Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex

Abstract

Neuroscience produces a vast amount of data from an enormous diversity of neurons. A neuronal classification system is essential to organize such data and the knowledge that is derived from them. Classification depends on the unequivocal identification of the features that distinguish one type of neuron from another. The problems inherent in this are particularly acute when studying cortical interneurons. To tackle this, we convened a representative group of researchers to agree on a set of terms to describe the anatomical, physiological and molecular features of GABAergic interneurons of the cerebral cortex. The resulting terminology might provide a stepping stone towards a future classification of these complex and heterogeneous cells. Consistent adoption will be important for the success of such an initiative, and we also encourage the active involvement of the broader scientific community in the dynamic evolution of this project.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Somatic and dendritic morphology: shape and fine structure.
Figure 2: Basic morphological features that describe neuronal branching.
Figure 3: Axonal morphology and synaptic structure.
Figure 4: Functional characterization of interneurons.
Figure 5: Petilla terminology: types of firing patterns.

References

  1. Somogyi, P., Tamas, G., Lujan, R. & Buhl, E. H. Salient features of synaptic organisation in the cerebral cortex. Brain Res. Brain Res. Rev. 26, 113–135 (1998).

    CAS  PubMed  Google Scholar 

  2. Ramón y Cajal, S. Textura del sistema nervioso del hombre y de los vertebrados (Moya, Madrid, 1899). English translation: Histology of the Nervous System of Man and Vertebrates (Oxford Univ. Press, New York, 1995)

    Google Scholar 

  3. Lorente de Nó, R. La corteza cerebral de ratón. (Primera contribución - La corteza acústica). Trabajos del Laboratorio de Investigaciones Biológicas de la Universidad de Madrid 20, 41–78 (1922). English translation: Fairén, A., Regidor, J. & Kruger, L. The cerebral cortex of the mouse (a first contribution - the “acoustic” cortex). Somatosens. Mot. Res. 9, 3–36 (1992).

    Google Scholar 

  4. Szentagóthai, J. The neuron network of the cerebral cortex: a functional interpretation. Proc. R. Soc. Lond. B Biol. Sci. 201, 219–248 (1978).

    PubMed  Google Scholar 

  5. Fairén, A., DeFelipe, J. & Regidor, J. in Cerebral Cortex vol. 1 Cellular Components of the Cerebral Cortex (eds, Peters, A. & Jones, E. G.) 201–253 (Plenum, New York, 1984).

    Google Scholar 

  6. Lund, J. S. Anatomical organization of macaque monkey striate visual cortex. Ann. Rev. Neurosci. 11, 253–288 (1988).

    CAS  PubMed  Google Scholar 

  7. Douglas, R. J. & Martin, K. A. C. in The Synaptic Organization of the Brain (ed. Shepherd, G. M.) 459–511 (Oxford Univ. Press, Oxford, 1998).

    Google Scholar 

  8. Gupta, A., Wang, Y. & Markram, H. Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287, 273–278 (2000).

    CAS  PubMed  Google Scholar 

  9. Lacaille, J. C., Kunkel, D. D. & Schwartzkroin, P. A. in The Hippocampus: New Vistas (eds Chan-Palay, V. & Kohler, C.) 287–305 (Liss, 1989).

    Google Scholar 

  10. Maccaferri, G. & Lacaille, J. C. Interneuron diversity series: Hippocampal interneuron classifications - making things as simple as possible, not simpler. Trends Neurosci. 26, 564–571 (2003).

    CAS  PubMed  Google Scholar 

  11. Cauli, B. et al. Molecular and physiological diversity of cortical nonpyramidal cells. J. Neurosci. 17, 3894–3906 (1997).

    CAS  PubMed  Google Scholar 

  12. Kawaguchi, Y. Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum. J. Neurosci. 13, 4908–4923 (1993).

    CAS  PubMed  Google Scholar 

  13. Toledo-Rodriguez, M. et al. Correlation maps allow neuronal electrical properties to be predicted from single-cell gene expression profiles in rat neocortex. Cereb. Cortex 14, 1310–1327 (2004).

    PubMed  Google Scholar 

  14. Kostyuk, P. G. Synaptic mechanism of central inhibition. Prog. Brain Res. 22, 67–85 (1968).

    CAS  PubMed  Google Scholar 

  15. Huang, Z. J., Di Cristo, G. & Ango, F. Development of GABA innervation in the cerebral and cerebellar cortices. Nature Rev. Neurosci. 8, 673–686 (2007).

    CAS  Google Scholar 

  16. Bayraktar, T., Welker, E., Freund, T. F., Zilles, K. & Staiger, J. F. Neurons immunoreactive for vasoactive intestinal polypeptide in the rat primary somatosensory cortex: morphology and spatial relationship to barrel-related columns. J. Comp. Neurol. 420, 291–304 (2000).

    CAS  PubMed  Google Scholar 

  17. Porter, J. T. et al. Properties of bipolar VIPergic interneurons and their excitation by pyramidal neurons in the rat neocortex. Eur. J. Neurosci. 10, 3617–3628 (1998).

    CAS  PubMed  Google Scholar 

  18. Rozov, A., Jerecic, J., Sakmann, B. & Burnashev, N. AMPA receptor channels with long-lasting desensitization in bipolar interneurons contribute to synaptic depression in a novel feedback circuit in layer 2/3 of rat neocortex. J. Neurosci. 21, 8062–8071 (2001).

    CAS  PubMed  Google Scholar 

  19. Zilberter, Y., Kaiser, K. M. & Sakmann, B. Dendritic GABA release depresses excitatory transmission between layer 2/3 pyramidal and bitufted neurons in rat neocortex. Neuron 24, 979–988 (1999).

    CAS  PubMed  Google Scholar 

  20. Scorcioni, R. & Ascoli, G. A. Algorithmic extraction of morphological statistics from electronic archives of neuroanatomy. Lect. Notes Comput. Sci. 2084, 30–37 (2001).

    Google Scholar 

  21. Rall, W. Electrophysiology of a dendritic neuron model. Biophys. J. 2, 145–167 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Sholl, D. A. Dendritic organization in the neurons of the visual cortex and motor cortices of the cat. J. Anat. 87, 387–406 (1953).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sholl, D. A. The organization of the visual cortex in the cat. J. Anat. 89, 33–46 (1953).

    Google Scholar 

  24. Cannon, R. C., Wheal, H. V. & Turner, D. A. Dendrites of classes of hippocampal neurons differ in structural complexity and branching patterns. J. Comp. Neurol. 413, 619–633 (1999).

    CAS  PubMed  Google Scholar 

  25. Li, Y., Brewer, D., Burke, R. E. & Ascoli, G. A. Developmental changes in spinal motoneuron dendrites in neonatal mice. J. Comp. Neurol. 483, 304–317 (2005).

    PubMed  Google Scholar 

  26. Uylings, H. B. M. & van Pelt, J. Measures for quantifying dendritic arborizations. Netw. Comput. Neural Syst. 13, 397–414 (2002).

    Google Scholar 

  27. Gray, E. G. Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscopic study. J. Anat. 93, 420–433 (1959).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Colonnier, M. Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study. Brain Res. 9, 268–287 (1968).

    CAS  PubMed  Google Scholar 

  29. Peters, A., Palay, S. L. & Webster, H. deF. The Fine Structure of the Nervous System. Neurons and their Supporting Cells (Oxford Univ. Press, New York, 1991).

    Google Scholar 

  30. Gulyás, A. I., Megías, M., Emri, Z. & Freund, T. F. Total number and ratio of excitatory and inhibitory synapses converging onto single interneurons of different types in the CA1 area of the rat hippocampus. J. Neurosci. 19, 10082–10097 (1999).

    PubMed  Google Scholar 

  31. Butt, S. J. et al. The temporal and spatial origins of cortical interneurons predict their physiological subtype. Neuron 48, 591–604 (2005).

    CAS  PubMed  Google Scholar 

  32. Dumitriu, D., Cossart, R., Huang, J. & Yuste, R. Correlation between axonal morphologies and synaptic input kinetics of interneurons from mouse visual cortex. Cereb. Cortex 17, 81–91 (2007).

    PubMed  Google Scholar 

  33. Sik, A., Ylinen, A., Penttonen, M. & Buzsáki, G. Inhibitory CA1-CA3-hilar region feedback in the hippocampus. Science 265, 1722–1724 (1994).

    CAS  PubMed  Google Scholar 

  34. Sik, A., Penttonen, M., Ylinen, A. & Buzsáki, G. Hippocampal CA1 interneurons: an in vivo intracellular labeling study. J. Neurosci. 15, 6651–6665 (1995).

    CAS  PubMed  Google Scholar 

  35. Sik, A., Penttonen, M. & Buzsáki, G. Interneurons in the hippocampal dentate gyrus: an in vivo intracellular study. Eur. J. Neurosci. 9, 573–588 (1997).

    CAS  PubMed  Google Scholar 

  36. Jinno, S. et al. Neuronal diversity in GABAergic long-range projections from the hippocampus. J. Neurosci. 27, 8790–8804 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Miyashita, T. & Rockland, K. S. GABAergic projections from the hippocampus to the retrosplenial cortex in the rat. Eur. J. Neurosci. 26, 1193–1204 (2007).

    PubMed  Google Scholar 

  38. Tomioka, R. & Rockland, K. S. Long-distance corticocortical GABAergic neurons in the adult monkey white and gray matter. J. Comp. Neurol. 505, 526–538 (2007).

    PubMed  Google Scholar 

  39. Tamas, G., Somogyi, P. & Buhl, E. H. Differentially interconnected networks of GABAergic interneurons in the visual cortex of the cat. J. Neurosci. 18, 4255–4270 (1998).

    CAS  PubMed  Google Scholar 

  40. Somogyi, P. & Cowey, A. Combined Golgi and electron microscopic study on the synapses formed by double bouquet cells in the visual cortex of the cat and monkey. J. Comp. Neurol. 195, 547–566 (1981).

    CAS  PubMed  Google Scholar 

  41. Somogyi, P. & Cowey, A. in Cerebral Ccortex vol. 1 Cellular Components of the Cerebral Cortex (eds Peters, A. & Jones, E. G.) 337–360 (Plenum, New York, 1984).

    Google Scholar 

  42. White, E. L. Cortical Circuits. Synaptic Organization of the Cerebral Cortex (Birkhauser, Boston, 1989).

    Google Scholar 

  43. Valverde, F. The organization of area 18 in the monkey: Golgi study. Anat. Embryol. 154, 305–334 (1978).

    CAS  PubMed  Google Scholar 

  44. Ballesteros-Yánez, I. et al. The double bouquet cell in the human cerebral cortex and a comparison with other mammals. J. Comp. Neurol. 486, 344–360 (2005).

    Google Scholar 

  45. Binzegger, T., Douglas, R. J. & Martin, K. A. Stereotypical bouton clustering of individual neurons in cat primary visual cortex. J. Neurosci. 27, 12242–12254 (2007).

    CAS  PubMed  Google Scholar 

  46. Tamas, G., Buhl, E. H. & Somogyi, P. Massive autaptic self-innervation of GABAergic neurons in cat visual cortex. J. Neurosci. 17, 6352–6364 (1997).

    CAS  PubMed  Google Scholar 

  47. Peters, A. & Harriman, K. M. Different kinds of axon terminals forming symmetric synapses with the cell bodies and initial axon segments of layer II/III pyramidal cells. I. Morphometric analysis. J. Neurocytol. 19, 154–174 (1990).

    CAS  PubMed  Google Scholar 

  48. DeFelipe, J., Hendry, S. H., Jones, E. G. & Schmechel, D. Variability in the terminations of GABAergic chandelier cell axons on initial segments of pyramidal cell axons in the monkey sensory-motor cortex. J. Comp. Neurol. 231, 364–384 (1985).

    CAS  PubMed  Google Scholar 

  49. Somogyi, P. & Klausberger, T. Defined types of cortical interneuron structure space and spike timing in the hippocampus. J. Physiol. 562, 9–26 (2005).

    CAS  PubMed  Google Scholar 

  50. DeFelipe, J. (ed.) J. Neurocytol. 31, 181–416 (2002).

    Google Scholar 

  51. McBain, C. J. & Fisahn, A. Interneurons unbound. Nature Rev. Neurosci. 2, 11–23 (2001).

    CAS  Google Scholar 

  52. Bennett, M. V. & Zukin, R. S. Electrical coupling and neuronal synchronization in the mammalian brain. Neuron 41, 495–511 (2004).

    CAS  PubMed  Google Scholar 

  53. Tamas, G., Buhl, E. H., Lörincz, A. & Somogyi, P. Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons. Nature Neurosci. 3, 366–371 (2000).

    CAS  PubMed  Google Scholar 

  54. Fukuda, T. & Kosaka, T. Ultrastructural study of gap junctions between dendrites of parvalbumin-containing GABAergic neurons in various neocortical areas of the adult rat. Neuroscience 120, 5–20 (2003).

    CAS  PubMed  Google Scholar 

  55. Zoli, M., Jansson, A., Sykova, E., Agnati, L. F. & Fuxe, K. Volume transmission in the CNS and its relevance for neuropsychopharmacology. Trends Pharmacol. Sci. 20, 142–150 (1999).

    CAS  PubMed  Google Scholar 

  56. Vizi, E. S. Role of high-affinity receptors and membrane transporters in nonsynaptic communication and drug action in the central nervous system. Pharmacol. Rev. 52, 63–89 (2000).

    CAS  PubMed  Google Scholar 

  57. Monyer, H. & Markram, H. Interneuron diversity series: Molecular and genetic tools to study GABAergic interneuron diversity and function. Trends Neurosci. 27, 90–97 (2004).

    CAS  PubMed  Google Scholar 

  58. Ray, A., Zoidl, G., Weickert, S., Wahle, P. & Dermietzel, R. Site-specific and developmental expression of pannexin1 in the mouse nervous system. Eur. J. Neurosci. 21, 3277–3290 (2005).

    PubMed  Google Scholar 

  59. Kamme, F. et al. Single-cell microarray analysis in hippocampus CA1: demonstration and validation of cellular heterogeneity. J. Neurosci. 23, 3607–3615 (2003).

    CAS  PubMed  Google Scholar 

  60. Sugino, K. et al. Molecular taxonomy of major neuronal classes in the adult mouse forebrain. Nature Neurosci. 9, 99–107 (2006).

    CAS  PubMed  Google Scholar 

  61. DeFelipe, J. Chandelier cells and epilepsy. Brain 122, 1807–1822 (1999).

    PubMed  Google Scholar 

  62. Llinás, R. R., Grace, A. A. & Yarom, Y. In vitro neurons in mammalian cortical layer 4 exhibit intrinsic oscillatory activity in the 10- to 50-Hz frequency range. Proc. Natl Acad. Sci. USA 88, 897–901 (1991).

    PubMed  Google Scholar 

  63. Hutcheon, B. & Yarom, Y. Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends Neurosci. 23, 216–222 (2000).

    CAS  PubMed  Google Scholar 

  64. Pike, F. G. et al. Distinct frequency preferences of different types of rat hippocampal neurones in response to oscillatory input currents. J. Physiol. 529, 205–213 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Klausberger, T. et al. Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature 421, 844–848 (2003).

    CAS  Google Scholar 

  66. Goldberg, J. H., Tamas, G. & Yuste, R. Ca2+ imaging of mouse neocortical interneurone dendrites: Ia-type K+ channels control action potential backpropagation. J. Physiol. 551, 49–65 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Ali, A. B., Bannister, A. P. & Thomson, A. M. Robust correlations between action potential duration and the properties of synaptic connections in layer 4 interneurones in juvenile and adult neocortical slices. J. Physiol. 580, 149–169 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kröner, S., Krimer, L. S., Lewis, D. A. & Barrionuevo, G. Dopamine increases inhibition in the monkey dorsolateral prefrontal cortex through cell type-specific modulation of interneurons. Cereb. Cortex 17, 1020–1032 (2007).

    PubMed  Google Scholar 

  69. Thomson, A. M., West, D. C. & Deuchars, J. Properties of single axon EPSPs elicited in spiny interneurones by action potentials in pyramidal neurones in slices of rat neocortex. Neuroscience 69, 727–738 (1995).

    CAS  PubMed  Google Scholar 

  70. Ali, A. B. & Thomson, A. M. Synaptic a5 subunit containing GABAA receptors mediate IPSPs elicited by dendrite-targeting cells in rat neocortex. Cereb. Cortex 18, 1260–1271 (2008).

    PubMed  Google Scholar 

  71. Markram, H. & Tsodyks, M. Redistribution of synaptic efficacy between neocortical pyramidal neurons. Nature 382, 807–810 (1996).

    CAS  PubMed  Google Scholar 

  72. Kullmann, D. M. & Lamsa, K. P. Long-term synaptic plasticity in hippocampal interneurons. Nature Rev. Neurosci. 8, 687–699 (2007).

    CAS  Google Scholar 

  73. Pelletier, J. G. & Lacaille, J. C. Long-term synaptic plasticity in hippocampal feedback inhibitory networks. Prog. Brain Res. 169, 241–250 (2008).

    CAS  PubMed  Google Scholar 

  74. Thomson, A. M., Deuchars, J. & West, D. C. Single axon EPSPs in neocortical interneurones exhibit pronounced paired pulse facilitation. Neuroscience 54, 347–360 (1993).

    CAS  PubMed  Google Scholar 

  75. Thomson, A. M., West, D. C., Wang, Y. & Bannister, A. P. Synaptic connections and small circuits involving excitatory and inhibitory neurones in layers 2 to 5 of adult rat and cat neocortex: triple intracellular recordings and biocytin-labelling in vitro. Cereb. Cortex 12, 936–953 (2002).

    PubMed  Google Scholar 

  76. West, D. C., Mercer, A., Kirchhecker, S., Morris, O. T. & Thomson, A. M. Layer 6 cortico- thalamic pyramidal cells preferentially innervate interneurons and generate facilitating EPSPs. Cereb. Cortex 16, 200–211 (2006).

    PubMed  Google Scholar 

  77. Maffei, A., Nataraj, K., Nelson, S. B. & Turrigiano, G. G. Potentiation of cortical inhibition by visual deprivation. Nature 443, 81–84 (2006).

    CAS  PubMed  Google Scholar 

  78. Kawaguchi, Y. & Shindou, T. Noradrenergic excitation and inhibition of GABAergic cell types in rat frontal cortex. J. Neurosci. 18, 6963–6976 (1998).

    CAS  PubMed  Google Scholar 

  79. Xiang, Z., Huguenard, J. R. & Prince, D. A. Cholinergic switching within neocortical inhibitory networks. Science 281, 985–988 (1998).

    CAS  PubMed  Google Scholar 

  80. Férézou, I. et al. 5-HT3 receptors mediate serotonergic fast synaptic excitation of neocortical vasoactive intestinal peptide/cholecystokinin interneurons. J. Neurosci. 22, 7389–7397 (2002).

    PubMed  Google Scholar 

  81. Bacci, A., Huguenard, J. R. & Prince, D. A. Long-lasting self-inhibition of neocortical interneurons mediated by endocannabinoids. Nature 431, 312–316 (2004).

    CAS  PubMed  Google Scholar 

  82. Bodor, A. L. et al. Endocannabinoid signaling in rat somatosensory cortex: laminar differences and involvement of specific interneuron types. J. Neurosci. 25, 6845–6856 (2005).

    CAS  PubMed  Google Scholar 

  83. Gulledge, A. T., Park, S. B., Kawaguchi, Y. & Stuart, G. J. Heterogeneity of phasic cholinergic signaling in neocortical neurons. J. Neurophysiol. 97, 2215–2229 (2007).

    CAS  PubMed  Google Scholar 

  84. Buzsáki, G. Large-scale recording of neuronal ensembles. Nature Neurosci. 7, 446–451 (2004).

    PubMed  Google Scholar 

  85. Csicsvari, J., Hirase, H., Czurkó, A., Mamiya, A. & Buzsáki, G. Oscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving rat. J. Neurosci. 19, 274–287 (1999).

    CAS  PubMed  Google Scholar 

  86. Barthó, P. et al. Characterization of neocortical principal cells and interneurons by network interactions and extracellular features. J. Neurophysiol. 92, 600–608 (2004).

    PubMed  Google Scholar 

  87. Klausberger, T. et al. Spike timing of dendrite-targeting bistratified cells during hippocampal network oscillations in vivo. Nature Neurosci. 7, 41–47 (2004).

    CAS  PubMed  Google Scholar 

  88. Goldberg, J. H., Lacefield, C. O. & Yuste, R. Global dendritic calcium spikes in mouse layer 5 low threshold spiking interneurones: implications for control of pyramidal cell bursting. J. Physiol. 558, 465–478 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Tyner, C. F. The naming of neurons: applications of taxonomic theory to the study of cellular populations. Brain Behav. Evol. 12, 75–96 (1975).

    CAS  PubMed  Google Scholar 

  90. Bota, M. & Swanson, L. W. The neuron classification problem. Brain Res. Rev. 56, 79–88 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Miyoshi, G., Butt, S. J., Takebayashi, H. & Fishell, G. Physiologically distinct temporal cohorts of cortical interneurons arise from telencephalic Olig2-expressing precursors. J. Neurosci. 27, 7786–7798 (2007).

    CAS  PubMed  Google Scholar 

  92. Tsiola, A., Hamzei-Sichani, F., Peterlin, Z. & Yuste, R. Quantitative morphologic classification of layer 5 neurons from mouse primary visual cortex. J. Comp. Neurol. 461, 415–428 (2003).

    PubMed  Google Scholar 

  93. Wonders, C. P. & Anderson, S. A. The origin and specification of cortical interneurons. Nature Rev. Neurosci. 7, 687–696 (2006).

    CAS  Google Scholar 

  94. Thomson, A. M. & Lamy, C. Functional maps of neocortical local circuitry. Front. Neurosci. 1, 19–42 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Swadlow, H. A. Fast-spike interneurons and feedforward inhibition in awake sensory neocortex. Cereb. Cortex 13, 25–32 (2003).

    PubMed  Google Scholar 

  96. Goldberg, J. H., Tamas, G., Aronov, D. & Yuste, R. Calcium microdomains in aspiny dendrites. Neuron 40, 807–821 (2003).

    CAS  PubMed  Google Scholar 

  97. Goldberg, J. H., Yuste, R. & Tamas, G. Ca2+ imaging of mouse neocortical interneurone dendrites: contribution of Ca2+-permeable AMPA and NMDA receptors to subthreshold Ca2+ dynamics. J. Physiol. 551, 67–78 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Kaiser, K. M., Zilberter, Y. & Sakmann, B. Back-propagating action potentials mediate calcium signalling in dendrites of bitufted interneurons in layer 2/3 of rat somatosensory cortex. J. Physiol. 535, 17–31 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Kaiser, K. M., Zilberter, Y. & Sakmann, B. Postsynaptic calcium influx at single synaptic contacts between pyramidal neurons and bitufted interneurons in layer 2/3 of rat neocortex is enhanced by backpropagating action potentials. J. Neurosci. 24, 1319–1329 (2004).

    CAS  PubMed  Google Scholar 

  100. Povysheva, N. V. et al. Electrophysiological differences between neurogliaform cells from monkey and rat prefrontal cortex. J. Neurophysiol. 97, 1030–1039 (2007).

    CAS  PubMed  Google Scholar 

  101. Ascoli, G. A. Mobilizing the base of neuroscience data: the case of neuronal morphologies. Nature Rev. Neurosci. 7, 318–324 (2007).

    Google Scholar 

  102. Ascoli, G. A., Donohue, D. E. & Halavi, M. NeuroMorpho.Org: a central resource for neuronal morphologies. J. Neurosci. 27, 9247–9251 (2007).

    CAS  PubMed  Google Scholar 

  103. Markram, H. The Blue Brain Project. Nature Rev. Neurosci. 7, 153–160 (2006).

    CAS  Google Scholar 

  104. Martinotti, C. Contributo allo studio della corteccia cerebrale, ed all'origine centrale dei nervi. Ann. Freniatr. Sci. Affini. 1, 14–381 (1889).

    Google Scholar 

  105. Marin-Padilla, M. in Cerebral Cortex: Cellular Components of the Cerebral Cortex (eds Peters, A. & Jones, E. G.) 447–478 (Plenum, New York, 1984).

    Google Scholar 

  106. Wang, Y. et al. Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat. J. Physiol. 561, 65–90 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Kawaguchi, Y. & Kubota, Y. GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb. Cortex 7, 476–486 (1997).

    CAS  PubMed  Google Scholar 

  108. Tamás, G., Lorincz, A., Simon, A. & Szabadics, J. Identified sources and targets of slow inhibition in the neocortex. Science 299, 1902–1905 (2003).

    PubMed  Google Scholar 

  109. Toledo-Rodriguez, M. Genetical, Anatomical and Electrical Determinants of Neuronal Diversity. Thesis, Weizmann Inst. Sci.

  110. Goldberg, J. H. & Yuste, R. Space matters: local and global dendritic Ca2+ compartmentalization in cortical interneurons. Trends Neurosci. 28, 158–167 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to funding agencies in their respective countries for supporting this work. The Gobierno de Navarra/Nafarroako Gobernua and the town and people of Petilla are acknowledged for graciously hosting the meeting that originated this document. Special thanks are due to A. Rowan, who attended the Petilla meeting and greatly contributed to establishing the initial vision for this report.

Author information

Authors and Affiliations

Consortia

Corresponding authors

Correspondence to Giorgio A. Ascoli or Rafael Yuste.

Supplementary information

Supplementary information S1 (box)

Author addresses (PDF 120 kb)

Supplementary information S2 (box)

Nomenclature of morphological features. (PDF 105 kb)

Supplementary information S3 (box)

Nomenclature of molecular features (PDF 91 kb)

Supplementary information S4 (box)

Nomenclature of physiological features. (PDF 93 kb)

Supplementary information S5 (figure)

Somato-dendritic characteristics of cortical interneurons. (PDF 107 kb)

Supplementary information S6 (figure)

Target specificity of cortical interneurons. (PDF 335 kb)

Supplementary information S7 (figure)

Combining morphological and functional criteria. (PDF 433 kb)

Supplementary information S8 (figure)

Electrophysiological and morphological characteristics of primate cortical interneurons. (PDF 437 kb)

Supplementary information S9 (figure)

Near-threshold differences in discharge patterns of neocortical FS interneurons. (PDF 334 kb)

Supplementary information S10 (figure)

Differences between species: prefrontal cortex neurogliaform (NGF) cells. (PDF 316 kb)

Related links

Related links

FURTHER INFORMATION

Petilla Terminology

Neuroscience Information Framework

Neurogateway

SenseLab

NeuroMorpho

Rights and permissions

Reprints and permissions

About this article

Cite this article

The Petilla Interneuron Nomenclature Group (PING). Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci 9, 557–568 (2008). https://doi.org/10.1038/nrn2402

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2402

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing