Be smart, exercise your heart: exercise effects on brain and cognition


An emerging body of multidisciplinary literature has documented the beneficial influence of physical activity engendered through aerobic exercise on selective aspects of brain function. Human and non-human animal studies have shown that aerobic exercise can improve a number of aspects of cognition and performance. Lack of physical activity, particularly among children in the developed world, is one of the major causes of obesity. Exercise might not only help to improve their physical health, but might also improve their academic performance. This article examines the positive effects of aerobic physical activity on cognition and brain function, at the molecular, cellular, systems and behavioural levels. A growing number of studies support the idea that physical exercise is a lifestyle factor that might lead to increased physical and mental health throughout life.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Meta-analytic findings of exercise-training effects on cognition in older adults.


  1. 1

    US Department of Health and Human Services. Healthy People 2010 [online] (2000).

  2. 2

    Centers for Disease Control and Prevention. Prevalence of physical activity, including lifestyle activities among adults — United States, 2000–2001. Morb. Mort. Weekly Report. 52, 764–769 (2003).

  3. 3

    Secretary of Health and Human Services and the Secretary of Education. Promoting better health for young people through physical activity and sports. Centers for Disease Control and Prevention. [online] (2007).

  4. 4

    Fontaine, K. R., Redden, D. T., Wang, C., Westfall, A. O. & Allison, D. B. Years of life lost due to obesity. J. Amer. Med. Assoc. 289, 187–193 (2003).

    Google Scholar 

  5. 5

    Olshansky, S. J. et al. A potential decline in life expectancy of the United States in the 21st Century. N. Engl. J. Med. 352, 1138–1145 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Colditz, G. A. Economic costs of obesity and inactivity. Med. Sci. Sport Exerc. 31, 663–667 (1999).

    Google Scholar 

  7. 7

    Pratt, M., Macera, M. A. & Wang, G. Higher direct medical costs associated with physical inactivity. Physician Sportsmed. 28, 63–70 (2000).

    CAS  Google Scholar 

  8. 8

    Katzmarzyk, P. T., Gledhill, N. & Shephard, R. J. The economic burden of physical inactivity in Canada. Can. Med. Assoc. J. 163, 1435–1440 (2000).

    CAS  Google Scholar 

  9. 9

    Vaynman, S. & Gomez-Pinilla, F. Revenge of the “sit”: how lifestyle impacts neuronal and cognitive health though molecular systems that interface energy metabolism with neuronal plasticity. J. Neurosci. Res. 84, 699–715 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Booth, F. W. & Lees, S. J. Physically active subjects should be the control group. Med. Sci. Sport Exerc. 38, 405–406 (2006).

    Google Scholar 

  11. 11

    Burpee, R. H. & Stroll, W. Measuring reaction time of athletes. Res. Quart. 7, 110–118 (1936).

    Google Scholar 

  12. 12

    Lawther, J. D. Psychology of coaching. (Prentice-Hall: Englewood Cliffs, New Jersey, 1951).

    Google Scholar 

  13. 13

    Pierson, W. R. & Montoye, H. J. Movement time, reaction time, and age. J. Gerontol. 13, 418–421 (1958).

    CAS  Google Scholar 

  14. 14

    Beise, D. & Peaseley, V. The relationship of reaction time, speed, and agility of big muscle groups and certain sport skills. Res. Quart. 8, 133–142 (1937).

    Google Scholar 

  15. 15

    Baylor, A. M. & Spirduso, W. W. Systematic aerobic exercise and components of reaction time in older women. J. Gerontol. 43, 121–126 (1988).

    Google Scholar 

  16. 16

    Sherwood, D. E. & Selder, D. J. Cardiorespiratory health, reaction time and aging. Med. Sci. Sports 11, 186–189 (1979).

    CAS  Google Scholar 

  17. 17

    Spirduso, W. W. Reaction and movement time as a function of age and physical activity level. J. Gerontol. 30, 435–440 (1975).

    CAS  Google Scholar 

  18. 18

    Spirduso, W. W. & Clifford, P. Replication of age and physical activity effects on reaction and movement times. J. Gerontol. 33, 26–30 (1978).

    CAS  Google Scholar 

  19. 19

    Spirduso, W. W. Physical fitness, aging, and psychomotor speed: a review. J. Gerontol. 6, 850–865 (1980).

    Google Scholar 

  20. 20

    Sibley, B. A. & Etnier, J. L. The relationship between physical activity and cognition in children: a meta-analysis. Ped. Exerc. Sci. 15, 243–256 (2003).

    Google Scholar 

  21. 21

    Etnier, J. L. et al. The influence of physical fitness and exercise upon cognitive functioning: a meta-analysis. J. Sport Exerc. Psychol. 19, 249–274 (1997).

    Google Scholar 

  22. 22

    Ahamed, Y. et al. School-based physical activity does not compromise children's academic performance. Med. Sci. Sport Exerc. 39, 371–376 (2007).

    Google Scholar 

  23. 23

    Castelli, D. M., Hillman, C. H., Buck, S. M. & Erwin, H. Physical fitness and academic achievement in 3rd & 5th Grade Students. J. Sport Exerc. Psychol. 29, 239–252 (2007).

    Google Scholar 

  24. 24

    Kim, H.-Y. P. et al. Academic performance of Korean children is associated with dietary behaviours and physical status. Asian Pac. J. Clin. Nutr. 12, 186–192 (2003).

    Google Scholar 

  25. 25

    Hillman, C. H., Snook, E. M., Jerome, G. J. Acute cardiovascular exercise and executive control function. Int. J. Psychophysiol. 48, 307–314 (2003).

    Google Scholar 

  26. 26

    Themanson, J. R. & Hillman, C. H. Cardiorespiratory fitness and acute aerobic exercise effects on neuroelectric and behavioral measures of action monitoring. Neurosci. 141, 757–767 (2006).

    CAS  Google Scholar 

  27. 27

    Tomporowski, P. D. Effects of acute bouts of exercise on cognition. Acta Psychol. 112, 297–324 (2003).

    Google Scholar 

  28. 28

    Salthouse, T. A. & Davis, H. P. Organization of cognitive abilities and neuropsychological variables across the lifespan. Develop. Rev. 26, 31–54 (2006).

    Google Scholar 

  29. 29

    Karp, A. et al. Mental, physical, and social components in leisure activities equally contribute to decrease dementia risk. Dement. Geriat. Cogn. Disord. 21, 65–73 (2006).

    Google Scholar 

  30. 30

    Wilson, R. S. et al. Participation in cognitively stimulating activities and risk of incident Alzheimer disease. J. Amer. Med. Assoc. 287, 742–748 (2002).

    Google Scholar 

  31. 31

    Hawkins, H. L., Kramer, A. F. & Capaldi, D. Aging, exercise, and attention. Psychol. Aging 7, 643–653 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Colcombe, S. & Kramer, A. F. Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol. Sci. 14, 125–130 (2003).

    PubMed  PubMed Central  Google Scholar 

  33. 33

    Etnier, J. L., Nowell, P. M., Landers, D. M. & Sibley, B. A. A meta-regression to examine the relationship between aerobic fitness and cognitive performance. Brain Res. Rev. 52, 119–130 (2006).

    PubMed  PubMed Central  Google Scholar 

  34. 34

    Heyn, P., Abreu, B. C. & Ottenbacher, K. J. The effects of exercise training on elderly persons with cognitive impairment and dementia: a meta-analysis. Arch. Phys. med. Rehab. 84, 1694–1704 (2004).

    Google Scholar 

  35. 35

    Erickson, K. I. et al. Interactive effects of fitness and hormone treatment on brain health in elderly women. Neurobiol. Aging 28, 179–185 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Bashore, T. R. Age, physical fitness, and mental processing speed. Ann. Rev. Gerontol. Geriat. 9, 120–144 (1989).

    CAS  Google Scholar 

  37. 37

    Dustman, R. E. et al. Age and fitness effects on EEG, ERPs, visual sensitivity, and cognition. Neurobiol. Aging 11, 193–200 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Dustman, R. E., LaMarsh, J. A., Cohn, N. B., Shearer, D. E. & Talone, J. M. Power spectral analysis and cortical coupling of EEG for young and old normal adults. Neurobiol. Aging 6, 193–198 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Lardon, M. T. & Polich, J. EEG changes from long-term physical exercise. Biol. Psychol. 44, 19–30 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Mecklinger, A., Kramer, A. F. & Strayer, D. L. Event-related potentials and EEG components in a semantic memory search task. Psychophysiol. 29, 104–119 (1992).

    CAS  Google Scholar 

  41. 41

    Polich, J. & Lardon, M. P300 and long term physical exercise. Electroencephalogr. Clin. Neurophysiol. 103, 493–498 (1997).

    CAS  Google Scholar 

  42. 42

    Hillman, C. H., Castelli, D. & Buck, S. M. Aerobic fitness and cognitive function in healthy preadolescent children. Med. Sci. Sport Exerc. 37, 1967–1974 (2005).

    Google Scholar 

  43. 43

    Hillman, C. H., Kramer, A. F., Belopolsky, A. V. & Smith, D. P. Physical activity, aging, and executive control: implications for increased cognitive health. Int. J. Psychophysiol. 59, 30–39 (2006).

    Google Scholar 

  44. 44

    Polich, J. & Lardon, M. P300 and long term physical exercise. Electroencephalogr. Clin. Neurophysiol. 103, 493–498 (1997).

    CAS  Google Scholar 

  45. 45

    Hillman, C. H., Weiss, E. P., Hagberg, J. M. & Hatfield, B. D. The relationship to age and cardiovascular fitness to cognitive and motor processes. Psychophysiol. 39, 303–312 (2002).

    Google Scholar 

  46. 46

    Hillman, C. H., Belopolsky, A., Snook, E. M., Kramer, A. F. & McAuley, E. Physical activity and executive control: implications for increased cognitive health during older adulthood. Res. Q. Exerc. Sport 75, 176–185 (2004).

    Google Scholar 

  47. 47

    Polich, J. Clinical applications of the P300 event-related brain potential. Phys. Med. Rehabil. Clin. N. Am. 15, 133–161 (2004).

    PubMed  PubMed Central  Google Scholar 

  48. 48

    Colcombe, S. J. et al. Cardiovascular fitness, cortical plasticity, and aging. Proc. Natl Acad. Sci. USA 101, 3316–3321 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Hillman, C. H. et al. Physical activity and cognitive function in a cross-section of younger and older community-dwelling individuals. Health Psychol. 25, 678–687 (2006).

    PubMed  PubMed Central  Google Scholar 

  50. 50

    Kramer, A. F. et al. Aging, fitness, and neurocognitive function. Nature 400, 418–419 (1999).

    CAS  Google Scholar 

  51. 51

    Themanson, J. R., Hillman, C. H. & Curtin, J. J. Age and physical activity influences on neuroelectric indices of action monitoring during task switching. Neurobiol. Aging 27, 1335–1345 (2006).

    Google Scholar 

  52. 52

    van Veen, V. & Carter, C. S. The timing of action-monitoring processes in the anterior cingulated cortex. J. Cogn. Neurosci. 14, 593–602 (2002).

    Google Scholar 

  53. 53

    Colcombe, S. J. et al. Aerobic exercise training increases brain volume in aging humans. J. Gerontol. A Biol. Sci. Med. Sci. 61, 1166–1170 (2006).

    Google Scholar 

  54. 54

    Gordon, B. A. et al. Neuroanatomical correlates of aging, cardiopulmonary fitness level, and education. Psychophysiol. (in the press).

  55. 55

    Marks, B. L. et al. Role of aerobic fitness and aging in cerebral white matter integrity. Ann. NY Acad. Sci. 1097, 171–174 (2007).

    Google Scholar 

  56. 56

    Pereira, A. C. et al. An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc. Natl Acad. Sci. 104, 5638–5643 (2007).

    CAS  Google Scholar 

  57. 57

    Brown, J. et al. Enriched environment and physical activity stimulate hippocampal but not olfactory bulb neurogenesis. Eur. J. Neurosci. 17, 2042–2046 (2003).

    Google Scholar 

  58. 58

    Van Praag, H., Christie, B. R., Sejnowski, T. J. & Gage, F. H. Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc. Natl Acad. Sci. USA 96, 13427–13431 (1999).

    CAS  Google Scholar 

  59. 59

    Van Praag, H., Kempermann, G. & Gage, F. H. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nature Neurosci. 2, 266–270 (1999).

    CAS  Google Scholar 

  60. 60

    Trejo, J. L., Carro, E. & Torres-Aleman, I. Circulating insulin-like growth factor mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J. Neurosci. 21, 1628–1634 (2001).

    CAS  Google Scholar 

  61. 61

    Eadie, B. D., Redilla, V. A. & Christie, B. R. Voluntary exercise alters the cytoarchitecture of the adult dentate gyrus by increasing cellular proliferation, dendritic complexity, and spine density. J. Compar. Neurol. 486, 39–47 (2005).

    Google Scholar 

  62. 62

    Van Praag, H, Shubert, T., Zhao, C. & Gage, F. H. Exercise enhances learning and hippocampal neurogenesis in aged mice. J. Neurosci. 25, 8680–8685 (2005).

    CAS  Google Scholar 

  63. 63

    Kim, H., Lee, S. H., Kim, S. S., Yoo, J. H. & Kim, C. J. The influence of maternal treadmill running during pregnancy on short-term memory and hippocampal cell survival in rat pups. Int. J. Devel. Neurosci. 25, 243–249 (2007).

    Google Scholar 

  64. 64

    Lee, H. H. et al. Maternal swimming during pregnancy enhances short-term memory and neurogenesis in the hippocampus of rat pups. Brain Devel. 28, 147–154 (2006).

    Google Scholar 

  65. 65

    Kleim, J. A., Cooper, N. R. & Vandenberg, P. M. Exercise induces angiogenesis but does not alter movement representations within rat motor cortex. Brain Res. 934, 1–6 (2002).

    CAS  Google Scholar 

  66. 66

    Black, J. E., Isaacs, K. R., Anderson, B. J., Alcantara, A. A. & Greenough, W. T. Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proc. Natl Acad. Sci. 87, 5568–5572 (1990).

    CAS  Google Scholar 

  67. 67

    Ding, Y. et al. Exercise pre-conditioning reduces brain damage in ischemic rats that may be associated with regional angiogenesis and cellular overexpression of neurotrophin. Neurosci. 124, 583–591 (2004).

    CAS  Google Scholar 

  68. 68

    Lopez-Lopez, C., LeRoith, D. & Torres-Aleman, I. Insulin-like growth factor I is required for vessel remodeling in the adult brain. Proc. Natl Acad. Sci. USA 101, 9833–9838 (2004).

    CAS  Google Scholar 

  69. 69

    Cotman, C. W. & Berchtold, N. C. Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci. 25, 295–301 (2002).

    CAS  Google Scholar 

  70. 70

    Vaynman, S., Ying, Z. & Gomez-Pinilla, F. Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur. J. Neurosci. 20, 1030–1034 (2004).

    Google Scholar 

  71. 71

    Ferris, L. T., Williams, J. S. & Shen, C. L. The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Med. Sci. Sport Exerc. 39, 728–734 (2007).

    CAS  Google Scholar 

  72. 72

    Gold, S. M. et al. Basal serum levels and reactivity of nerve growth factor and brain-derived neurotrophic factor to standardized acute exercise in multiple sclerosis and controls. J. Neuroimmunol. 138, 99–105 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Adlard, P. A., Perreau, V. M., Pop, V. & Cotman, C. W. Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer's disease. J. Neurosci. 25, 4217–4221 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Cotman, C. W., Berchtold, N. C. & Christie, L.-A. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 30, 464–472 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Prakash, R. et al. Cardiorespiratory fitness: a predictor of cortical plasticity in multiple sclerosis. Neuroimage 34, 1238–1244 (2007).

    PubMed  PubMed Central  Google Scholar 

  76. 76

    Berchtold, N. C., Chinn, G., Chou, M., Kesslak, J. P. & Cotman, C. W. Exercise primes a molecular memory for brain derived neurotrophic factor protein induction in the rate hippocampus. Neurosci. 133, 853–861 (2005).

    CAS  Google Scholar 

  77. 77

    Molteni, R. et al. Exercise reverses the harmful effects of consumption of a high-fat diet on synaptic and behavioral plasticity associated to the action of brain-derived neurotrophic factor. Neurosci. 123, 429–440 (2004).

    CAS  Google Scholar 

  78. 78

    Stranahan, A. M. et al. Social isolation delays the positive effects of running on adult neurogenesis. Nature Neurosci. 9, 526–533 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Barbour, K. A. & Blumenthal, J. A. Exercise training and depression in older adults. Neurobiol. Aging 26 (Suppl. 1), 119–123 (2005).

    PubMed  PubMed Central  Google Scholar 

  80. 80

    Russo-Neustadt, A. A. & Chen, M. J. Brain-derived neurotrophic factor and antidepressant activity. Curr. Pharm. Des. 11, 1495–1510 (2005).

    CAS  Google Scholar 

  81. 81

    Goldstein, D. B., Need, A. C., Singh, R. & Sisodiya, S. M. Potential genetic causes of heterogeneity of treatment effects. Am. J. Med. 120 (Suppl. 1), S21–S25 (2007).

    CAS  Google Scholar 

  82. 82

    Etnier, J. et al. Cognitive performance in older women relative to ApoeE-epsilon4 genotype and aerobic fitness. Med. Sci. Sport Exerc. 39, 199–207 (2007).

    CAS  Google Scholar 

  83. 83

    Podewils, L. J. et al. Physical activity, APOE genotype, and dementia risk: findings from the cardiovascular health cognition study. Am. J. Epi. 161, 639–651 (2005).

    Google Scholar 

  84. 84

    Rovio, S. et al. Leisure time physical activity at midlife and the risk of dementia and Alzheimer's disease. Lancet Neurol. 4, 705–711 (2005).

    Google Scholar 

  85. 85

    Schuit, A. J. et al. Physical activity and cognitive decline, the role of apoliprotein e4 allele. Med. Sci. Sports Exerc. 26, 772–777 (2001).

    Google Scholar 

  86. 86

    Egan, M. F. et al. The BDNF val66met polymorphism affects activity dependent secretion of BDNF and human memory and hippocampal function. Cell 112, 257–269 (2003).

    CAS  Google Scholar 

  87. 87

    Kleim, J. A. et al. BDNF val66met polymorphism is associated with modified experienced dependent plasticity in human motor cortex. Nature Neurosci. 9, 735–737 (2006).

    CAS  Google Scholar 

  88. 88

    California Department of Education. California physical fitness test: Report to the governor and legislature. Sacramento, California. Department of Education Standards and Assessment Division (2001).

  89. 89

    Fields, T., Diego, M. & Sanders, C. E. Exercise is positively related to adolescents' relationships and academics. Adolescence 36, 105–110 (2001).

    Google Scholar 

  90. 90

    Lindner, K. J. The physical activity participation-academic performance relationship revisited: perceived and actual performance and the effect of banding (academic tracking). Ped. Exerc. Sci. 14, 155–169 (2002).

    Google Scholar 

  91. 91

    Maguire, E. A., Frith, C. D. & Morris, R. G. M. The functional neuroanatomy of comprehension and memory: the importance of prior knowledge. Brain 122, 1839–1850 (1999).

    Google Scholar 

  92. 92

    Ansari, D. & Dhital, B. Age-related changes in the activation of the intraparietal sulcus during nonsymbolic magnitude processing: an event-related functional magnetic resonance imaging study. J. Cogn. Neuro. 18, 1820–1828 (2006).

    Google Scholar 

  93. 93

    Gobel, S. M., Johansen-Berg, H., Behrens, T. & Rushworth, M. F. Response-selection-related parietal activation during number comparison. J. Cogn. Neurosci. 16, 1536–1551 (2004).

    Google Scholar 

  94. 94

    Rivera, S. M., Reiss, A. L., Eckert, M. A. & Menon, V. Developmental changes in mental arithmetic: evidence for increased functional specialization in the left inferior parietal cortex. Cereb. Cortex. 15, 1779–1790 (2005).

    CAS  Google Scholar 

  95. 95

    Coe, D. P., Pivarnik, J. M., Womack, C. J., Reeves, M. J. & Malina, R. M. Effects of physical education and activity levels on academic achievement in children. Med. Sci. Sport Exerc. 38, 1515–1519 (2006).

    Google Scholar 

  96. 96

    Sallis, J. F. et al. Effects of health-related physical education on academic achievement: Project SPARK. Res. Q. Exerc. Sport. 70, 127–138 (1999).

    CAS  Google Scholar 

  97. 97

    Martin, J. H. Neuroanatomy Text and Atlas. 2nd edn (Appleton and Lange, Stanford Connecticut, 1996).

    Google Scholar 

  98. 98

    Hall, C. D. Smith, A. L. & Keele, S. W. The impact of aerobic activity on cognitive function in older adults: a new synthesis based on the concept of executive control. Eur. J. Cogn. Psychol. 13, 279–300 (2001).

    Google Scholar 

  99. 99

    Bush, G., Luu, P. & Posner, M. I. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn. Sci. 4, 215–222 (2000).

    CAS  Google Scholar 

Download references


We would like to thank the National Institute on Aging (R01 AG25,667, R01 AG25,032, R01 AG021,188) for their support of our research and the preparation of this article. We would also like to thank A. R. Kramer for her help in crafting the article title.

Author information



Corresponding author

Correspondence to Charles H. Hillman.

Related links

Related links



Alzheimer's disease

Parkinson's disease


Charles H. Hillman's homepage


Aerobic fitness

The maximal capacity of the cardiorespiratory system to take up and use oxygen.

Behavioural conflict

The indecision that arises when multiple conflicting responses can be elicited in response to a stimulus.

Dipole modelling

A method to determine the location of the sources that underlie the responses measured in an electroencephalographic experiment. It provides an estimate of the location, orientation and strength of the source as a function of time after the stimulus was presented.

Error-related negativity

(ERN). A negative deflection in a response-locked ERP that reflects neural correlates of action monitoring that is associated with the evaluation of conflict.

Event-related brain potential

(ERP). A time-locked index of neuroelectrical activation that is associated with specific cognitive processes.

Executive control

Computational processes involved in the selection, scheduling and coordination of complex cognitive functions.


Repetitive and planned physical activity with the goal of maintaining or improving physical fitness.


A positive deflection in a stimulus-locked ERP that reflects changes in the neural representation of the stimulus environment and is proportional to the amount of attention that is required to encode a given stimulus (amplitude) as well as the speed of stimulus evaluation (latency).

Physical activity

Bodily movement produced by skeletal muscles with the expenditure of energy.

Top-down control

Refers to an individual's ability to selectively process information in the environment. Top-down control relies on an observer's expectancies about events in the environment, knowledge of and experience with similar environments, and the ability to develop and maintain an attentional set for particular kinds of environmental events.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hillman, C., Erickson, K. & Kramer, A. Be smart, exercise your heart: exercise effects on brain and cognition. Nat Rev Neurosci 9, 58–65 (2008).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing