Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Science and Society
  • Published:

Cannabis, the mind and society: the hash realities

Abstract

Cannabis has been known for at least 4,000 years to have profound effects on the mind — effects that have provoked dramatically divergent attitudes towards it. Some societies have regarded cannabis as a sacred boon for mankind that offers respite from the tribulations of everyday life, whereas others have demonized it as inevitably leading to 'reefer madness'. The debate between the protagonists and prohibitionists has recently been re-ignited, but unfortunately this debate continues mainly in ignorance of our new understanding of the effects of cannabis on the brain and of studies that have quantified the extent of the risks of long-term use.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global cannabis use between 2003 and 2004.
Figure 2: Endocannabinoids and THC affect neurotransmission in the hippocampus.
Figure 3: Modulation of the effect of adolescent cannabis use on psychosis by COMT genotype.
Figure 4: Worldwide trends in cannabis seizures.

References

  1. Deglamorising cannabis. Lancet 346, 1241 (1995).

  2. Pacher, P., Batkai, S. & Kunos, G. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol. Rev. 58, 389–462 (2006).

    CAS  PubMed  Google Scholar 

  3. Iversen, L. Cannabis and the brain. Brain 126, 1252–1270 (2003).

    PubMed  Google Scholar 

  4. Mackie, K. Cannabinoid receptors as therapeutic targets. Annu. Rev. Pharmacol. Toxicol. 46, 101–122 (2006).

    CAS  PubMed  Google Scholar 

  5. Pertwee, R. G. Cannabinoid pharmacology: the first 66 years. Br. J. Pharmacol. 147 (Suppl. 1), S163–S171 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Piomelli, D. The molecular logic of endocannabinoid signalling. Nature Rev. Neurosci. 4, 873–884 (2003).

    CAS  Google Scholar 

  7. Di Marzo, V., Bifulco, M. & De Petrocellis, L. The endocannabinoid system and its therapeutic exploitation. Nature Rev. Drug Discov. 3, 771–784 (2004).

    CAS  Google Scholar 

  8. Elphick, M. R. & Egertova, M. The neurobiology and evolution of cannabinoid signalling. Philos. Trans. R. Soc. Lond. B Biol. Sci. 356, 381–408 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Mechoulam, R. & Hanus, L. A historical overview of chemical research on cannabinoids. Chem. Phys. Lipids 108, 1–13 (2000).

    CAS  PubMed  Google Scholar 

  10. Huestis, M. A. et al. Blockade of effects of smoked marijuana by the CB1-selective cannabinoid receptor antagonist SR141716. Arch. Gen. Psychiatry 58, 322–328 (2001).

    CAS  PubMed  Google Scholar 

  11. Devane, W. A., Dysarz, F. A. III, Johnson, M. R., Melvin, L. S. & Howlett, A. C. Determination and characterization of a cannabinoid receptor in rat brain. Mol. Pharmacol. 34, 605–613 (1988).

    CAS  PubMed  Google Scholar 

  12. Matsuda, L. A., Lolait, S. J., Brownstein, M. J., Young, A. C. & Bonner, T. I. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346, 561–564 (1990).

    CAS  PubMed  Google Scholar 

  13. Herkenham, M., Lynn, A. B., de Costa, B. R. & Richfield, E. K. Neuronal localization of cannabinoid receptors in the basal ganglia of the rat. Brain Res. 547, 267–274 (1991).

    CAS  PubMed  Google Scholar 

  14. Egertova, M. & Elphick, M. R. Localisation of cannabinoid receptors in the rat brain using antibodies to the intracellular C-terminal tail of CB. J. Comp. Neurol. 422, 159–171 (2000).

    CAS  PubMed  Google Scholar 

  15. Eggan, S. M. & Lewis, D. A. Immunocytochemical distribution of the cannabinoid CB1 receptor in the primate neocortex: a regional and laminar analysis. Cereb. Cortex 17, 175–191 (2007).

    PubMed  Google Scholar 

  16. Matyas, F. et al. Subcellular localization of type 1 cannabinoid receptors in the rat basal ganglia. Neuroscience 137, 337–361 (2006).

    CAS  PubMed  Google Scholar 

  17. Calignano, A., La Rana, G., Giuffrida, A. & Piomelli, D. Control of pain initiation by endogenous cannabinoids. Nature 394, 277–281 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Ahluwalia, J., Urban, L., Capogna, M., Bevan, S. & Nagy, I. Cannabinoid 1 receptors are expressed in nociceptive primary sensory neurons. Neuroscience 100, 685–688 (2000).

    CAS  PubMed  Google Scholar 

  19. Hohmann, A. G. et al. An endocannabinoid mechanism for stress-induced analgesia. Nature 435, 1108–1112 (2005).

    CAS  PubMed  Google Scholar 

  20. Munro, S., Thomas, K. L. & Abu-Shaar, M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 365, 61–65 (1993).

    CAS  PubMed  Google Scholar 

  21. Van Sickle, M. D. et al. Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science 310, 329–332 (2005).

    CAS  PubMed  Google Scholar 

  22. Onaivi, E. S. et al. Discovery of the presence and functional expression of cannabinoid CB2 receptors in brain. Ann. NY Acad. Sci. 1074, 514–536 (2006).

    CAS  PubMed  Google Scholar 

  23. Gong, J. P. et al. Cannabinoid CB2 receptors: immunohistochemical localization in rat brain. Brain Res. 1071, 10–23 (2006).

    CAS  PubMed  Google Scholar 

  24. Devane, W. A. et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258, 1946–1949 (1992).

    CAS  PubMed  Google Scholar 

  25. Mechoulam, R. et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem. Pharmacol. 50, 83–90 (1995).

    CAS  PubMed  Google Scholar 

  26. Sugiura, T. et al. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem. Biophys. Res. Commun. 215, 89–97 (1995).

    CAS  PubMed  Google Scholar 

  27. Wilson, R. I. & Nicoll, R. A. Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature 410, 588–592 (2001).

    CAS  PubMed  Google Scholar 

  28. Yoshida, T. et al. Localization of diacylglycerol lipase-α around postsynaptic spine suggests close proximity between production site of an endocannabinoid, 2-arachidonoyl-glycerol, and presynaptic cannabinoid CB1 receptor. J. Neurosci. 26, 4740–4751 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Katona, I. et al. Molecular composition of the endocannabinoid system at glutamatergic synapses. J. Neurosci. 26, 5628–5637 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kawamura, Y. et al. The CB1 cannabinoid receptor is the major cannabinoid receptor at excitatory presynaptic sites in the hippocampus and cerebellum. J. Neurosci. 26, 2991–3001 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Uchigashima, M. et al. Subcellular arrangement of molecules for 2-arachidonoyl-glycerol-mediated retrograde signaling and its physiological contribution to synaptic modulation in the striatum. J. Neurosci. 27, 3663–3676 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Alger, B. E. Endocannabinoids and their implications for epilepsy. Epilepsy Curr. 4, 169–173 (2004).

    PubMed  PubMed Central  Google Scholar 

  33. Smith, P. F. Cannabinoids as potential anti-epileptic drugs. Curr. Opin. Investig. Drugs 6, 680–685 (2005).

    CAS  PubMed  Google Scholar 

  34. Freund, T. F., Katona, I. & Piomelli, D. Role of endogenous cannabinoids in synaptic signaling. Physiol. Rev. 83, 1017–1066 (2003).

    CAS  PubMed  Google Scholar 

  35. Bailey, C. H., Giustetto, M., Huang, Y. Y., Hawkins, R. D. & Kandel, E. R. Is heterosynaptic modulation essential for stabilizing Hebbian plasticity and memory? Nature Rev. Neurosci. 1, 11–20 (2000).

    CAS  Google Scholar 

  36. Chevaleyre, V., Takahashi, K. A. & Castillo, P. E. Endocannabinoid-mediated synaptic plasticity in the CNS. Annu. Rev. Neurosci. 29, 37–76 (2006).

    CAS  PubMed  Google Scholar 

  37. Gerdeman, G. L., Ronesi, J. & Lovinger, D. M. Postsynaptic endocannabinoid release is critical to long-term depression in the striatum. Nature Neurosci. 5, 446–451 (2002).

    CAS  PubMed  Google Scholar 

  38. Robbe, D., Kopf, M., Remaury, A., Bockaert, J. & Manzoni, O. J. Endogenous cannabinoids mediate long-term synaptic depression in the nucleus accumbens. Proc. Natl Acad. Sci. USA 99, 8384–8388 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kreitzer, A. C. & Regehr, W. G. Cerebellar depolarization-induced suppression of inhibition is mediated by endogenous cannabinoids. J. Neurosci. 21, RC174 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kreitzer, A. C. & Malenka, R. C. Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson's disease models. Nature 445, 643–647 (2007).

    CAS  PubMed  Google Scholar 

  41. Kishimoto, Y. & Kano, M. Endogenous cannabinoid signaling through the CB1 receptor is essential for cerebellum-dependent discrete motor learning. J. Neurosci. 26, 8829–8837 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Marsicano, G. et al. The endogenous cannabinoid system controls extinction of aversive memories. Nature 418, 530–534 (2002).

    CAS  PubMed  Google Scholar 

  43. Zhu, P. J. & Lovinger, D. M. Persistent synaptic activity produces long-lasting enhancement of endocannabinoid modulation and alters long-term synaptic plasticity. J. Neurophysiol. 97, 4386–4389 (2007).

    PubMed  Google Scholar 

  44. Chevaleyre, V. & Castillo, P. E. Heterosynaptic LTD of hippocampal GABAergic synapses: a novel role of endocannabinoids in regulating excitability. Neuron 38, 461–472 (2003).

    CAS  PubMed  Google Scholar 

  45. Chevaleyre, V. & Castillo, P. E. Endocannabinoid-mediated metaplasticity in the hippocampus. Neuron 43, 871–881 (2004).

    CAS  PubMed  Google Scholar 

  46. Carlson, G., Wang, Y. & Alger, B. E. Endocannabinoids facilitate the induction of LTP in the hippocampus. Nature Neurosci. 5, 723–724 (2002).

    CAS  PubMed  Google Scholar 

  47. Takahashi, K. A. & Castillo, P. E. The CB1 cannabinoid receptor mediates glutamatergic synaptic suppression in the hippocampus. Neuroscience 139, 795–802 (2006).

    CAS  PubMed  Google Scholar 

  48. Panikashvili, D. et al. An endogenous cannabinoid (2-AG) is neuroprotective after brain injury. Nature 413, 527–531 (2001).

    CAS  PubMed  Google Scholar 

  49. Monory, K. et al. The endocannabinoid system controls key epileptogenic circuits in the hippocampus. Neuron 51, 455–466 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Robbe, D. et al. Cannabinoids reveal importance of spike timing coordination in hippocampal function. Nature Neurosci. 9, 1526–1533 (2006).

    CAS  PubMed  Google Scholar 

  51. Hampson, R. E. & Deadwyler, S. A. Cannabinoids, hippocampal function and memory. Life Sci. 65, 715–723 (1999).

    CAS  PubMed  Google Scholar 

  52. Arendt, M. et al. Testing the self-medication hypothesis of depression and aggression in cannabis-dependent subjects. Psychol. Med. 37, 935–945 (2007).

    PubMed  Google Scholar 

  53. Verdoux, H., Gindre, C., Sorbara, F., Tournier, M. & Swendsen, J. D. Effects of cannabis and psychosis vulnerability in daily life: an experience sampling test study. Psychol. Med. 33, 23–32 (2003).

    CAS  PubMed  Google Scholar 

  54. Moreau, J. J. Hashish and Mental Illness (Raven, New York, 1973).

    Google Scholar 

  55. Ames, F. A clinical and metabolic study of acute intoxication with Cannabis sativa and its role in the model psychoses. J. Ment. Sci. 104, 972–999 (1958).

    CAS  PubMed  Google Scholar 

  56. Talbott, J. A. & Teague, J. W. Marihuana psychosis. Acute toxic psychosis associated with the use of cannabis derivatives. JAMA 210, 299–302 (1969).

    CAS  PubMed  Google Scholar 

  57. Chopra, G. S. & Smith, J. W. Psychotic reactions following cannabis use in East Indians. Arch. Gen. Psychiatry 30, 24–27 (1974).

    CAS  PubMed  Google Scholar 

  58. Isbell, H. et al. Effects of (–)Δ9-trans-tetrahydrocannabinol in man. Psychopharmacologia 11, 184–188 (1967).

    CAS  PubMed  Google Scholar 

  59. Melges, F. T. Tracking difficulties and paranoid ideation during hashish and alcohol intoxication. Am. J. Psychiatry 133, 1024–1028 (1976).

    CAS  PubMed  Google Scholar 

  60. D'Souza, D. C. et al. The psychotomimetic effects of intravenous delta-9-tetrahydrocannabinol in healthy individuals: implications for psychosis. Neuropsychopharmacology 29, 1558–1572 (2004).

    CAS  PubMed  Google Scholar 

  61. Leweke, F. M., Schneider, U., Radwan, M., Schmidt, E. & Emrich, H. M. Different effects of nabilone and cannabidiol on binocular depth inversion in man. Pharmacol. Biochem. Behav. 66, 175–181 (2000).

    CAS  PubMed  Google Scholar 

  62. Solowij, N. & Michie, P. T. Cannabis and cognitive dysfunction: parallels with endophenotypes of schizophrenia? J. Psychiatry Neurosci. 32, 30–52 (2007).

    PubMed  PubMed Central  Google Scholar 

  63. Makela, P. et al. Low doses of Δ-9 tetrahydrocannabinol (THC) have divergent effects on short-term spatial memory in young, healthy adults. Neuropsychopharmacology 31, 462–470 (2006).

    CAS  PubMed  Google Scholar 

  64. Winsauer, P. J., Lambert, P. & Moerschbaecher, J. M. Cannabinoid ligands and their effects on learning and performance in rhesus monkeys. Behav. Pharmacol. 10, 497–511 (1999).

    CAS  PubMed  Google Scholar 

  65. Fadda, P., Robinson, L., Fratta, W., Pertwee, R. G. & Riedel, G. Differential effects of THC- or CBD-rich cannabis extracts on working memory in rats. Neuropharmacology 47, 1170–1179 (2004).

    CAS  PubMed  Google Scholar 

  66. Fried, P. A., Watkinson, B. & Gray, R. Neurocognitive consequences of marihuana — a comparison with pre-drug performance. Neurotoxicol. Teratol. 27, 231–239 (2005).

    CAS  PubMed  Google Scholar 

  67. Bolla, K. I., Eldreth, D. A., Matochik, J. A. & Cadet, J. L. Neural substrates of faulty decision-making in abstinent marijuana users. Neuroimage 26, 480–492 (2005).

    PubMed  Google Scholar 

  68. Ehrenreich, H. et al. Specific attentional dysfunction in adults following early start of cannabis use. Psychopharmacology (Berl.) 142, 295–301 (1999).

    CAS  Google Scholar 

  69. Pope, H. G. Jr, et al. Early-onset cannabis use and cognitive deficits: what is the nature of the association? Drug Alcohol Depend. 69, 303–310 (2003).

    PubMed  Google Scholar 

  70. Hoffman, A. F., Oz, M., Yang, R., Lichtman, A. H. & Lupica, C. R. Opposing actions of chronic Δ9-tetrahydrocannabinol and cannabinoid antagonists on hippocampal long-term potentiation. Learn. Mem. 14, 63–74 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. O'Shea, M., Singh, M. E., McGregor, I. S. & Mallet, P. E. Chronic cannabinoid exposure produces lasting memory impairment and increased anxiety in adolescent but not adult rats. J. Psychopharmacol. 18, 502–508 (2004).

    CAS  PubMed  Google Scholar 

  72. Schneider, M. & Koch, M. Chronic pubertal, but not adult chronic cannabinoid treatment impairs sensorimotor gating, recognition memory, and the performance in a progressive ratio task in adult rats. Neuropsychopharmacology 28, 1760–1769 (2003).

    CAS  PubMed  Google Scholar 

  73. Negrete, J. C., Knapp, W. P., Douglas, D. E. & Smith, W. B. Cannabis affects the severity of schizophrenic symptoms: results of a clinical survey. Psychol. Med. 16, 515–520 (1986).

    CAS  PubMed  Google Scholar 

  74. Thornicroft, G. Cannabis and psychosis. Is there epidemiological evidence for an association? Br. J. Psychiatry 157, 25–33 (1990).

    CAS  PubMed  Google Scholar 

  75. Mathers, D. C. & Ghodse, A. H. Cannabis and psychotic illness. Br. J. Psychiatry 161, 648–653 (1992).

    CAS  PubMed  Google Scholar 

  76. Linszen, D. H., Dingemans, P. M. & Lenior, M. E. Cannabis abuse and the course of recent-onset schizophrenic disorders. Arch. Gen. Psychiatry 51, 273–279 (1994).

    CAS  PubMed  Google Scholar 

  77. Grech, A., van Os, J., Jones, P. B., Lewis, S. W. & Murray, R. M. Cannabis use and outcome of recent onset psychosis. Eur. Psychiatry 20, 349–353 (2005).

    PubMed  Google Scholar 

  78. Andreasson, S., Allebeck, P., Engstrom, A. & Rydberg, U. Cannabis and schizophrenia. A longitudinal study of Swedish conscripts. Lancet 2, 1483–1486 (1987).

    CAS  PubMed  Google Scholar 

  79. Zammit, S., Allebeck, P., Andreasson, S., Lundberg, I. & Lewis, G. Self reported cannabis use as a risk factor for schizophrenia in Swedish conscripts of 1969: historical cohort study. BMJ 325, 1199 (2002).

    PubMed  PubMed Central  Google Scholar 

  80. Arseneault, L. et al. Cannabis use in adolescence and risk for adult psychosis: longitudinal prospective study. BMJ 325, 1212–1213 (2002).

    PubMed  PubMed Central  Google Scholar 

  81. Arseneault, L., Cannon, M., Witton, J. & Murray, R. M. Causal association between cannabis and psychosis: examination of the evidence. Br. J. Psychiatry 184, 110–117 (2004).

    PubMed  Google Scholar 

  82. Henquet, C., Murray, R., Linszen, D. & van Os, J. The environment and schizophrenia: the role of cannabis use. Schizophr. Bull. 31, 608–612 (2005).

    PubMed  Google Scholar 

  83. Moore, T. H. et al. Cannabis use and risk of psychotic or affective mental health outcomes: a systematic review. Lancet 370, 319–328 (2007).

    PubMed  Google Scholar 

  84. van Os, J. et al. Cannabis use and psychosis: a longitudinal population-based study. Am. J. Epidemiol. 156, 319–327 (2002).

    CAS  PubMed  Google Scholar 

  85. Fergusson, D. M., Horwood, L. J. & Swain-Campbell, N. R. Cannabis dependence and psychotic symptoms in young people. Psychol. Med. 33, 15–21 (2003).

    CAS  PubMed  Google Scholar 

  86. Fergusson, D. M., Horwood, L. J. & Ridder, E. M. Tests of causal linkages between cannabis use and psychotic symptoms. Addiction 100, 354–366 (2005).

    PubMed  Google Scholar 

  87. Di Forti, M., Morrison, P. D., Butt, A. & Murray, R. M. Cannabis use and psychiatric and cogitive disorders: the chicken or the egg? Curr. Opin. Psychiatry 20, 228–234 (2007).

    PubMed  Google Scholar 

  88. Morrison, P. D. & Murray, R. M. Schizophrenia. Curr. Biol. 15, R980–R984 (2005).

    CAS  PubMed  Google Scholar 

  89. Laruelle, M. et al. Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proc. Natl Acad. Sci. USA 93, 9235–9240 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Abi-Dargham, A. et al. Increased striatal dopamine transmission in schizophrenia: confirmation in a second cohort. Am. J. Psychiatry 155, 761–767 (1998).

    CAS  PubMed  Google Scholar 

  91. Kapur, S., Mizrahi, R. & Li, M. From dopamine to salience to psychosis — linking biology, pharmacology and phenomenology of psychosis. Schizophr. Res. 79, 59–68 (2005).

    PubMed  Google Scholar 

  92. Krabbendam, L. et al. Hallucinatory experiences and onset of psychotic disorder: evidence that the risk is mediated by delusion formation. Acta Psychiatr. Scand. 110, 264–272 (2004).

    CAS  PubMed  Google Scholar 

  93. Cheer, J. F., Wassum, K. M., Heien, M. L., Phillips, P. E. & Wightman, R. M. Cannabinoids enhance subsecond dopamine release in the nucleus accumbens of awake rats. J. Neurosci. 24, 4393–4400 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Riegel, A. C. & Lupica, C. R. Independent presynaptic and postsynaptic mechanisms regulate endocannabinoid signaling at multiple synapses in the ventral tegmental area. J. Neurosci. 24, 11070–11078 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. French, E. D., Dillon, K. & Wu, X. Cannabinoids excite dopamine neurons in the ventral tegmentum and substantia nigra. Neuroreport 8, 649–652 (1997).

    CAS  PubMed  Google Scholar 

  96. Tanda, G., Pontieri, F. E. & Di Chiara, G. Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common μ1 opioid receptor mechanism. Science 276, 2048–2050 (1997).

    CAS  PubMed  Google Scholar 

  97. Voruganti, L. N., Slomka, P., Zabel, P., Mattar, A. & Awad, A. G. Cannabis induced dopamine release: an in-vivo SPECT study. Psychiatry Res. 107, 173–177 (2001).

    CAS  PubMed  Google Scholar 

  98. Favrat, B. et al. Two cases of “cannabis acute psychosis” following the administration of oral cannabis. BMC Psychiatry 5, 17 (2005).

    PubMed  PubMed Central  Google Scholar 

  99. Konings, M., Bak, M., Hanssen, M., van Os, J. & Krabbendam, L. Validity and reliability of the CAPE: a self-report instrument for the measurement of psychotic experiences in the general population. Acta Psychiatr. Scand. 114, 55–61 (2006).

    CAS  PubMed  Google Scholar 

  100. Henquet, C. et al. Prospective cohort study of cannabis use, predisposition for psychosis, and psychotic symptoms in young people. BMJ 330, 11 (2005).

    PubMed  PubMed Central  Google Scholar 

  101. Meyer-Lindenberg, A. & Weinberger, D. R. Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nature Rev. Neurosci. 7, 818–827 (2006).

    CAS  Google Scholar 

  102. Caspi, A. et al. Moderation of the effect of adolescent-onset cannabis use on adult psychosis by a functional polymorphism in the catechol-O-methyltransferase gene: longitudinal evidence of a gene X environment interaction. Biol. Psychiatry 57, 1117–1127 (2005).

    CAS  PubMed  Google Scholar 

  103. Henquet, C. et al. An experimental study of catechol-o-methyltransferase Val158Met moderation of Δ-9-tetrahydrocannabinol-induced effects on psychosis and cognition. Neuropsychopharmacology 31, 2748–2757 (2006).

    CAS  PubMed  Google Scholar 

  104. Hall, W. & Degenhardt, L. Prevalence and correlates of cannabis use in developed and developing countries. Curr. Opin. Psychiatry 20, 393–397 (2007).

    PubMed  Google Scholar 

  105. Bergman, J. & Paronis, C. A. Measuring the reinforcing strength of abused drugs. Mol. Interv. 6, 273–283 (2006).

    CAS  PubMed  Google Scholar 

  106. Gardner, E. L. What we have learned about addiction from animal models of drug self-administration. Am. J. Addict. 9, 285–313 (2000).

    CAS  PubMed  Google Scholar 

  107. Braida, D., Iosue, S., Pegorini, S. & Sala, M. Δ9-tetrahy-drocannabinol-induced conditioned place preference and intracerebroventricular self-administration in rats. Eur. J. Pharmacol. 506, 63–69 (2004).

    CAS  PubMed  Google Scholar 

  108. Justinova, Z., Tanda, G., Redhi, G. H. & Goldberg, S. R. Self-administration of Δ9-tetrahydrocannabinol (THC) by drug naive squirrel monkeys. Psychopharmacology (Berl.) 169, 135–140 (2003).

    CAS  Google Scholar 

  109. Tanda, G., Munzar, P. & Goldberg, S. R. Self-administration behavior is maintained by the psychoactive ingredient of marijuana in squirrel monkeys. Nature Neurosci. 3, 1073–1074 (2000).

    CAS  PubMed  Google Scholar 

  110. Gardner, E. L. Endocannabinoid signaling system and brain reward: emphasis on dopamine. Pharmacol. Biochem. Behav. 81, 263–284 (2005).

    CAS  PubMed  Google Scholar 

  111. Di Chiara, G. & Imperato, A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc. Natl Acad. Sci. USA 85, 5274–5278 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Lupica, C. R. & Riegel, A. C. Endocannabinoid release from midbrain dopamine neurons: a potential substrate for cannabinoid receptor antagonist treatment of addiction. Neuropharmacology 48, 1105–1116 (2005).

    CAS  PubMed  Google Scholar 

  113. Golub, A. & Johnson, B. D. Variation in youthful risks of progression from alcohol and tobacco to marijuana and to hard drugs across generations. Am. J. Public Health 91, 225–232 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Kandel, D. B. Does marijuana use cause the use of other drugs? JAMA 289, 482–483 (2003).

    PubMed  Google Scholar 

  115. Morral, A. R., McCaffrey, D. F. & Paddock, S. M. Reassessing the marijuana gateway effect. Addiction 97, 1493–1504 (2002).

    PubMed  Google Scholar 

  116. Fergusson, D. M., Boden, J. M. & Horwood, L. J. Cannabis use and other illicit drug use: testing the cannabis gateway hypothesis. Addiction 101, 556–569 (2006).

    PubMed  Google Scholar 

  117. Lynskey, M. T. et al. Escalation of drug use in early-onset cannabis users vs co-twin controls. JAMA 289, 427–433 (2003).

    PubMed  Google Scholar 

  118. Singh, M. E., McGregor, I. S. & Mallet, P. E. Perinatal exposure to Δ9-tetrahydrocannabinol alters heroin-induced place conditioning and Fos-immunoreactivity. Neuropsychopharmacology 31, 58–69 (2006).

    CAS  PubMed  Google Scholar 

  119. Solinas, M., Panlilio, L. V. & Goldberg, S. R. Exposure to Δ-9-tetrahydrocannabinol (THC) increases subsequent heroin taking but not heroin's reinforcing efficacy: a self-administration study in rats. Neuropsychopharmacology 29, 1301–1311 (2004).

    CAS  PubMed  Google Scholar 

  120. Ellgren, M., Spano, S. M. & Hurd, Y. L. Adolescent cannabis exposure alters opiate intake and opioid limbic neuronal populations in adult rats. Neuropsychopharmacology 32, 607–615 (2007).

    CAS  PubMed  Google Scholar 

  121. Spano, M. S., Ellgren, M., Wang, X. & Hurd, Y. L. Prenatal cannabis exposure increases heroin seeking with allostatic changes in limbic enkephalin systems in adulthood. Biol. Psychiatry 61, 554–563 (2007).

    CAS  PubMed  Google Scholar 

  122. Kandel, D. B., Yamaguchi, K. & Chen, K. Stages of progression in drug involvement from adolescence to adulthood: further evidence for the gateway theory. J. Stud. Alcohol 53, 447–457 (1992).

    CAS  PubMed  Google Scholar 

  123. Patton, G. C., Coffey, C., Carlin, J. B., Sawyer, S. M. & Lynskey, M. Reverse gateways? Frequent cannabis use as a predictor of tobacco initiation and nicotine dependence. Addiction 100, 1518–1525 (2005).

    PubMed  Google Scholar 

  124. Amos, A., Wiltshire, S., Bostock, Y., Haw, S. & McNeill, A. 'You can't go without a fag... you need it for your hash' — a qualitative exploration of smoking, cannabis and young people. Addiction 99, 77–81 (2004).

    PubMed  Google Scholar 

  125. Zajicek, J. et al. Cannabinoids for treatment of spasticity and other symptoms related to multiple sclerosis (CAMS study): multicentre randomised placebo-controlled trial. Lancet 362, 1517–1526 (2003).

    CAS  PubMed  Google Scholar 

  126. Rog, D. J., Nurmikko, T. J., Friede, T. & Young, C. A. Randomized, controlled trial of cannabis-based medicine in central pain in multiple sclerosis. Neurology 65, 812–819 (2005).

    PubMed  Google Scholar 

  127. Collin, C., Davies, P., Mutiboko, I. K. & Ratcliffe, S. Randomized controlled trial of cannabis-based medicine in spasticity caused by multiple sclerosis. Eur. J. Neurol. 14, 290–296 (2007).

    CAS  PubMed  Google Scholar 

  128. Van Gaal, L. F., Rissanen, A. M., Scheen, A. J., Ziegler, O. & Rossner, S. Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study. Lancet 365, 1389–1397 (2005).

    CAS  PubMed  Google Scholar 

  129. UNODC World Drug Report. United Nations Office on Drugs and Crime [online] (2006).

  130. Monshouwer, K., Smit, F., de Graaf, R., van Os, J. & Vollebergh, W. First cannabis use: does onset shift to younger ages? Findings from 1988 to 2003 from the Dutch National School Survey on Substance Use. Addiction 100, 963–970 (2005).

    PubMed  Google Scholar 

  131. UNODC World Drug Report. United Nations Office on Drugs and Crime [online] (2007).

  132. Owen, J. Cannabis: an apology. Independent on Sunday (Lond.) 1–2 (18 Mar 2007).

    Google Scholar 

  133. Advisory Council on the Misuse of Drugs. The classification of cannabis under the Misuse of Drugs Act 1971. Home Office [online] (2002).

  134. Hickman, M., Vickerman, P., Macleod, J., Kirkbride, J. & Jones, P. B. Cannabis and schizophrenia: model projections of the impact of the rise in cannabis use on historical and future trends in schizophrenia in England and Wales. Addiction 102, 597–606 (2007).

    PubMed  Google Scholar 

  135. Boydell, J. et al. Incidence of schizophrenia in south-east London between 1965 and 1997. Br. J. Psychiatry 182, 45–49 (2003).

    CAS  PubMed  Google Scholar 

  136. Boydell, J. et al. Trends in cannabis use prior to first presentation with schizophrenia, in South-East London between 1965 and 1999. Psychol. Med. 36, 1441–1446 (2006).

    CAS  PubMed  Google Scholar 

  137. Advisory Council On the Misuse of Drugs. Further consideration of the classification of cannabis under the Misuse of Drugs Act 1971. Home Office [online] (2005).

  138. Rossler, W. et al. Psychotic experiences in the general population: a twenty-year prospective community study. Schizophr. Res. 92, 1–14 (2007).

    PubMed  Google Scholar 

  139. MacCoun, R. & Reuter, P. Evaluating alternative cannabis regimes. Br. J. Psychiatry 178, 123–128 (2001).

    CAS  PubMed  Google Scholar 

  140. Edwards, G. & Gross, M. M. Alcohol dependence: provisional description of a clinical syndrome. BMJ 1, 1058–1061 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. International Classification of Mental Disorders, ICD 10. (World Health Organization Press, Geneva, 1992).

  142. Hermann, A., Kaczocha, M. & Deutsch, D. G. 2-Arachidonoylglycerol (2-AG) membrane transport: history and outlook. AAPS J. 8, E409–E412 (2006).

    PubMed  PubMed Central  Google Scholar 

  143. Dinh, T. P. et al. Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc. Natl Acad. Sci. USA 99, 10819–10824 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Makara, J. K. et al. Selective inhibition of 2-AG hydrolysis enhances endocannabinoid signaling in hippocampus. Nature Neurosci. 8, 1139–1141 (2005).

    CAS  PubMed  Google Scholar 

  145. Hashimotodani, Y., Ohno-Shosaku, T. & Kano, M. Presynaptic monoacylglycerol lipase activity determines basal endocannabinoid tone and terminates retrograde endocannabinoid signaling in the hippocampus. J. Neurosci. 27, 1211–1219 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Hajos, N. & Freund, T. F. Pharmacological separation of cannabinoid sensitive receptors on hippocampal excitatory and inhibitory fibers. Neuropharmacology 43, 503–510 (2002).

    CAS  PubMed  Google Scholar 

  147. Tien, A. Y. & Anthony, J. C. Epidemiological analysis of alcohol and drug use as risk factors for psychotic experiences. J. Nerv. Ment. Dis. 178, 473–480 (1990).

    CAS  PubMed  Google Scholar 

  148. Weiser, M., Knobler, H. Y., Noy, S. & Kaplan, Z. Clinical characteristics of adolescents later hospitalized for schizophrenia. Am. J. Med. Genet. 114, 949–955 (2002).

    PubMed  Google Scholar 

  149. Ferdinand, R. F. et al. Cannabis use predicts future psychotic symptoms, and vice versa. Addiction 100, 612–618 (2005).

    PubMed  Google Scholar 

  150. Wiles, N. J. et al. Self-reported psychotic symptoms in the general population: results from the longitudinal study of the British National Psychiatric Morbidity Survey. Br. J. Psychiatry 188, 519–526 (2006).

    PubMed  Google Scholar 

  151. Kaplan, J. (ed.) Marijuana: Report of the Indian Hemp Drugs Commission, 1893–1894. (Thomas Jefferson Co., Silver Springs, Maryland, USA, 1969).

    Google Scholar 

  152. Mechoulam, R. & Gaoni, Y. A total synthesis of DL-Δ-1-tetrahydrocannabinol, the active constituent of hashish. J. Am. Chem. Soc. 87, 3273–3275 (1965).

    CAS  PubMed  Google Scholar 

  153. Relman, A. (ed.) Marijuana and Health (Report of a Study by a Committee of the Institute of Medicine, Division of Health Sciences Policy). (National Academy Press, Washington, D.C., 1982).

    Google Scholar 

  154. Rinaldi-Carmona, M. et al. SR141716A, a potent and selective antagonist of the brain cannabinoid receptor. FEBS Lett. 350, 240–244 (1994).

    CAS  PubMed  Google Scholar 

  155. Baker, D. et al. Cannabinoids control spasticity and tremor in a multiple sclerosis model. Nature 404, 84–87 (2000).

    CAS  PubMed  Google Scholar 

  156. Maejima, T., Hashimoto, K., Yoshida, T., Aiba, A. & Kano, M. Presynaptic inhibition caused by retrograde signal from metabotropic glutamate to cannabinoid receptors. Neuron 31, 463–475 (2001).

    CAS  PubMed  Google Scholar 

  157. Sjöström, P., Turrigiano, G. & Nelson, S. Neocortical LTD via coincident activation of presynaptic NMDA and cannabinoid receptors. Neuron 39, 641–654 (2003).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin M. Murray.

Related links

Related links

FURTHER INFORMATION

Robin M. Murray's homepage

Glossary

Component cause

A risk factor that acts with some other factor or factors to have a causal influence on the risk for a disease.

Conditioned place-aversion

The aversion to environmental stimuli that have previously been associated with a negative reward.

Conditioned place-preference

The preference for environmental stimuli that have previously been associated with a positive reward or drug effects.

Cross-tolerance

A decrease in the response to a substance as a result of continued exposure to a different substance that has a similar pharmacological action.

Dopamine sensitization

The process whereby repeated, intermittent stimulant exposure produces a permanent change in dopaminergic responses.

Long-term depression

(LTD). An enduring decrease in the strength of neurotransmission at a synapse. LTD is believed to underpin learning and memory.

Long-term potentiation

(LTP). An enduring increase in the strength of neurotransmission at a synapse. LTP is believed to underpin learning and memory.

Psychosis

A mental disturbance characterized by aberrations of perception (hallucinations) and thought (delusions) that causes a person to lose touch with external reality.

Psychosis-proneness

An increased genetic vulnerability to developing psychotic illness, as evidenced by the occurrence of subclinical psychotic experiences.

Schizophreniform psychosis

A schizophrenia-like psychosis in which the symptoms last for at least 1 month (as opposed to 6 months for a diagnosis of schizophrenia).

Sensorimotor gating

The neural filtering process that allows attention to be focused on one stimulus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murray, R., Morrison, P., Henquet, C. et al. Cannabis, the mind and society: the hash realities. Nat Rev Neurosci 8, 885–895 (2007). https://doi.org/10.1038/nrn2253

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2253

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing