Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A technicolour approach to the connectome

Abstract

A central aim of neuroscience is to map neural circuits, in order to learn how they account for mental activities and behaviours and how alterations in them lead to neurological and psychiatric disorders. However, the methods that are currently available for visualizing circuits have severe limitations that make it extremely difficult to extract precise wiring diagrams from histological images. Here we review recent advances in this area, along with some of the opportunities that these advances present and the obstacles that remain.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Circuit-mapping strategies.
Figure 2: Combinatorial expression of three distinct fluorescent proteins can generate a large spectrum of colours.
Figure 3: Multicolour neuronal labelling in Brainbow transgenic mice.

References

  1. 1

    Sotelo, C. Viewing the brain through the master hand of Ramon y Cajal. Nature Rev. Neurosci. 4, 71–77 (2003).

    CAS  Article  Google Scholar 

  2. 2

    Callaway, E. M. & Sanes, J. R. New technologies. Curr. Opin. Neurobiol. 16, 540–542 (2006).

    CAS  Article  PubMed  Google Scholar 

  3. 3

    Nauta, W. J. Some early travails of tracing axonal pathways in the brain. J. Neurosci. 13, 1337–1345 (1993).

    CAS  Article  PubMed  Google Scholar 

  4. 4

    Callahan, C. A., Yoshikawa, S. & Thomas, J. B. Tracing axons. Curr. Opin. Neurobiol. 8, 582–586 (1998).

    CAS  Article  PubMed  Google Scholar 

  5. 5

    Feinstein, P., Bozza, T., Rodriguez, I., Vassalli, A. & Mombaerts, P. Axon guidance of mouse olfactory sensory neurons by odorant receptors and the β2 adrenergic receptor. Cell 117, 833–846 (2004).

    CAS  Article  Google Scholar 

  6. 6

    Bareyre, F. M., Kerschensteiner, M., Misgeld, T. & Sanes, J. R. Transgenic labeling of the corticospinal tract for monitoring axonal responses to spinal cord injury. Nature Med. 11, 1355–1360 (2005).

    CAS  Article  PubMed  Google Scholar 

  7. 7

    Dymecki, S. M. & Kim, J. C. Molecular neuroanatomy's “Three Gs”: a primer. Neuron 54, 17–34 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8

    Song, C. K., Enquist, L. W. & Bartness, T. J. New developments in tracing neural circuits with herpesviruses. Virus Res. 111, 235–249 (2005).

    CAS  Article  PubMed  Google Scholar 

  9. 9

    Luo, L., Callaway, E. M. & Svoboda, K. Genetic dissection of neural circuits. Neuron 57, 634–660 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10

    Horowitz, L. F., Montmayeur, J. P., Echelard, Y. & Buck, L. B. A genetic approach to trace neural circuits. Proc. Natl Acad. Sci. USA 96, 3194–3199 (1999).

    CAS  Article  PubMed  Google Scholar 

  11. 11

    Yoshihara, Y. et al. A genetic approach to visualization of multisynaptic neural pathways using plant lectin transgene. Neuron 22, 33–41 (1999).

    CAS  Article  PubMed  Google Scholar 

  12. 12

    Wickersham, I. R. et al. Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53, 639–647 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13

    Macagno, E. R., Levinthal, C. & Sobel, I. Three-dimensional computer reconstruction of neurons and neuronal assemblies. Annu. Rev. Biophys. Bioeng. 8, 323–351 (1979).

    CAS  Article  PubMed  Google Scholar 

  14. 14

    White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 314, 1–340 (1986).

    CAS  Article  Google Scholar 

  15. 15

    Denk, W. & Horstmann, H. Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol. 2, e329 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16

    Briggman, K. L. & Denk, W. Towards neural circuit reconstruction with volume electron microscopy techniques. Curr. Opin. Neurobiol. 16, 562–570 (2006).

    CAS  Article  PubMed  Google Scholar 

  17. 17

    Hayworth, K., Kasthuri, N., Schalek, R. & Lichtman, J. W. Automating the collection of ultrathin serial sections for large volume TEM reconstructions. Microsc. Microanal. 12, 2 (2006).

    Article  Google Scholar 

  18. 18

    Gan, W. B., Grutzendler, J., Wong, W. T., Wong, R. O. & Lichtman, J. W. Multicolor “DiOlistic” labeling of the nervous system using lipophilic dye combinations. Neuron 27, 219–225 (2000).

    CAS  Article  PubMed  Google Scholar 

  19. 19

    Tsien, R. Y. The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544 (1998).

    CAS  Article  Google Scholar 

  20. 20

    Shaner, N. C., Steinbach, P. A. & Tsien, R. Y. A guide to choosing fluorescent proteins. Nature Methods 2, 905–909 (2005).

    CAS  Article  PubMed  Google Scholar 

  21. 21

    Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000).

    CAS  Article  PubMed  Google Scholar 

  22. 22

    Walsh, M. K. & Lichtman, J. W. In vivo time-lapse imaging of synaptic takeover associated with naturally occurring synapse elimination. Neuron 37, 67–73 (2003).

    CAS  Article  PubMed  Google Scholar 

  23. 23

    Kasthuri, N. & Lichtman, J. W. The role of neuronal identity in synaptic competition. Nature 424, 426–430 (2003).

    CAS  Article  PubMed  Google Scholar 

  24. 24

    Lichtman, J. W. & Sanes, J. R. Watching the neuromuscular junction. J. Neurocytol. 32, 767–775 (2003).

    CAS  Article  PubMed  Google Scholar 

  25. 25

    Zong, H., Espinosa, J. S., Su, H. H., Muzumdar, M. D. & Luo, L. Mosaic analysis with double markers in mice. Cell 121, 479–492 (2005).

    CAS  Article  PubMed  Google Scholar 

  26. 26

    Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62 (2007).

    CAS  Article  PubMed  Google Scholar 

  27. 27

    Gan, W. B., Kwon, E., Feng, G., Sanes, J. R. & Lichtman, J. W. Synaptic dynamism measured over minutes to months: age-dependent decline in an autonomic ganglion. Nature Neurosci. 6, 956–960 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28

    Grutzendler, J., Kasthuri, N. & Gan, W. B. Long-term dendritic spine stability in the adult cortex. Nature 420, 812–816 (2002).

    CAS  Article  Google Scholar 

  29. 29

    Nguyen, Q. T., Sanes, J. R. & Lichtman, J. W. Pre-existing pathways promote precise projection patterns. Nature Neurosci. 5, 861–867 (2002).

    CAS  Article  PubMed  Google Scholar 

  30. 30

    Trachtenberg, J. T. et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420, 788–794 (2002).

    CAS  Article  Google Scholar 

  31. 31

    Micheva, K. D. & Smith, S. J. Array tomography: a new tool for imaging the molecular architecture and ultrastructure of neural circuits. Neuron 55, 25–36 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32

    Peters, M. F. et al. Differential membrane localization and intermolecular associations of α-dystrobrevin isoforms in skeletal muscle. J. Cell Biol. 142, 1269–1278 (1998).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33

    Fritze, C. E. & Anderson, T. R. Epitope tagging: general method for tracking recombinant proteins. Methods Enzymol. 327, 3–16 (2000).

    CAS  Article  PubMed  Google Scholar 

  34. 34

    Bates, M., Huang, B., Dempsey, G. T. & Zhuang, X. Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317, 1749–1753 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35

    Heintzmann, R. & Ficz, G. Breaking the resolution limit in light microscopy. Methods Cell Biol. 81, 561–580 (2007).

    CAS  Article  PubMed  Google Scholar 

  36. 36

    Hell, S. W. Far-field optical nanoscopy. Science 316, 1153–1158 (2007).

    CAS  Article  PubMed  Google Scholar 

  37. 37

    Huang, B., Wang, W., Bates, M. & Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38

    Shroff, H. et al. Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proc. Natl Acad. Sci. USA 104, 20308–20313 (2007).

    CAS  Article  PubMed  Google Scholar 

  39. 39

    Ramón y Cajal, S. Estudios Sobre la Degeneración y Regneración del Sistema Nervioso (Moya, Madrid, 1913–1914); reprinted and edited with additional translations by DeFelipe, J. & Jones, E. G. Cajal's Degeneration and Regeneration of the Nervous System (Oxford Univ. Press, New York, 1991).

    Google Scholar 

  40. 40

    Hubel, D. H., Wiesel, T. N. & LeVay, S. Plasticity of ocular dominance columns in monkey striate cortex. Philos. Trans. R. Soc. Lond. B Biol. Sci. 278, 377–409 (1977).

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jeff W. Lichtman.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lichtman, J., Livet, J. & Sanes, J. A technicolour approach to the connectome. Nat Rev Neurosci 9, 417–422 (2008). https://doi.org/10.1038/nrn2391

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing