to discuss the predictive value of pharmaco-electroencephalography in early human pharmacological evaluations of psychoactive drugs. Pharmacopsychiatry 24, 214–224 (1991).

    CAS  PubMed  Google Scholar 

  64. Saletu, B. & Grunberger, J. Drug profiling by computed electroencephalography and brain maps, with special consideration of sertraline and its psychometric effects. J. Clin. Psychiatry 49 (Suppl.), 59–71 (1988).

    PubMed  Google Scholar 

  65. Fu, C. H. et al. Attenuation of the neural response to sad faces in major depression by antidepressant treatment: a prospective, event-related functional magnetic resonance imaging study. Arch. Gen. Psychiatry 61, 877–889 (2004).

    PubMed  Google Scholar 

  66. Hunter, A. M., Leuchter, A. F., Morgan, M. L. & Cook, I. A. Changes in brain function (quantitative EEG cordance) during placebo lead-in and treatment outcomes in clinical trials for major depression. Am. J. Psychiatry 163, 1426–1432 (2006).

    PubMed  Google Scholar 

  67. Bares, M. et al. Changes in QEEG prefrontal cordance as a predictor of response to antidepressants in patients with treatment resistant depressive disorder: a pilot study. J. Psychiatr. Res. 41, 319–325 (2007).

    PubMed  Google Scholar 

  68. Cook, I. A. et al. Early changes in prefrontal activity characterize clinical responders to antidepressants. Neuropsychopharmacology 27, 120–131 (2002).

    CAS  PubMed  Google Scholar 

  69. Hunter, A. M., Cook, I. A. & Leuchter, A. F. The promise of the quantitative electroencephalogram as a predictor of antidepressant treatment outcomes in major depressive disorder. Psychiatr. Clin. North Am. 30, 105–124 (2007).

    PubMed  Google Scholar 

  70. Lauer, C. J., Riemann, D., Wiegand, M. & Berger, M. From early to late adulthood. Changes in EEG sleep of depressed patients and healthy volunteers. Biol. Psychiatry 29, 979–993 (1991).

    CAS  PubMed  Google Scholar 

  71. Hatzinger, M., Hemmeter, U. M., Brand, S., Ising, M. & Holsboer-Trachsler, E. Electroencephalographic sleep profiles in treatment course and long-term outcome of major depression: association with DEX/CRH-test response. J. Psychiatr. Res. 38, 453–465 (2004).

    PubMed  Google Scholar 

  72. Nemeroff, C. B. et al. Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients. Science 226, 1342–1344 (1984).

    CAS  PubMed  Google Scholar 

  73. Raadsheer, F. C., Hoogendijk, W. J., Stam, F. C., Tilders, F. J. & Swaab, D. F. Increased numbers of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of depressed patients. Neuroendocrinology 60, 436–444 (1994).

    CAS  PubMed  Google Scholar 

  74. de Kloet, E. R., Joels, M. & Holsboer, F. Stress and the brain: from adaptation to disease. Nature Rev. Neurosci. 6, 463–475 (2005).

    CAS  Google Scholar 

  75. Ising, M. et al. Combined dexamethasone/corticotropin releasing hormone test predicts treatment response in major depression–a potential biomarker? Biol. Psychiatry 62, 47–54 (2007).

    CAS  PubMed  Google Scholar 

  76. Berton, O. & Nestler, E. J. New approaches to antidepressant drug discovery: beyond monoamines. Nature Rev. Neurosci. 7, 137–151 (2006).

    CAS  Google Scholar 

  77. Wong, M. L. & Licinio, J. From monoamines to genomic targets: a paradigm shift for drug discovery in depression. Nature Rev. Drug Discov. 3, 136–151 (2004).

    CAS  Google Scholar 

  78. Kitano, H. Towards a theory of biological robustness. Mol. Syst. Biol. 3, 137 (2007).

    PubMed  PubMed Central  Google Scholar 

  79. McMahon, F. J. et al. Variation in the gene encoding the serotonin 2A receptor is associated with outcome of antidepressant treatment. Am. J. Hum. Genet. 78, 804–814 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Suzuki, Y., Sawamura, K. & Someya, T. Polymorphisms in the 5-hydroxytryptamine 2A receptor and CytochromeP4502D6 genes synergistically predict fluvoxamine-induced side effects in japanese depressed patients. Neuropsychopharmacology 31, 825–831 (2006).

    CAS  PubMed  Google Scholar 

  81. Sato, K. et al. Association between -1438G/A promoter polymorphism in the 5-HT2A receptor gene and fluvoxamine response in Japanese patients with major depressive disorder. Neuropsychobiology 46, 136–140 (2002).

    CAS  PubMed  Google Scholar 

  82. Choi, M. J., Kang, R. H., Ham, B. J., Jeong, H. Y. & Lee, M. S. Serotonin receptor 2A gene polymorphism (-1438A/G) and short-term treatment response to citalopram. Neuropsychobiology 52, 155–162 (2005).

    CAS  PubMed  Google Scholar 

  83. Peters, E. J., Slager, S. L., McGrath, P. J., Knowles, J. A. & Hamilton, S. P. Investigation of serotonin-related genes in antidepressant response. Mol. Psychiatry 9, 879–889 (2004).

    CAS  PubMed  Google Scholar 

  84. Paddock, S. et al. Association of GRIK4 with outcome of antidepressant treatment in the STAR*D cohort. Am. J. Psychiatry 164, 1181–1188 (2007).

    PubMed  Google Scholar 

  85. Wilkie, M. J. et al. A splice site polymorphism in the G-protein β subunit influences antidepressant efficacy in depression. Pharmacogenet. Genomics 17, 207–215 (2007).

    CAS  PubMed  Google Scholar 

  86. Serretti, A. et al. SSRIs antidepressant activity is influenced by Gβ3 variants. Eur. Neuropsychopharmacol. 13, 117–122 (2003).

    CAS  PubMed  Google Scholar 

  87. Zill, P. et al. Evidence for an association between a G-protein β3-gene variant with depression and response to antidepressant treatment. Neuroreport 11, 1893–1897 (2000).

    CAS  PubMed  Google Scholar 

  88. Lee, H. J. et al. Association between a G-protein β3 subunit gene polymorphism and the symptomatology and treatment responses of major depressive disorders. Pharmacogenomics J. 4, 29–33 (2004).

    CAS  PubMed  Google Scholar 

  89. Licinio, J. et al. Association of a corticotropin-releasing hormone receptor 1 haplotype and antidepressant treatment response in Mexican-Americans. Mol. Psychiatry 9, 1075–1082 (2004).

    CAS  PubMed  Google Scholar 

  90. Liu, Z. et al. Association study of corticotropin-releasing hormone receptor1 gene polymorphisms and antidepressant response in major depressive disorders. Neurosci. Lett. 414, 155–158 (2007).

    CAS  PubMed  Google Scholar 

  91. Serretti, A., Kato, M., De, R. D. & Kinoshita, T. Meta-analysis of serotonin transporter gene promoter polymorphism (5-HTTLPR) association with selective serotonin reuptake inhibitor efficacy in depressed patients. Mol. Psychiatry 12, 247–257 (2007).

    CAS  PubMed  Google Scholar 

  92. Kang, R. H., Wong, M. L., Choi, M. J., Paik, J. W. & Lee, M. S. Association study of the serotonin transporter promoter polymorphism and mirtazapine antidepressant response in major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 31, 1317–1321 (2007).

    CAS  PubMed  Google Scholar 

  93. Hong, C. J., Chen, T. J., Yu, Y. W. & Tsai, S. J. Response to fluoxetine and serotonin 1A receptor (C-1019G) polymorphism in Taiwan Chinese major depressive disorder. Pharmacogenomics J. 6, 27–33 (2006).

    CAS  PubMed  Google Scholar 

  94. Yu, Y. W., Tsai, S. J., Liou, Y. J., Hong, C. J. & Chen, T. J. Association study of two serotonin 1A receptor gene polymorphisms and fluoxetine treatment response in Chinese major depressive disorders. Eur. Neuropsychopharmacol. 16, 498–503 (2006).

    CAS  PubMed  Google Scholar 

  95. Lemonde, S., Du, L., Bakish, D., Hrdina, P. & Albert, P. R. Association of the C(-1019)G 5-HT1A functional promoter polymorphism with antidepressant response. Int. J. Neuropsychopharmacol. 7, 501–506 (2004).

    CAS  PubMed  Google Scholar 

  96. Serretti, A. et al. The C(-1019)G polymorphism of the 5-HT1A gene promoter and antidepressant response in mood disorders: preliminary findings. Int. J. Neuropsychopharmacol. 7, 453–460 (2004).

    CAS  PubMed  Google Scholar 

  97. Suzuki, Y., Sawamura, K. & Someya, T. The effects of a 5-hydroxytryptamine 1A receptor gene polymorphism on the clinical response to fluvoxamine in depressed patients. Pharmacogenomics. J. 4, 283–286 (2004).

    CAS  PubMed  Google Scholar 

  98. Arias, B. et al. Analysis of COMT gene (Val 158 Met polymorphism) in the clinical response to SSRIs in depressive patients of European origin. J. Affect. Disord. 90, 251–256 (2006).

    CAS  PubMed  Google Scholar 

  99. Szegedi, A. et al. The catechol-O-methyltransferase Val108/158Met polymorphism affects short-term treatment response to mirtazapine, but not to paroxetine in major depression. Pharmacogenomics. J. 5, 49–53 (2005).

    CAS  PubMed  Google Scholar 

  100. Baune, B. T. et al. Association of the COMT val158met variant with antidepressant treatment response in major depression. Neuropsychopharmacology 33, 924–932 (2007).

    PubMed  Google Scholar 

  101. Yu, Y. W. et al. Association study of a monoamine oxidase A gene promoter polymorphism with major depressive disorder and antidepressant response. Neuropsychopharmacology 30, 1719–1723 (2005).

    CAS  PubMed  Google Scholar 

  102. Domschke, K. et al. Monoamine oxidase A variant influences antidepressant treatment response in female patients with Major Depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 32, 224–228 (2007).

    PubMed  Google Scholar 

Download references

Acknowledgements

The author's research on personalized medicine is supported by the Max Planck Excellence Foundation.

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

Florian Holsboer's homepage

Max Planck Institute of Psychiatry

MARS sample

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Holsboer, F. How can we realize the promise of personalized antidepressant medicines?. Nat Rev Neurosci 9, 638–646 (2008). https://doi.org/10.1038/nrn2453

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2453

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing