On the relationship between emotion and cognition

Abstract

The current view of brain organization supports the notion that there is a considerable degree of functional specialization and that many regions can be conceptualized as either 'affective' or 'cognitive'. Popular examples are the amygdala in the domain of emotion and the lateral prefrontal cortex in the case of cognition. This prevalent view is problematic for a number of reasons. Here, I will argue that complex cognitive–emotional behaviours have their basis in dynamic coalitions of networks of brain areas, none of which should be conceptualized as specifically affective or cognitive. Central to cognitive–emotional interactions are brain areas with a high degree of connectivity, called hubs, which are critical for regulating the flow and integration of information between regions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Brain connectivity graph.
Figure 2: Circuit for the processing of visual information.
Figure 3: Circuit for executive control.
Figure 4: Conceptual proposal for the relationship between anatomical sites, neural computations and behaviours.

References

  1. 1

    Damasio, A. R. Descartes' error: Emotion, reason, and the human brain (ed. Putnam, G. P. New York, 1994).

  2. 2

    Phelps, E. A. Emotion and cognition: insights from studies of the human amygdala. Annu. Rev. Psychol. 57, 27–53 (2006).

  3. 3

    Davis, M. & Whalen, P. J. The amygdala: Vigilance and emotion. Molecular Psychology 6, 13–34 (2001).

  4. 4

    Dolan, R. Emotion, cognition, and behavior. Science 298, 1191–1194 (2003).

  5. 5

    Davidson, R. J., Pizzagalli, D., Nitschke, J. B. & Kalin, N. H. Parsing the subcomponents of emotion and disorders of emotion: Perspectives from affective neuroscience in Handbook of affective sciences (eds Davidson, R. J., Scherer, K. R. & Goldsmith, H. H.) 8–24 (Oxford University Press, New York, 2003).

  6. 6

    Moll, J., Zahn, R., de Oliveira-Souza, R., Krueger, F. & Grafman, J. The neural basis of human moral cognition. Nature Rev. Neurosci. 6, 799–809 (2005).

  7. 7

    Drevets, W. C. & Raichle, M. E. Reciprocal suppression of regional cerebral blood flow during emotional versus higher cognitive processes: Implications for interactions between emotion and cognition. Cogn. Emot. 12, 353–385 (1998).

  8. 8

    Fuster, J. M. & Alexander, G. E. Neuron activity related to short-term memory. Science 173, 652–654 (1971).

  9. 9

    Kubota, K. & Niki, H. Prefrontal cortical unit activity and delayed alternation performance in monkeys. J. Neurophysiol. 34, 337–347 (1971).

  10. 10

    Rolls, E. T. Emotion explained (Oxford University Press, Oxford, 2005).

  11. 11

    Arnold, M. B. Emotion and personality (Columbia University Press, New York, 1960).

  12. 12

    Ekman, P. An argument for basic emotions. Cogn. Emot. 6, 169–200 (1992).

  13. 13

    Haidt, J. The moral emotions in Handbook of Affective Sciences (eds Davidson, R. J., Scherer, K. R. & Goldsmith, H. H.) 852–870 (Oxford University Press, Oxford, 2003).

  14. 14

    Damasio, A. R. The feeling of what happens: body and emotion in the making of consciousness (Harcourt Brace, New York, 1999).

  15. 15

    Whalen, P. J., et al. Human amygdala responsivity to masked fearful eye whites. Science 306, 2061 (2004).

  16. 16

    Ohman, A. Automaticity and the amygdala: nonconscious responses to emotional faces. Curr. Dir. Psychol. Sci. 11, 62–66 (2002).

  17. 17

    Pessoa, L. To what extent are emotional visual stimuli processed without attention and awareness? Curr. Opin. Neurobiol. 15, 188–196 (2005).

  18. 18

    Papez, J. W. A proposed mechanism of emotion. Arch. Neurol. Psychiatry 38, 725–743 (1937).

  19. 19

    MacLean, P. D. Psychosomatic disease and the 'visceral brain': recent developments bearing on the Papez theory of emotion. Psychosom. Med. 11, 338–353 (1949).

  20. 20

    Duncan, S. & Barrett, L. F. Affect is a form of cognition: A neurobiological analysis. Cogn. Emot. 21, 1184–1211 (2007).

  21. 21

    Lewis, M. D. & Todd, R. M. The self-regulating brain: Cortical-subcortical feedback and the development of intelligent action. Cogn. Dev. 22, 406–430 (2007).

  22. 22

    Whalen, P. J. Fear, vigilance, and ambiguity: Initial neuroimaging studies of the human amygdala. Curr. Dir. Psychol. Sci. 7, 177–188 (1998).

  23. 23

    Baxter, M. G. & Murray, E. A. The amygdala and reward. Nature Rev. Neurosci. 3, 563–573 (2002).

  24. 24

    Sander, D., Grafman, J. & Zalla, T. The human amygdala: an evolved system for relevance detection. Nature Rev. Neurosci. 14, 303–316 (2003).

  25. 25

    Barrett, L. F. & Wager, T. D. The structure of emotion. Curr. Dir. Psychol. Sci. 15, 79–83 (2006).

  26. 26

    Aggleton, J. ed. The amygdala: A functional analysis (Oxford University Press, Oxford, 2000).

  27. 27

    Aggleton, J. P. The amygdala: Neurobiological aspects of emotion, memory, and mental dysfunction (Wiley-Liss, Inc., New York, 1992).

  28. 28

    Holland, P. C. & Gallagher, M. Amygdala circuitry in attentional and representational processes. Trends Cogn. Sci. 3, 65–73 (1999).

  29. 29

    Desimone, R. & Duncan, J. Neural mechanisms of selective attention. Annu. Rev. Neurosci. 18, 193–222 (1995).

  30. 30

    Kastner, S. & Ungerleider, L. G. Mechanisms of visual attention in the human cortex. Annu. Rev. Neurosci. 23, 315–341 (2000).

  31. 31

    Pessoa, L., Kastner, S. & Ungerleider, L. G. Attentional control of the processing of neutral and emotional stimuli. Cogn. Brain Res. 15, 31–45 (2002).

  32. 32

    Vuilleumier, P. How brains beware: neural mechanisms of emotional attention. Trends Cogn. Sci. 9, 585–594 (2005).

  33. 33

    Anderson, A. K. & Phelps, E. A. Lesions of the human amygdala impair enhanced perception of emotionally salient events. Nature 411, 305–309 (2001).

  34. 34

    Morris, J. S., et al. A neuromodulatory role for the human amygdala in processing emotional facial expressions. Brain 121 (Pt 1), 47–57 (1998).

  35. 35

    Pessoa, L., McKenna, M., Gutierrez, E. & Ungerleider, L. G. Neural processing of emotional faces requires attention. Proc. Natl Acad. Sci. USA 99, 11458–11463 (2002).

  36. 36

    Vuilleumier, P., Richardson, M. P., Armony, J. L., Driver, J. & Dolan, R. J. Distant influences of amygdala lesion on visual cortical activation during emotional face processing. Nature Neurosci. 7, 1271–1278 (2004).

  37. 37

    Lim, S. L., Padmala, S. & Pessoa, L. Affective learning modulates spatial competition during low-load attentional conditions. Neuropsychologia (2008).

  38. 38

    Lim, S. L. & Pessoa, L. Affective learning increases sensitivity to graded emotional faces. Emotion (2008).

  39. 39

    Padmala, S., Lim, S. L. & Pessoa, L. Classical conditioning increases visual detection sensitivity and evoked responses in early retinotopically organized visual cortex in Society for Neuroscience (Society for Neuroscience, San Diego, 2007).

  40. 40

    Phelps, E. A. & LeDoux, J. E. Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron 48, 175–187 (2005).

  41. 41

    Phelps, E. A., Ling, S. & Carrasco, M. Emotion facilitates perception and potentiates the perceptual benefits of attention. Psychol. Sci. 17, 292–299 (2006).

  42. 42

    Weinberger, N. M. Retuning the brain by fear conditioning in The Cognitive Neurosciences (ed. Gazzaniga M. S.) 1071–1089 (The MIT Press, Cambridge, MA, 1995).

  43. 43

    Armony, J. L. & Dolan, R. J. Modulation of spatial attention by fear-conditioned stimuli: an event-related fMRI study. Neuropsychologia 40, 817–826 (2002).

  44. 44

    Vuilleumier, P., Armony, J. L., Driver, J. & Dolan, R. J. Effects of attention and emotion on face processing in the human brain: An event-related fMRI study. Neuron 30, 829–841 (2001).

  45. 45

    Pessoa, L., McKenna, M., Gutierrez, E. & Ungerleider, L. G. Neural processing of emotional faces requires attention. Proc. Natl Acad. Sci. USA 99, 11458–11463 (2002).

  46. 46

    Ishai, A., Pessoa, L., Bikle, P. C. & Ungerleider, L. G. Repetition suppression of faces is modulated by emotion. Proc. Natl Acad. Sci. USA 101, 9827–9832 (2004).

  47. 47

    Pessoa, L., Padmala, S. & Morland, T. Fate of unattended fearful faces in the amygdala is determined by both attentional resources and cognitive modulation. Neuroimage 28, 249–255 (2005).

  48. 48

    Pessoa, L. & Padmala, S. Quantitative prediction of perceptual decisions during near-threshold fear detection. Proc. Natl Acad. Sci. USA 102, 5612–5617 (2005).

  49. 49

    Pessoa, L., Japee, S., Sturman, D. & Ungerleider, L. G. Target visibility and visual awareness modulate amygdala responses to fearful faces. Cereb. Cortex 16, 366–375 (2006).

  50. 50

    Pessoa, L. & Padmala, S. Decoding near-threshold perception of fear from distributed single-trial brain activation. Cereb. Cortex 17, 691–701 (2007).

  51. 51

    Hsu, S. M. & Pessoa, L. Dissociable effects of bottom-up and top-down factors on the processing of unattended fearful faces. Neuropsychologia 45, 3075–3086 (2007).

  52. 52

    Thielscher, A. & Pessoa, L. Neural correlates of perceptual choice and decision making during fear-disgust discrimination. J. Neurosci. 27, 2908–2917 (2007).

  53. 53

    Blair, K. S., et al. Modulation of emotion by cognition and cognition by emotion. Neuroimage 35, 430–440 (2007).

  54. 54

    Bishop, S. J., Jenkins, R. & Lawrence, A. D. Neural processing of fearful faces: effects of anxiety are gated by perceptual capacity limitations. Cereb. Cortex 17, 1595–1603 (2007).

  55. 55

    Bishop, S. J. Neurocognitive mechanisms of anxiety: an integrative account. Trends Cogn. Sci. 11, 307–316 (2007).

  56. 56

    Silvert, L., et al. Influence of attentional demands on the processing of emotional facial expressions in the amygdala. Neuroimage 38, 357–366 (2007).

  57. 57

    Bishop, S. J., Duncan, J. & Lawrence, A. D. State anxiety modulation of the amygdala response to unattended threat-related stimuli. J. Neurosci. 24, 10364–10368 (2004).

  58. 58

    Mitchell, D. G., et al. The impact of processing load on emotion. Neuroimage 34, 1299–1309 (2007).

  59. 59

    Ochsner, K. N. & Gross, J. J. The cognitive control of emotion. Trends Cogn. Sci. 9, 242–249 (2005).

  60. 60

    Fangel, C. & Kaada, B. R. Behavior “attention” and fear induced by cortical stimulation in the cat. Electroencephalogr. Clin. Neurophysiol. 12, 575–588 (1960).

  61. 61

    Barbas, H. & Zikopoulos, B. Sequential and parallel circuits for emotional processing in primate orbitofrontal cortex in The orbitofrontal cortex (ed. Zald, D. H. & Rauch, S. L.) 57–91 (Oxford University Press, New York, 2006).

  62. 62

    Schaefer, A., et al. Individual differences in amygdala activity predict response speed during working memory. J. Neurosci. 26, 10120–10128 (2006).

  63. 63

    Schaefer, A. & Gray, J. R. A role for the human amygdala in higher cognition. Rev. Neurosci. 18, 355–364 (2007).

  64. 64

    Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nature Rev. Neurosci. 3, 201–215 (2002).

  65. 65

    Miller, E. K. & Cohen, J. D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001).

  66. 66

    Pessoa, L. & Ungerleider, L. G. Top-down mechanisms for working memory and attentional processes in The new cognitive neurosciences, 3rd Edition (ed. Gazzaniga, M. S.) 919–930 (MIT Press, Cambridge, MA, 2004).

  67. 67

    Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S. & Cohen, J. D. Conflict monitoring and cognitive control. Psychol. Rev. 108, 624–652 (2001).

  68. 68

    Nauta, W. J. H. The problem of the frontal lobe: a reinterpretation. J. Psychiatr. Res. 8, 167–187 (1971).

  69. 69

    Davidson, R. J. & Irwin, W. The functional neuroanatomy of emotion and affective style. Trends Cogn. Sci. 3, 11–21 (1999).

  70. 70

    Cohen, J. D. The vulcanization of the human brain: A neural perspective on interactions between cognition and emotion. J. Econ. Perspect. 19, 3–24 (2005).

  71. 71

    Pribram, K. H. The new neurology and the biology of emotion: a structural approach. Am. Psychol. 22, 830–838 (1967).

  72. 72

    Pribram, K. H. The limbic systems, efferent control of neural inhibition and behavior. Prog. Brain Res. 27, 318–336 (1967).

  73. 73

    Bush, G., Luu, P. & Posner, M. I. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn. Sci. 4, 215–222 (2000).

  74. 74

    Rubia, K., Smith, A. B., Brammer, M. J. & Taylor, E. Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection. Neuroimage 20, 351–358 (2003).

  75. 75

    Aron, A. R., Robbins, T. W. & Poldrack, R. A. Inhibition and the right inferior frontal cortex. Trends Cogn. Sci. 8, 170–177 (2004).

  76. 76

    Goldstein, M., et al. Neural substrates of the interaction of emotional stimulus processing and motor inhibitory control: an emotional linguistic go/no-go fMRI study. Neuroimage 36, 1026–1040 (2007).

  77. 77

    Perlstein, W. M., Elbert, T. & Stenger, V. A. Dissociation in human prefrontal cortex of affective influences on working memory-related activity. Proc. Natl Acad. Sci. USA 99, 1736–1741 (2002).

  78. 78

    Gray, J. R., Braver, T. S. & Raichle, M. E. Integration of emotion and cognition in the lateral prefrontal cortex. Proc. Natl Acad. Sci. USA 99, 4115–4120 (2002).

  79. 79

    Erk, S., Kleczar, A. & Walter, H. Valence-specific regulation effects in a working memory task with emotional context. Neuro Image 37, 623–632 (2007).

  80. 80

    Mitchell, R. L. & Phillips, L. H. The psychological, neurochemical and functional neuroanatomical mediators of the effects of positive and negative mood on executive functions. Neuropsychologia 45, 617–629 (2007).

  81. 81

    Herrington, J. D., et al. Emotion-modulated performance and activity in left dorsolateral prefrontal cortex. Emotion 5, 200–207 (2005).

  82. 82

    Heller, W. & Nitschke, J. B. Regional brain activity in emotion: A framework for understanding cognition in depression. Cogn. Emot. 11, 637–661 (1997).

  83. 83

    Mesulam, M.-M. Behavioral neuroanatomy: Large-scale networks, association cortex, frontal syndromes, the limbic system, and hemispheric specializations in Principles of behavioral and cognitive neurology (ed. Mesulam, M.) 1–120 (Oxford University Press, New York, 2000).

  84. 84

    Sporns, O., Chialvo, D. R., Kaiser, M. & Hilgetag, C. C. Organization, development and function of complex brain networks. Trends Cogn. Sci. 8, 418–425 (2004).

  85. 85

    Sporns, O. & Zwi, J. D. The small world of the cerebral cortex. Neuroinformatics 2, 145–162 (2004).

  86. 86

    Sporns, O., Tononi, G. & Edelman, G. M. Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. Cereb. Cortex 10, 127–141 (2000).

  87. 87

    Hilgetag, C. C., Burns, G. A., O'Neill, M. A., Scannell, J. W. & Young, M. P. Anatomical connectivity defines the organization of clusters of cortical areas in the macaque monkey and the cat. Phil. Trans. R. Soc. Lond. 355, 91–110 (2000).

  88. 88

    Sporns, O. Small-world connectivity, motif composition, and complexity of fractal neuronal connections. Biosystems 85, 55–64 (2006).

  89. 89

    Young, M. P., Scannell, J. W., Burns, G. A. & Blakemore, C. Analysis of connectivity: Neural systems in the cerebral cortex. Rev. Neurosci. 5, 227–249 (1994).

  90. 90

    Stephan, K. E., et al. Computational analysis of functional connectivity between areas of primate cerebral cortex. Phil. Trans. R. Soc. Lond. 355, 111–126 (2000).

  91. 91

    Mesulam, M.-M. The human frontal lobes: Transcending the default mode through contingent encoding. in Principles of frontal lobe function (eds Stuss, D. T. & Knight, R. T.) 8–30 (Oxford University Press, New York, 2002).

  92. 92

    LeDoux, J. E. The emotional brain (Simon & Schuster, New York, 1996).

  93. 93

    Barbas, H. Anatomic basis of cognitive-emotional interactions in the primate prefrontal cortex. Neurosci. Biobehav. Rev. 19, 449–510 (1995).

  94. 94

    Swanson, L. W. The amygdala and its place in the cerebral hemisphere. Ann. NY Acad. Sci. 985, 174–184 (2003).

  95. 95

    Risold, P. Y., Thompson, R. H. & Swanson, L. W. The structural organization of connections between hypothalamus and cerebral cortex. Brain Res. Brain Res. Rev. 24, 197–254 (1997).

  96. 96

    Swanson, L. W. Cerebral hemisphere regulation of motivated behavior. Brain Res. 886, 113–164 (2000).

  97. 97

    Swanson, L. W. Brain architecture: Understanding the basic plan (Oxford University Press, New York, 2003).

  98. 98

    Heimer, L. & Van Hoesen, G. W. The limbic lobe and its output channels: implications for emotional functions and adaptive behavior. Neurosci. Biobehav. Rev. 30, 126–147 (2006).

  99. 99

    Sarter, M. & Bruno, J. P. Cortical cholinergic inputs mediating arousal, attentional processing and dreaming: differential afferent regulation of the basal forebrain by telencephalic and brainstem afferents. Neurosci. 95, 933–952 (2000).

  100. 100

    Sarter, M. & Bruno, J. P. Abnormal regulation of corticopetal cholinergic neurons and impaired information processing in neuropsychiatric disorders. Trends Neurosci. 22, 67–74 (1999).

  101. 101

    Sarter, M., Bruno, J. P. & Turchi, J. Basal forebrain afferent projections modulating cortical acetylcholine, attention, and implications for neuropsychiatric disorders. Ann. NY Acad. Sci. 877, 368–382 (1999).

  102. 102

    Zaborszky, L. The modular organization of brain systems. Basal forebrain: the last frontier. Prog. Brain Res. 136, 359–372 (2002).

  103. 103

    Zaborszky, L., Buhl, D. L., Pobalashingham, S., Bjaalie, J. G. & Nadasdy, Z. Three-dimensional chemoarchitecture of the basal forebrain: spatially specific association of cholinergic and calcium binding protein-containing neurons. Neurosci. 136, 697–713 (2005).

  104. 104

    Zaborszky, L., Pang, K., Somogyi, J., Nadasdy, Z. & Kallo, I. The basal forebrain corticopetal system revisited. Ann. NY Acad. Sci. 877, 339–367 (1999).

  105. 105

    Alheid, G. F. & Heimer, L. New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: the striatopallidal, amygdaloid, and corticopetal components of substantia innominata. Neurosci. 27, 1–39 (1988).

  106. 106

    Zahm, D. S. The evolving theory of basal forebrain functional-anatomical 'macrosystems'. Neurosci. Biobehav Rev. 30, 148–172 (2006).

  107. 107

    Amaral, D. G., Price, J. L., Pitkanen, A. & Carmichael, S. T. Anatomical organization of the primate amygdaloid complex in The amygdala: neurobiological aspects of emotion, memory, and mental dysfunction (ed. Aggleton, J.) 1–66 (Wiley-Liss, New York, 1992).

  108. 108

    Freese, J. L. & Amaral, D. G. The organization of projections from the amygdala to visual cortical areas TE and V1 in the macaque monkey. J.Comp. Neurol. 486, 295–317 (2005).

  109. 109

    Kveraga, K., Ghuman, A. S. & Bar, M. Top-down predictions in the cognitive brain. Brain Cogn. 65, 145–168 (2007).

  110. 110

    MacDonald, A. W., 3rd, Cohen, J. D., Stenger, V. A. & Carter, C. S. Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 288, 1835–1838 (2000).

  111. 111

    Kerns, J. G., et al. Anterior Cingulate conflict monitoring and adjustments in control. Science 303, 1023–1026 (2004).

  112. 112

    Brown, J. W. & Braver, T. S. Learned predictions of error likelihood in the anterior cingulate cortex. Science 307, 1118–1121 (2005).

  113. 113

    Mesulam, M. M. A cortical network for directed attention and unilateral neglect. Ann. Neurol. 10, 309–325 (1981).

  114. 114

    Miltner, W. H. R., Braun, C. H. & Coles, G. H. Event-related brain potentials following incorrect feedback in a time-estimation task: Evidence for a 'generic' neural system for error-detection. J. Cogn. Neurosci. 9, 788–798 (1997).

  115. 115

    Schoenbaum, G., Roesch, M. R. & Stalnaker, T. A. Orbitofrontal cortex, decision-making and drug addiction. Trends Neurosci. 29, 116–124 (2006).

  116. 116

    Zald, D. H. & Rauch, S. L. The orbitofrontal cortex (Oxford University Press, Oxford, 2007).

  117. 117

    Schultz, W. Multiple reward signals in the brain. Nature Rev. Neurosci. 1, 199–207 (2000).

  118. 118

    Schultz, W. Multiple dopamine functions at different time courses. Annu. Rev. Neurosci. 30, 259–288 (2007).

  119. 119

    Lewis, M. D. Bridging emotion theory and neurobiology through dynamic systems modeling. Behav. Brain Sci. 28, 169–194; discussion 194–245 (2005).

  120. 120

    Amiez, C., Joseph, J. P. & Procyk, E. Reward encoding in the monkey anterior cingulate cortex. Cereb. Cortex 16, 1040–1055 (2006).

  121. 121

    Walton, M. E., Bannerman, D. M. & Rushworth, M. F. The role of rat medial frontal cortex in effort-based decision making. J. Neurosci. 22, 10996–11003 (2002).

  122. 122

    Walton, M. E., Bannerman, D. M., Alterescu, K. & Rushworth, M. F. Functional specialization within medial frontal cortex of the anterior cingulate for evaluating effort-related decisions. J. Neurosci. 23, 6475–6479 (2003).

  123. 123

    Rudebeck, P. H., Walton, M. E., Smyth, A. N., Bannerman, D. M. & Rushworth, M. F. Separate neural pathways process different decision costs. Nature Neurosci. 9, 1161–1168 (2006).

  124. 124

    Rushworth, M. F., Behrens, T. E., Rudebeck, P. H. & Walton, M. E. Contrasting roles for cingulate and orbitofrontal cortex in decisions and social behaviour. Trends Cogn. Sci. 11, 168–176 (2007).

  125. 125

    Zelazo, P. D. & Cunningham, W. A. Executive function: Mechanisms underlying emotion regulation in Handbook of emotion regulation (ed. Gross, J.) (Guilford, New York, 2007).

  126. 126

    Mesulam, M. M. Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann. Neurol. 28, 597–613 (1990).

  127. 127

    Mesulam, M. M. From sensation to cognition. Brain 121, 1013–1052 (1998).

  128. 128

    McIntosh, A. R. Towards a network theory of cognition. Neural Netw. 13, 861–870 (2000).

  129. 129

    Friston, K. Beyond phrenology: what can neuroimaging tell us about distributed circuitry? Annu. Rev. Neurosci. 25, 221–250 (2002).

  130. 130

    Young, M. P., Hilgetag, C. C. & Scannell, J. W. On imputing function to structure from the behavioural effects of brain lesions. Phil. Trans. R. Soc. Lond. 355, 147–161 (2000).

  131. 131

    Noppeney, U., Friston, K. J. & Price, C. J. Degenerate neuronal systems sustaining cognitive functions. J. Anat. 205, 433–442 (2004).

  132. 132

    Price, C. J. & Friston, K. J. Degeneracy and cognitive anatomy. Trends Cogn. Sci. 6, 416–421 (2002).

  133. 133

    Damasio, A. The brain binds entities and events by multiregional activation from convergence zones. Neural Comput. 1, 123–132 (1989).

  134. 134

    Passingham, R. E., Stephan, K. E. & Kotter, R. The anatomical basis of functional localization in the cortex. Nature Rev. Neurosci. 3, 606–616 (2002).

  135. 135

    Guimera, R. & Nunes Amaral, L. A. Functional cartography of complex metabolic networks. Nature 433, 895–900 (2005).

  136. 136

    Guimera, R., Sales-Pardo, M. & Amaral, L. A. N. Classes of complex networks defined by role-to-role connectivity profiles. Nature Phys. 3, 63–69 (2007).

  137. 137

    Sporns, O., Honey, C. J. & Kotter, R. Identification and classification of hubs in brain networks. PLoS ONE 2, e1049. doi:1010.1371/journal.pone.00001049 (2007).

  138. 138

    Bassett, D. S., Meyer-Lindenberg, A., Achard, S., Duke, T. & Bullmore, E. Adaptive reconfiguration of fractal small-world human brain functional networks. Proc. Natl Acad. Sci. USA 103, 19518–19523 (2006).

  139. 139

    Achard, S., Salvador, R., Whitcher, B., Suckling, J. & Bullmore, E. A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J. Neurosci. 26, 63–72 (2006).

  140. 140

    Varela, F., Lachaux, J. P., Rodriguez, E. & Martinerie, J. The brainweb: phase synchronization and large-scale integration. Nature Rev. Neurosci. 2, 229–239 (2001).

  141. 141

    Thompson, E. & Varela, F. J. Radical embodiment: neural dynamics and consciousness. Trends Cogn. Sci. 5, 418–425 (2001).

  142. 142

    Buzsáki, G. Rhythms of the brain (Oxford University Press, New York, 2006).

  143. 143

    Honey, C. J., Kotter, R., Breakspear, M. & Sporns, O. Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc. Natl Acad. Sci. USA 104, 10240–10245 (2007).

  144. 144

    Edelman, G. M. & Gally, J. A. Degeneracy and complexity in biological systems. Proc. Natl Acad. Sci. USA 98, 13763–13768 (2001).

  145. 145

    Cahill, L., Weinberger, N. M., Roozendaal, B. & McGaugh, J. L. Is the amygdala a locus of “conditioned fear”? Some questions and caveats. Neuron 23, 227–228 (1999).

  146. 146

    Barrett, L. F. What is an emotion? (Guilford, New York, 2008).

  147. 147

    Bechtel, W. & Richardson, R. C. Discovering complexity: Decomposition and localization as strategies in scientific research (Princeton University Press, Princeton, NJ, 1993).

  148. 148

    Simon, H. The sciences of the artificial (MIT Press, Cambridge, MA, 1969).

  149. 149

    Thompson, E. Mind in life: Biology, Phenomenology, and the sciences of the mind (Harvard University Press, Cambridge, MA, 2007).

  150. 150

    Etkin, A., Egner, T., Peraza, D. M., Kandel, E. R. & Hirsch, J. Resolving emotional conflict: a role for the rostral anterior cingulate cortex in modulating activity in the amygdala. Neuron 51, 871–882 (2006).

  151. 151

    Goel, V. & Dolan, R. J. Reciprocal neural response within lateral and ventral medial prefrontal cortex during hot and cold reasoning. Neuroimage 20, 2314–2321 (2003).

  152. 152

    Dolcos, F. & McCarthy, G. Brain systems mediating cognitive interference by emotional distraction. J. Neurosci. 26, 2072–2079 (2006).

  153. 153

    Northoff, G., et al. Reciprocal modulation and attenuation in the prefrontal cortex: an fMRI study on emotional-cognitive interaction. Hum. Brain Mapp. 21, 202–212 (2004).

  154. 154

    Lashley, K. S. Basic neural mechanisms in behavior. Psych Rev. 37, 1–24 (1930).

  155. 155

    Kotter, R. & Meyer, N. The limbic system: a review of its empirical foundation. Behav. Brain Res. 52, 105–127 (1992).

  156. 156

    Morgane, P. J. & Mokler, D. J. The limbic brain: continuing resolution. Neurosci. Biobehav Rev. 30, 119–125 (2006).

  157. 157

    Kaada, B. Cingulate, posterior orbital, anterior insular and temporal pole cortex in Handbook of physiology, Sect. 1. Neurophysiology (ed. Field, J., Magoun, H. W. & Hall, V. E.) 1345–1372 (Am. Physiol. Soc., Washington, DC, 1960).

  158. 158

    Brodal, A. Neurological anatomy in relation to clinical medicine (Oxford University Press, New York, 1969).

  159. 159

    Parkinson, B. & Colman, A. M. eds Emotion and motivation (Longman, London and New York, 1995).

  160. 160

    Kuhl, J. Motivation and information processing: A new look at decision making, dynamic change, and action control in Handbook of motivation and cognition: Foundations of social behavior (ed. Sorrentino, R. M. & Higgins, E. T.) 404–434 (Wiley, Chichester, 1986).

  161. 161

    Watanabe, M. Prefrontal unit activity during associative learning in monkey. Exp. Brain Res. 80, 296–309 (1990).

  162. 162

    Watanabe, M. Reward expectancy in primate prefrontal neurons. Nature 382, 629–632 (1996).

  163. 163

    Leon, M. I. & Shadlen, M. N. Effect of expected reward magnitude on the response of neurons in the dorsolateral prefrontal cortex of the macaque. Neuron 24, 415–425 (1999).

  164. 164

    Tsujimoto, S. & Sawaguchi, T. Neuronal activity representing temporal prediction of reward in the primate prefrontal cortex. J. Neurophysiol. 93, 3687–3692 (2005).

  165. 165

    Roesch, M. R. & Olson, C. R. Neuronal activity dependent on anticipated and elapsed delay in macaque prefrontal cortex, frontal and supplementary eye fields, and premotor cortex. J. Neurophysiol. 94, 1469–1497 (2005).

  166. 166

    Kobayashi, S., Lauwereyns, J., Koizumi, M., Sakagami, M. & Hikosaka, O. Influence of reward expectation on visuospatial processing in macaque lateral prefrontal cortex. J. Neurophysiol. 87, 1488–1498 (2002).

  167. 167

    Kobayashi, S. et al. Functional differences between macaque prefrontal cortex and caudate nucleus during eye movements with and without reward. Exp. Brain Res. 176, 341–355 (2007).

  168. 168

    Watanabe, M. Integration across multiple cognitive and motivational domains in monkey prefrontal cortex in Principles of frontal lobe function (eds Stuss, D. T. & Knight,R. T.) 326–337 (Oxford University Press, New York, 2002).

  169. 169

    Watanabe, M. Role of anticipated reward in cognitive behavioral control. Curr.Op. Neurobiol. 17, 213–219 (2007).

Download references

Acknowledgements

In the preparation of this article, I greatly benefited from feedback from and discussions with H. Barbas, L. Feldman Barrett, J. Moll, L. Oliveira, M. Pereira, A. Seth, O. Sporns, E. Thompson and R. Todd. I would also like to thank the reviewers for their constructive feedback and the National Institute of Mental Health (MH071589) for supporting my research.

Author information

Related links

Related links

FURTHER INFORMATION

Luiz Pessoa's homepage

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pessoa, L. On the relationship between emotion and cognition. Nat Rev Neurosci 9, 148–158 (2008). https://doi.org/10.1038/nrn2317

Download citation

Further reading