Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cognitive therapy versus medication for depression: treatment outcomes and neural mechanisms

Abstract

Depression is one of the most prevalent and debilitating of the psychiatric disorders. Studies have shown that cognitive therapy is as efficacious as antidepressant medication at treating depression, and it seems to reduce the risk of relapse even after its discontinuation. Cognitive therapy and antidepressant medication probably engage some similar neural mechanisms, as well as mechanisms that are distinctive to each. A precise specification of these mechanisms might one day be used to guide treatment selection and improve outcomes.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Cognitive therapy and antidepressant medication have comparable short-term effects.
Figure 2: Less relapse after cognitive therapy compared with antidepressant medication.
Figure 3: Changes in blood-oxygen-level-dependent (BOLD) signal in response to cognitive and emotional tasks associated with cognitive therapy.
Figure 4: Hypothetical time course of the changes to amygdala and prefrontal function that are associated with antidepressant medication and cognitive therapy.

References

  1. Kessler, R. C. et al. The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R.). JAMA 289, 3095–3105 (2003).

    Google Scholar 

  2. Murray, C. J. L. & Lopez, A. D. Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study. Lancet 349, 1436–1442 (1997).

    CAS  PubMed  Google Scholar 

  3. Greenberg, P. E., Burnham, H. G., Lowe, S. W. & Corey-Lisle, P. K. The economic burden of depression in the United States: how did it change from 1990 to 2000? J. Clin. Psychiatry 64, 1465–1475 (2003).

    PubMed  Google Scholar 

  4. Moussavi, S. et al. Depression, chronic diseases, and decrements in health: results from the World Health Surveys. Lancet 370, 851–858 (2007).

    PubMed  Google Scholar 

  5. DeRubeis, R. J., Young, P. R. & Dahlsgaard, K. K. in Comprehensive clinical psychology Vol. 6 (eds Bellack, A. S. & Hersen, M.) 339–366 (Pergamon, Oxford).

  6. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders 4th edn (American Psychiatric Association Press, Washington DC, 2000).

  7. Frank, E. et al. Conceptualization and rationale for consensus definitions of terms in major depressive disorder: remission, recovery, relapse, and recurrence. Arch. Gen. Psychiatry 48, 851–855 (1991).

    CAS  PubMed  Google Scholar 

  8. de Mello, M. F., de Jesus Mari, J., Bacaltchuk, J., Verdeli, H. & Neugebauer, R. A systematic review of research findings on the efficacy of interpersonal therapy for depressive disorders. Eur. Arch. Psychiatry Clin. Neurosci. 255, 75–82 (2005).

    PubMed  Google Scholar 

  9. UK ECT Review Group. Efficacy and safety of electroconvulsive therapy in depressive disorders: a systematic review and meta-analysis. Lancet 361, 799–808 (2003).

  10. Nahas, Z., et al. Two-year outcome of vagus nerve stimulation (VNS) for treatment of major depressive episodes. J. Clin. Psychiatry 66, 1097–1104 (2005).

    PubMed  Google Scholar 

  11. Dimidjian, S. et al. Behavioral activation, cognitive therapy, and anti-depressant medication in the acute treatment of major depression. J. Consult. Clin. Psychol. 74, 658–670 (2006).

    PubMed  Google Scholar 

  12. Hammond, D. C. Neurofeedback with anxiety and affective disorders. Child. Adolesc. Psychiatr. Clin. N. Am. 14, 105–123 (2005).

    PubMed  Google Scholar 

  13. Baehr, E., Rosenfeld, J. P. & Baehr, R. The clinical use of an alpha asymmetry protocol in the neurofeedback treatment of depression: Two case studies. J. Neurotherapy 2, 10–23 (1997).

    Google Scholar 

  14. Mayberg, H. S. et al. Deep brain stimulation for treatment-resistant depression. Neuron 45, 651–660 (2005).

    CAS  PubMed  Google Scholar 

  15. Depression Guideline Panel. Depression in Primary Care Vol. 2: Treatment of Major Depression (Clinical Practice Guideline No 5; AHCPR Publ. No 93–0551) (US Department of Health and Human Services, Public Health Service, Agency for Health Care Policy and Research, Rockville, Maryland, 1993).

  16. Agency for Health Care Policy and Research. Treatment of depression – newer pharmacotherapies. Summary; Evidence report/technology assessment: number 7. US Department of Health and Human Services [online] (1999).

  17. Thase, M. E. & Rush, A. J. When at first you don't succeed...sequential strategies for antidepressant nonresponders. J. Clin. Psychiatry 58 (Suppl. 13), 23–29 (1997).

    PubMed  Google Scholar 

  18. Hollon, S. D., Thase, M. E. & Markowitz, J. C. Treatment and prevention of depression. Psychol. Sci. Public Interest 3, 39–77 (2002).

    PubMed  Google Scholar 

  19. American Psychiatric Association. Practice guideline for the treatment of patients with major depressive disorder (revision). Am. J. Psychiatry 157 (suppl. 4), 1–45 (2000).

  20. Sheline, Y. I. et al. Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment: an fMRI study. Biol. Psychiatry 50, 651–658 (2001).

    CAS  PubMed  Google Scholar 

  21. Warner-Schmidt, J. L. & Duman, R. S. Hippocampal neurogenesis: opposing effects of stress and antidepressant treatment. Hippocampus 16, 239–249 (2006).

    CAS  PubMed  Google Scholar 

  22. Beck, A. T., Rush, A. J., Shaw, B. F. & Emery, G. Cognitive therapy of depression (Guilford, New York, 1979).

    Google Scholar 

  23. Rush, A. J., Beck, A. T., Kovacs, M. & Hollon, S. D. Comparative efficacy of cognitive therapy and pharmacotherapy in the treatment of depressed outpatients. Cognit. Ther. Res. 1, 17–38 (1977).

    Google Scholar 

  24. Blackburn, I. M., Bishop, S., Glen, A. I. M., Whalley, L. J. & Christie, J. E. The efficacy of cognitive therapy in depression: a treatment trial using cognitive therapy and pharmacotherapy, each alone and in combination. Br. J. Psychiatry 139, 181–189 (1981).

    CAS  PubMed  Google Scholar 

  25. Murphy, G. E., Simons, A. D., Wetzel, R. D. & Lustman, P. J. Cognitive therapy and pharmacotherapy, singly and together, in the treatment of depression. Arch. Gen. Psychiatry 41, 33–41 (1984).

    CAS  PubMed  Google Scholar 

  26. Hollon, S. D. et al. Cognitive therapy, pharmacotherapy and combined cognitive-pharmacotherapy in the treatment of depression. Arch. Gen. Psychiatry 49, 774–781 (1992).

    CAS  PubMed  Google Scholar 

  27. Kovacs, M., Rush, A. T., Beck, A. T. & Hollon, S. D. Depressed outpatients treated with cognitive therapy or pharmacotherapy: a one-year follow-up. Arch. Gen. Psychiatry 38, 33–39 (1981).

    CAS  PubMed  Google Scholar 

  28. Blackburn, I. M., Eunson, K. M. & Bishop, S. A two year naturalistic follow up of depressed patients treated with cognitive therapy, pharmacotherapy and a combination of both. J. Affect. Disord. 10, 67–75 (1986).

    CAS  PubMed  Google Scholar 

  29. Simons, A. D., Murphy, G. E., Levine, J. L. & Wetzel, R. D. Cognitive therapy and pharmacotherapy for depression: sustained improvement over one year. Arch. Gen. Psychiatry 43, 43–48 (1986).

    CAS  PubMed  Google Scholar 

  30. Evans, M. D. et al. Differential relapse following cognitive therapy, pharmacotherapy, and combined cognitive-pharmacotherapy for depression. Arch. Gen. Psychiatry 49, 802–808 (1992).

    CAS  PubMed  Google Scholar 

  31. Elkin, I. et al. Initial severity and differential treatment outcome in the National Institute of Mental Health Treatment of Depression Collaborative Research Program. J. Consult. Clin. Psychol. 63, 841–847 (1995).

    CAS  PubMed  Google Scholar 

  32. Shea, M. T. et al. Course of depressive symptoms over follow-up: findings from the National Institute of Mental Health Treatment of Depression Collaborative Research Program. Arch. Gen. Psychiatry 49, 782–787 (1992).

    CAS  PubMed  Google Scholar 

  33. Jacobson, N. S. & Hollon, S. D. Prospects for future comparisons between drugs and psychotherapy: lessons from the CBT-versus-pharmacotherapy exchange. J. Consult. Clin. Psychol. 64, 104–108 (1996).

    CAS  PubMed  Google Scholar 

  34. DeRubeis, R. J., Gelfand, L. A., Tang, T. Z. & Simons, A. D. Medications versus cognitive behavioral therapy for severely depressed outpatients: mega-analysis of four randomized comparisons. Am. J. Psychiatry 156, 1007–1013 (1999).

    CAS  PubMed  Google Scholar 

  35. DeRubeis, R. J. et al. Cognitive therapy vs. medications in the treatment of moderate to severe depression. Arch. Gen. Psychiatry 62, 409–416 (2005).

    PubMed  Google Scholar 

  36. Bhar, S. S. et al. Sequence of improvement in depressive symptoms across cognitive therapy and pharmacotherapy. J. Affect. Disord. 110, 161–166 (2008).

    PubMed  PubMed Central  Google Scholar 

  37. DiMascio, A. et al. Differential symptom reduction by drugs and psychotherapy in acute depression. Arch. Gen. Psychiatry 36, 1450–1456 (1979).

    CAS  PubMed  Google Scholar 

  38. Hollon, S. D. et al. Prevention of relapse following cognitive therapy vs medications in moderate to severe depression. Arch. Gen. Psychiatry 62, 417–422 (2005).

    PubMed  Google Scholar 

  39. Ramel, W. et al. Amygdala reactivity and mood-congruent memory in individuals at risk for depressive relapse. Biol. Psychiatry 61, 231–239 (2007).

    PubMed  Google Scholar 

  40. Liotti, M., Mayberg, H. S., McGinnis, S. Brannan, S. L. & Jerabek, P. Unmasking disease-specific cerebral blood flow abnormalities: mood challenge in patients with remitted unipolar depression. Am. J. Psychiatry 159, 1830–1840 (2002).

    PubMed  Google Scholar 

  41. LeDoux, J. The Emotional Brain (Schuster, New York, 1996).

    Google Scholar 

  42. Sheline, Y. I., Sanghavi, M., Mintun, M. A. & Gado, M. H. Depression duration but not age predicts hippocampal volume loss in medically healthy women with recurrent major depression J. Neuroscience 19, 5034–5043 (1999).

    CAS  Google Scholar 

  43. Abercrombie, H. et al. Metabolic rate in the right amygdala predicts negative affect in depressed patients. Neuroreport 9, 3301–3307 (1998).

    CAS  PubMed  Google Scholar 

  44. Siegle, G. J., Steinhauer, S. R., Thase, M. E., Stenger, V. A. & Carter, C. S. Can't shake that feeling: fMRI assessment of sustained amygdala activity in response to emotional information in depressed individuals. Biol. Psychiatry 51, 693–707 (2002).

    PubMed  Google Scholar 

  45. Drevets, W. C. Prefrontal cortical amygdalar metabolism in major depression. Ann. NY Acad. Sci. 877, 614–637 (1999).

    CAS  PubMed  Google Scholar 

  46. Siegle, G. J., Thompson, W., Carter, C. S., Steinhauer, S. R. & Thase, M. E. Increased amygdala and decreased dorsolateral prefrontal BOLD responses in unipolar depression: related and independent features. Biol. Psychiatry 61, 198–209 (2007).

    PubMed  Google Scholar 

  47. Dougherty, D. & Rauch, S. Neuroimaging and neurobiological models of depression. Harv. Rev. Psychiatry 5, 138–159 (1997).

    CAS  PubMed  Google Scholar 

  48. Evans, K. C. et al. A functional MRI study of amygdala responses to angry schematic faces in social anxiety disorder. Depress. Anxiety 25, 496–505 (2007).

    Google Scholar 

  49. Metcalfe, J. & Mischel, W. A hot/cool-system analysis of delay of gratification: dynamics of willpower. Psychol. Rev. 106, 3–19 (1999).

    CAS  Google Scholar 

  50. Davidson, R. J. Affective style psychopathology and resilience: brain mechanisms and plasticity. Am. Psychol. 55, 1196–1214 (2000).

    CAS  PubMed  Google Scholar 

  51. Drevets, W. C. & Raichle, M. Reciprocal suppression of regional cerebral blood flow during emotional versus higher cognitive processes: implications for interactions between emotion and cognition. Cogn. Emot. 12, 353–385 (1998).

    Google Scholar 

  52. Mayberg, H. S. et al. Reciprocal limbic cortical function and negative mood: converging PET findings in depression and normal sadness. Am. J. Psychiatry 156, 675–682 (1999).

    CAS  PubMed  Google Scholar 

  53. Ochsner, K. N., Bunge, S. A., Gross, J. J. & Gabrieli, J. D. E. Rethinking feelings: an fMRI study of the cognitive regulation of emotion. J. Cogn. Neurosci. 14, 1215–1229 (2002).

    PubMed  Google Scholar 

  54. Ochsner, K. et al. For better or for worse: neural systems supporting the cognitive down- and up-regulation of negative emotion. Neuroimage 23, 483–499 (2004).

    PubMed  Google Scholar 

  55. Ray, J. P. & Price, J. L. The organization of projections from the mediodorsal nucleus of the thalamus to orbital and medial prefrontal cortex in macaque monkeys. J. Comp. Neurol. 337, 1–31 (1993).

    CAS  PubMed  Google Scholar 

  56. Ghashghaei, H. T. & Barbas, H. Pathways for emotion: interactions of prefrontal and anterior temporal pathways in the amygdala of the rhesus monkey. Neuroscience 115, 1261–1279 (2002).

    CAS  PubMed  Google Scholar 

  57. Mayberg, H. S. Limbic-cortical dysregulation: a proposed model of depression. J. Neuropsychiatry Clin. Neurosci. 9, 471–481 (1997).

    CAS  PubMed  Google Scholar 

  58. Drevets, W. C. Neuroimaging studies of mood disorders. Biol. Psychiatry 48, 813–829 (2000).

    CAS  PubMed  Google Scholar 

  59. Carter, C. S. et al. Parsing executive processes: strategic vs evaluative functions of the anterior cingulate cortex. Proc. Natl Acad. Sci. USA 97, 1944–1948 (2000).

    CAS  PubMed  Google Scholar 

  60. Davidson, R. J. Affective neuroscience and psychophysiology: toward a synthesis. Psychophysiology 40, 655–665 (2003).

    PubMed  Google Scholar 

  61. Phillips, M. L., Ladouceur, C. D. & Drevets, W. C. A neural model of voluntary and automatic emotion regulation: implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Mol. Psychiatry 24 Jun 2008 (doi: 10.1038/mp.2008.65).

    Google Scholar 

  62. Beck, A. T. The evolution of the cognitive model of depression and its neurobiological correlates. Am. J. Psychiatry 165, 969–977 (2008).

    PubMed  Google Scholar 

  63. Davidson, R. J. Assymetric brain function affective style and psychopathology: the role of early experience and plasticity. Dev. Psychopathol. 6, 741–758 (1994).

    Google Scholar 

  64. Baxter, L. et al. Reduction of prefrontal glucose metabolism common to three types of depression. Arch. Gen. Psychiatry 46, 243–250 (1989).

    CAS  PubMed  Google Scholar 

  65. Bench, C. J., Friston, K. J., Brown, R. G., Frackowiak, R. S. & Dolan, R. J. Regional cerebral blood flow in depression measured by positron emission tomography: the relationship with clinical dimensions. Psychol. Med. 23, 579–590 (1993).

    CAS  PubMed  Google Scholar 

  66. Ottowitz, W. E., Dougherty, D. D. & Savage, C. R. The neural network basis for abnormalities of attention and executive function in major depressive disorder: implications for application of the medical disease model to psychiatric disorders. Harv. Rev. Psychiatry 10, 86–99 (2002).

    PubMed  Google Scholar 

  67. Liotti, M. & Mayberg, H. S. The role of functional neuroimaging in the neuropsychology of depression. J. Clin. Exp. Neuropsychol. 23, 121–136 (2001).

    CAS  PubMed  Google Scholar 

  68. Cohen, J. D. et al. Temporal dynamics of brain activation during a working memory task. Nature 386, 604–608 (1997).

    CAS  PubMed  Google Scholar 

  69. Harvey, P. O. et al. Executive functions and updating of the contents of working memory in unipolar depression. J. Psychiatr. Res. 38, 567–576 (2004).

    CAS  PubMed  Google Scholar 

  70. Egeland, J. et al. Attention profile in schizophrenia compared with depression: differential effects of processing speed, selective attention and vigilance. Acta Psychiatr. Scand. 108, 276–284 (2003).

    CAS  PubMed  Google Scholar 

  71. Watkins, E. & Brown, R. G. Rumination and executive function in depression: an experimental study. J. Neurol. Neurosurg. Psychiatry 72, 400–402 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Phillips, M. L., Drevets, W. C., Rauch, S. L. & Lane, R. Neurobiology of emotion perception II: implications for major psychiatric disorders. Biol. Psychiatry 54, 515–528 (2003).

    PubMed  Google Scholar 

  73. Charney, D. S. Monoamine dysfunction and the pathophysiology and treatment of depression. J. Clin. Psychiatry 59 (Suppl. 14), 11–14 (1998).

    CAS  PubMed  Google Scholar 

  74. Mayberg, H. S. Modulating dysfunctional limbic-cortical circuits in depression: towards development of brain-based algorithms for diagnosis and optimised treatment. Br. Med. Bull. 65, 193–207 (2003).

    PubMed  Google Scholar 

  75. Seminowicz, D. A. et al. Limbic-frontal circuitry in major depression: a path modeling metanalysis. Neuroimage 22, 409–418 (2004).

    CAS  PubMed  Google Scholar 

  76. Mayberg, H. S. Positron emission tomography imaging in depression: a neural systems perspective. Neuroimaging Clin. N. Am. 13, 805–815 (2003).

    PubMed  Google Scholar 

  77. Ingram, R. E. & Hollon, S. D. Information Processing Approaches to Clinical Psychology (ed. Ingram, R. E.) 261–284 (Academic, New York, 1986).

    Google Scholar 

  78. Ohira, H. et al. Association of neural and physiological responses during voluntary emotion suppression. Neuroimage 29, 721–733 (2006).

    PubMed  Google Scholar 

  79. O'Reardon, J. P. et al. Prefrontal-amygdala interactions and mood regulation: a perfusion fMRI study. Brain Cogn. 51, 185 (2003).

    Google Scholar 

  80. Ray, R. D. et al. Individual differences in trait rumination and the neural systems supporting cognitive reappraisal. Cogn. Affect Behav. Neurosci. 5, 156–168 (2005).

    Google Scholar 

  81. Rush, A. J., Beck, A. T., Kovacs, M., Weissenburger, J. & Hollon, S. D. Comparison of the effects of cognitive therapy and pharmacotherapy on hopelessness and self-concept. Am. J. Psychiatry 139, 862–866 (1982).

    CAS  PubMed  Google Scholar 

  82. Blackburn, I. M. & Bishop, S. Changes in cognition with pharmacotherapy and cognitive therapy. Br. J. Psychiatry 143, 609–617 (1983).

    CAS  PubMed  Google Scholar 

  83. Garamoni, G. L., Reynolds, C. F., Thase, M. E., Frank, E. & Fasiczka, A. L. Shifts in affective balance during cognitive therapy of major depression. J. Consult. Clin. Psychol. 60, 260–266 (1992).

    CAS  PubMed  Google Scholar 

  84. DeRubeis, R. J. et al. How does cognitive therapy work? Cognitive change and symptom change in cognitive therapy and pharmacotherapy for depression. J. Consult. Clin. Psychol. 58, 862–869 (1990).

    CAS  PubMed  Google Scholar 

  85. Siegle, G. J., Carter, C. S. & Thase, M. E. Use of fMRI to predict recovery from unipolar depression with cognitive behavior therapy. Am. J. Psychiatry 163, 735–738 (2006).

    PubMed  Google Scholar 

  86. Siegle, G. J., Thompson, W., Horner, M. S., Carter, C. S. & Thase, M. E. in Executive function: from basic research to clinical practice. Symp. Meet. Assoc. Behav. Cogn. Ther. (Philadelphia, Pennsylvania, 2007).

    Google Scholar 

  87. Straube, T., Glauer, M., Dilger, S., Mentzel, H. J. & Miltner, W. H. Effects of cognitive-behavioral therapy on brain activation in specific phobia. Neuroimage 29, 125–135 (2006).

    PubMed  Google Scholar 

  88. Paquette, V. et al. “Change the mind and you change the brain”: effects of cognitive-behavioral therapy on the neural correlates of spider phobia. Neuroimage 18, 401–409 (2003).

    PubMed  Google Scholar 

  89. Siegle, G. J., Ghinassi, F. & Thase, M. E. Neurobehavioral therapies in the 21st century: summary of an emerging field and an extended example of Cognitive Control Training for depression. Cogn. Ther. Res. 31, 235–262 (2007).

    Google Scholar 

  90. Goldapple, K. et al. Modulation of cortical-limbic pathways in major depression: treatment-specific effects of cognitive behavior therapy. Arch. Gen. Psychiatry 61, 34–41 (2004).

    PubMed  Google Scholar 

  91. Saxena, S. et al. Differential cerebral metabolic changes with paroxetine treatment of obsessive-compulsive disorder vs major depression. Arch. Gen. Psychiatry 59, 250–261 (2002).

    CAS  PubMed  Google Scholar 

  92. Brody, A. L. et al. Brain metabolic changes in major depressive disorder from pre- to post-treatment with paroxetine. Psychiatry Res. 91, 127–139 (1999).

    CAS  PubMed  Google Scholar 

  93. Brody, A. L. et al. Brain metabolic changes associated with symptom factor improvement in major depressive disorder. Biol. Psychiatry 50, 171–178 (2001).

    CAS  PubMed  Google Scholar 

  94. Brody, A. L. et al. Regional brain metabolic changes in patients with major depression treated with either paroxetine or interpersonal therapy: preliminary findings. Arch. Gen. Psychiatry 58, 631–640 (2001).

    CAS  PubMed  Google Scholar 

  95. Kennedy, S. H. et al. Changes in regional brain glucose metabolism measured with positron emission tomography after paroxetine treatment of major depression. Am. J. Psychiatry 158, 899–905 (2001).

    CAS  PubMed  Google Scholar 

  96. Mayberg, H. S. et al. Regional metabolic effects of fluoxetine in major depression: serial changes and relationship to clinical response. Biol. Psychiatry 48, 830–843 (2000).

    CAS  PubMed  Google Scholar 

  97. Buchsbaum, M. S. et al. Effect of sertraline on regional metabolic rate in patients with affective disorder . Biol. Psychiatry 41, 15–22 (1997).

    CAS  PubMed  Google Scholar 

  98. Nobler, M. S., Olvet, K. R. & Sackeim, H. A. Effects of medications on cerebral blood flow in late-life depression. Curr. Psychiatry Rep. 4, 51–58 (2002).

    PubMed  Google Scholar 

  99. Fu, C. H. et al. Attenuation of the neural response to sad faces in major depression by antidepressant treatment: a prospective, event-related functional magnetic resonance imaging study. Arch. Gen. Psychiatry 61, 877–889 (2004).

    PubMed  Google Scholar 

  100. Davidson, R. J., Irwin, W., Anderle, M. J. & Kalin, N. H. The neural substrates of affective processing in depressed patients treated with venlafaxine. Am. J. Psychiatry 160, 64–75 (2003).

    PubMed  Google Scholar 

  101. Hollon, S. D., Evans, M. D. & DeRubeis, R. J. in Contemporary Psychological Approaches to Depression: Theory, Research, and Treatment (ed. Ingram, R.) 117–136 (Plenum, New York, 1990).

    Google Scholar 

  102. Brody, A. L. et al. FDG-PET predictors of response to behavioral therapy and pharmacotherapy in obsessive compulsive disorder. Psychiatry Res. 84, 1–6 (1998).

    CAS  PubMed  Google Scholar 

  103. Urry, H. L. et al. Amygdala and ventromedial prefrontal cortex are inversely coupled during regulation of negative affect and predict the diurnal pattern of cortisol secretion among older adults. J. Neurosci. 26, 4415–4425 (2006).

    CAS  PubMed  Google Scholar 

  104. Anand, A. et al. Antidepressant effect on connectivity of the mood-regulating circuit: an fMRI study. Neuropsychopharmacology 30, 1334–1344 (2005).

    CAS  PubMed  Google Scholar 

  105. Canli, T. et al. Amygdala reactivity to emotional faces predicts improvement in major depression. Neuroreport 16, 1267–1270 (2005).

    PubMed  Google Scholar 

  106. McClure, E. B. et al. fMRI predictors of treatment outcome in pediatric anxiety disorders. Psychopharmacology (Berl.) 191, 97–105 (2007).

    CAS  PubMed  Google Scholar 

  107. Fu, C. H. et al. Neural responses to sad facial expressions in major depression following cognitive behavioral therapy. Biol. Psychiatry 10 Jun 2008 (doi:10.1016/j.biopsych.2008.04.033).

    PubMed  Google Scholar 

  108. Mayberg, H. S. et al. Cingulate function in depression: a potential predictor of treatment response. Neuroreport 8, 1057–1061 (1997).

    CAS  PubMed  Google Scholar 

  109. Pizzagalli, D. et al. Anterior cingulate activity as a predictor of degree of treatment response in major depression: evidence from brain electrical tomography analysis. Am. J. Psychiatry 158, 405–415 (2001).

    CAS  PubMed  Google Scholar 

  110. Chen, C. H. et al. Brain imaging correlates of depressive symptom severity and predictors of symptom improvement after antidepressant treatment. Biol. Psychiatry 62, 407–414 (2007).

    CAS  PubMed  Google Scholar 

  111. McCullough, J. P. Treatment for Chronic Depression: Cognitive Behavioral Analysis System of Psychotherapy (CBASP). (Guilford, New York, 2003).

    Google Scholar 

  112. Nemeroff, C. B. et al. Differential responses to psychotherapy versus pharmacotherapy in patients with chronic forms of major depression and childhood trauma. Proc. Natl Acad. Sci. USA 100, 14293–14296 (2003).

    CAS  PubMed  Google Scholar 

  113. Hayden, E. P. et al. Early-emerging cognitive vulnerability to depression and the serotonin transporter promoter region polymorphism. J. Affect. Dis. 107, 227–230 (2008).

    CAS  PubMed  Google Scholar 

  114. Kazdin, A. E. Developing a research agenda for child adolescent psychotherapy. Arch. Gen. Psychiatry 57, 829–840 (2000).

    CAS  PubMed  Google Scholar 

  115. Hollon, S. D., DeRubeis, R. J. & Evans, M. D. Causal mediation of change in treatment for depression: discriminating between nonspecificity and noncausality. Psychol. Bull. 102, 139–149 (1987).

    CAS  PubMed  Google Scholar 

  116. Barber, J. P. & DeRubeis, R. J. On second thought: where the action is in cognitive therapy for depression. Cognit. Ther. Res. 13, 441–457 (1989).

    Google Scholar 

Download references

Acknowledgements

Supported by grants MH50129 and MH60998 (R.J.DR.), MH55875, MH060713 and MH01697 (S.D.H.) and MH074807 and MH082998 (G.J.S.) from the National Institute of Mental Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. DeRubeis.

Related links

Related links

FURTHER INFORMATION

Robert J. DeRubeis' homepage

Rights and permissions

Reprints and Permissions

About this article

Cite this article

DeRubeis, R., Siegle, G. & Hollon, S. Cognitive therapy versus medication for depression: treatment outcomes and neural mechanisms. Nat Rev Neurosci 9, 788–796 (2008). https://doi.org/10.1038/nrn2345

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2345

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing