Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Synaptic plasticity and addiction

Key Points

  • A major problem in the treatment of addiction is relapse, which is often caused by the powerful and long-lasting memories of the drug experience.

  • Drugs of abuse can hijack or impair specific synaptic plasticity mechanisms in the mesolimbic dopamine system, which is central to reward processing in the brain.

  • Drugs of abuse or acute stress elicit long-term potentiation (LTP) at excitatory synapses on dopamine cells in the ventral tegmental area (VTA). Morphine prevents a novel form of LTP at inhibitory synapses on the same dopamine cells. Both changes are likely to increase dopamine cell firing.

  • Orexin, a neuropeptide implicated in arousal and feeding, enhances N-methyl-D-aspartate (NMDA) receptor-mediated synaptic responses in dopamine cells leading to LTP of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor-mediated responses. The actions of orexin in the VTA might be important for several of the behavioural adaptations caused by cocaine and, perhaps, other drugs of abuse.

  • At excitatory synapses on medium spiny neurons in the nucleus accumbens, cocaine causes a form of long-term depression (LTD) that is due to the removal of synaptic AMPA receptors. It also impairs endocannabinoid-mediated LTD. In contrast, during withdrawal from chronic cocaine administration, there appears to be an increase in excitatory synaptic transmission. Further work is necessary to determine whether other drugs of abuse have the same effects.

  • Other key brain areas in which drugs of abuse affect synaptic function and plasticity include the bed nucleus of the stria terminalis and the amygdala.

  • There may be important differences in the effects of drugs of abuse on synaptic function and plasticity depending on whether the drug is self-administered or not. It will be important in future work to use animal models that more closely mimic the behaviour of human substance abusers.

Abstract

Addiction is caused, in part, by powerful and long-lasting memories of the drug experience. Relapse caused by exposure to cues associated with the drug experience is a major clinical problem that contributes to the persistence of addiction. Here we present the accumulated evidence that drugs of abuse can hijack synaptic plasticity mechanisms in key brain circuits, most importantly in the mesolimbic dopamine system, which is central to reward processing in the brain. Reversing or preventing these drug-induced synaptic modifications may prove beneficial in the treatment of one of society's most intractable health problems.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Mesolimbic dopamine system circuitry.
Figure 2: Well-described forms of LTP and LTD.
Figure 3: Synaptic strength measured using the AMPAR/NMDAR ratio.
Figure 4: Drugs of abuse modulate synaptic function and plasticity in the ventral tegmental area (VTA).
Figure 5: Orexin A enhances NMDAR EPSCs in VTA dopamine neurons.
Figure 6: Drugs of abuse modulate synaptic function and plasticity in the nucleus accumbens (NAc).

References

  1. Ramón y Cajal, S. La fine structure des centres nerveux. Proc. R. Soc. Lond. 55, 444–468 (1894).

    Article  Google Scholar 

  2. Bliss, T. V. P. & Lomo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 232, 331–356 (1973). The initial, now classic, description of LTP in the hippocampus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Malenka, R. C. & Bear, M. F. LTP and LTD: an embarrassment of riches. Neuron 44, 5–21 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Foeller, E. & Feldman, D. E. Synaptic basis for developmental plasticity in somatosensory cortex. Curr. Opin. Neurobiol. 14, 89–95 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Hyman, S. E. & Malenka, R. C. Addiction and the brain: the neurobiology of compulsion and its persistence. Nature Rev. Neurosci. 2, 695–703 (2001).

    Article  CAS  Google Scholar 

  6. Kalivas, P. W. & Volkow, N. D. The neural basis of addiction: a pathology of motivation and choice. Am. J. Psychiatry 162, 1403–1413 (2005).

    Article  PubMed  Google Scholar 

  7. Montague, P. R., Hyman, S. E. & Cohen, J. D. Computational roles for dopamine in behavioural control. Nature 431, 760–767 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Hyman, S. E., Malenka, R. C. & Nestler, E. J. Neural mechanisms of addiction: the role of reward–related learning and memory. Annu. Rev. Neurosci. 29, 565–598 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Kauer, J. A. Learning mechanisms in addiction: synaptic plasticity in the ventral tegmental area as a result of exposure to drugs of abuse. Annu. Rev. Physiol. 66, 447–475 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Kelley, A. E. Memory and addiction: shared neural circuitry and molecular mechanisms. Neuron 44, 161–179 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Badiani, A. & Robinson, T. E. Drug-induced neurobehavioral plasticity: the role of environmental context. Behav. Pharmacol. 15, 327–339 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Kitamura, O., Wee, S., Specio, S. E., Koob, G. F. & Pulvirenti, L. Escalation of methamphetamine self-administration in rats: a dose-effect function. Psychopharmacology (Berl) 186, 48–53 (2006).

    Article  CAS  Google Scholar 

  13. Morris, R. G. Elements of a neurobiological theory of hippocampal function: the role of synaptic plasticity, synaptic tagging and schemas. Eur. J. Neurosci. 23, 2829–2846 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Schenk, S., Valadez, A., Worley, C. M. & McNamara, C. Blockade of the acquisition of cocaine self-administration by the NMDA antagonist MK-801 (dizocilpine). Behav. Pharmacol. 4, 652–659 (1993).

    CAS  PubMed  Google Scholar 

  15. Kalivas, P. W. & Alesdatter, J. E. Involvement of NMDA receptor stimulation in the ventral tegmental area and amygdala in behavioral sensitization to cocaine. J. Pharmacol. Exp. Ther. 267, 486–495 (1993).

    CAS  PubMed  Google Scholar 

  16. Harris, G. C., Wimmer, M., Byrne, R. & Aston-Jones, G. Glutamate-associated plasticity in the ventral tegmental area is necessary for conditioning environmental stimuli with morphine. Neuroscience 129, 841–847 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Harris, G. C. & Aston-Jones, G. Critical role for ventral tegmental glutamate in preference for a cocaine-conditioned environment. Neuropsychopharmacology 28, 73–76 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Karler, R., Calder, L. D., Chaudhry, I. A. & Turkanis, S. A. Blockade of “reverse tolerance” to cocaine and amphetamine by MK-801. Life Sciences 45, 599–606 (1989).

    Article  CAS  PubMed  Google Scholar 

  19. Jeziorski, M., White, F. J. & Wolf, M. E. MK-801 prevents the development of behavioral sensitization during repeated morphine administration. Synapse 16, 137–147 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Kim, H. S., Park, W. K., Jang, C. G. & Oh, S. Inhibition by MK-801 of cocaine-induced sensitization, conditioned place preference, and dopamine-receptor supersensitivity in mice. Brain. Res. Bull. 40, 201–207 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Tzschentke, T. M. & Schmidt, W. J. N-methyl-D-aspartic acid-receptor antagonists block morphine-induced conditioned place preference in rats. Neurosci. Lett. 193, 37–40 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Kalivas, P. W. & Stewart, J. Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Res. Rev. 16, 223–244 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Robinson, T. E. & Berridge, K. C. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res. Rev. 18, 247–291 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Tong, Z. Y., Overton, P. G. & Clark, D. Chronic administration of (+)-amphetamine alters the reactivity of midbrain dopaminergic neurons to prefrontal cortex stimulation in the rat. Brain Res. 674, 63–74 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Wolf, M. E. The role of excitatory amino acids in behavioral sensitization to psychomotor stimulants. Prog. Neurobiology 54, 1–42 (1998).

    Article  Google Scholar 

  26. Everitt, B. J. & Wolf, M. E. Psychomotor stimulant addiction: a neural systems perspective. J. Neurosci. 22, 3312–3320 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kalivas, P. W. Glutamate systems in cocaine addiction. Curr. Opin. Pharmacol. 4, 23–29 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Baler, R. D. & Volkow, N. D. Drug addiction: the neurobiology of disrupted self-control. Trends Mol. Med. 12, 559–566 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Malenka, R. C. & Nicoll, R. A. Long-term potentiation — a decade of progress? Science 285, 1870–1874 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Lynch, M. A. Long-term potentiation and memory. Physiol. Rev. 84, 87–136 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Yuste, R. & Bonhoeffer, T. Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annu. Rev. Neurosci. 24, 1071–1089 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Matsuzaki, M., Honkura, N., Ellis-Davies, G. C. & Kasai, H. Structural basis of long-term potentiation in single dendritic spines. Nature 429, 761–766 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lau, C. G. & Zukin, R. S. (2007). NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nature Rev. Neurosci. 8, 413–426.

    Article  CAS  Google Scholar 

  34. Nicoll, R. A. & Schmitz, D. Synaptic plasticity at hippocampal mossy fibre synapses. Nature Rev. Neurosci. 6, 863–876 (2005).

    Article  CAS  Google Scholar 

  35. Yeckel, M. F., Kapur, A. & Johnston, D. Multiple forms of LTP in hippocampal CA3 neurons use a common postsynaptic mechanism. Nature Neurosci. 2, 625–633 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Contractor, A., Rogers, C., Maron, C., Henkemeyer, M., Swanson, G. T. & Heinemann S. F. Trans-synaptic Eph receptor-ephrin signaling in hippocampal mossy fiber LTP. Science 296, 1864–1869 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Castillo, P. E., Schoch, S., Schmitz, F., Sudhof, T. C. & Malenka, R. C. RIM1α is required for presynaptic long-term potentiation. Nature 415, 327–330 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Castillo, P. E. et al. Rab3A is essential for mossy fibre long-term potentiation in the hippocampus. Nature 388, 590–593 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Carroll, R. C., Beattie, E. C., von Zastrow, M. & Malenka, R. C. Role of AMPA receptor endocytosis in synaptic plasticity. Nature Rev. Neurosci. 2, 315–324 (2001).

    Article  CAS  Google Scholar 

  40. Selig, D. K., Hjelmstad, G. O., Herron, C., Nicoll, R. A. & Malenka, R. C. Independent mechanisms for long-term depression of AMPA and NMDA responses. Neuron 15, 417–426 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Morishita, W., Marie, H. & Malenka, R. C. Distinct triggering and expression mechanisms underlie LTD of AMPA and NMDA synaptic responses. Nature Neurosci. 8, 1043–1050 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Ito, M. Long-term depression. Annu. Rev. Neurosci. 12, 85–102 (1989).

    Article  CAS  PubMed  Google Scholar 

  43. Pfeiffer, B. E. & Huber, K. M. Current advances in local protein synthesis and synaptic plasticity. J. Neurosci. 26, 7147–7150 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wilson, R. I. & Nicoll, R. A. Endocannabinoid signaling in the brain. Science 296, 678–682 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Chevaleyre, V., Takahashi, K. A. & Castillo, P. E. Endocannabinoid-mediated synaptic plasticity in the CNS. Annu. Rev. Neurosci. 29, 37–76 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Chevaleyre, V. et al. Endocannabinoid-mediated long-term plasticity requires cAMP/PKA signaling and RIM1α. Neuron 54, 801–812 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Turrigiano, G. G. & Nelson, S. B. Homeostatic plasticity in the developing nervous system. Nature Rev. Neurosci. 5, 97–107 (2004).

    Article  CAS  Google Scholar 

  48. Wierenga, C. J., Ibata, K. & Turrigiano, G. G. Postsynaptic expression of homeostatic plasticity at neocortical synapses. J. Neurosci. 25, 2895–2905 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Stellwagen, D. & Malenka, R. C. Synaptic scaling mediated by glial TNF-α. Nature 440, 1054–1059 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Di Chiara, G. & Imperato, A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc. Natl Acad. Sci. USA 85, 5274–5278 (1980).

    Article  Google Scholar 

  51. Omelchenko, N. & Sesack, S. R. Glutamate synaptic inputs to ventral tegmental area neurons in the rat derive primarily from subcortical sources. Neuroscience 146, 1259–1274 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Carr, D. B. & Sesack, S. R. Projections from the rat prefrontal cortex to the ventral tegmental area: target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons. J. Neurosci. 20, 3864–3873 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Overton, P. G., Richards, C. D., Berry, M. S. & Clark, D. Long-term potentiation at excitatory amino acid synapses on midbrain dopamine neurons. Neuroreport 10, 221–226 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Bonci, A. & Malenka, R. C. Properties and plasticity of excitatory synapses on dopaminergic and GABAergic cells in the ventral tegmental area. J. Neurosci. 19, 3723–3730 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mansvelder, H. D. & McGehee, D. S. Long-term potentiation of excitatory inputs to brain reward areas by nicotine. Neuron 27, 349–357 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Liu, Q. S., Pu, L. & Poo, M. M. Repeated cocaine exposure in vivo facilitates LTP induction in midbrain dopamine neurons. Nature 437, 1027–1031 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jones, S., Kornblum, J. L. & Kauer, J. A. Amphetamine blocks long-term synaptic depression in the ventral tegmental area. J. Neurosci. 20, 5575–5580 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Thomas, M. T., Malenka, R. C. & Bonci, A. Modulation of long-term depression by dopamine in the mesolimbic system. J. Neurosci. 20, 5581–5586 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bellone, C. & Luscher, C. mGluRs induce a long-term depression in the ventral tegmental area that involves a switch of the subunit composition of AMPA receptors. Eur. J. Neurosci. 21, 1280–1288 (2005).

    Article  PubMed  Google Scholar 

  60. Ungless, M. A., Whistler, J. L., Malenka, R. C. & Bonci, A. Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature 411, 583–587 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Saal, D., Dong, Y., Bonci, A. & Malenka, R. C. Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons. Neuron 37, 577–582 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Faleiro, L. J., Jones, S. & Kauer, J. A. Rapid synaptic plasticity of glutamatergic synapses on dopamine neurons in the ventral tegmental area in response to acute amphetamine injection. Neuropsychopharmacology 29, 2115–2125 (2004). References 60–62 demonstrate that in vivo administration of different classes of drugs of abuse, as well as acute stress, elicit LTP at excitatory synapses on midbrain dopamine neurons.

    Article  CAS  PubMed  Google Scholar 

  63. Marinelli, M. & Piazza, P. V. Interaction between glucocorticoid hormones, stress and psychostimulant drugs. Eur. J. Neurosci. 16, 387–394 (2002).

    Article  PubMed  Google Scholar 

  64. Wallace, B. C. Psychological and environmental determinants of relapse in crack cocaine smokers. J. Subst. Abuse Treat. 6, 95–106 (1989).

    Article  CAS  PubMed  Google Scholar 

  65. Stewart, J. Stress and relapse to drug seeking: studies in laboratory animals shed light on mechanisms and sources of long-term vulnerability. Am. J. Addict. 12, 1–17 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Piazza, P. V. & Le Moal, M. The role of stress in drug self-administration. Trends Pharmacol. Sci. 19, 67–74 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Dong, Y. et al. Cocaine-induced potentiation of synaptic strength in dopamine neurons: behavioral correlates in GluRA(−/−) mice. Proc. Natl Acad. Sci. USA 101, 14282–14287 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Malinow, R. & Malenka, R. C. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 25, 103–126 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Carlezon Jr, W. A. et al. Sensitization to morphine induced by viral-mediated gene transfer. Science 277, 812–814 (1997). Demonstration that viral-mediated expression of GluR1 in the ventral tegmental area enhances the locomotor stimulatory and rewarding actions of morphine.

    Article  CAS  Google Scholar 

  70. Borgland, S. L., Malenka, R. C. & Bonci, A. Acute and chronic cocaine-induced potentiation of synaptic strength in the ventral tegmental area: electrophysiological and behavioral correlates in individual rats. J. Neurosci. 24, 7482–7490 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Neisewander, J. L. et al. Fos protein expression and cocaine-seeking behavior in rats after exposure to a cocaine self-administration environment. J. Neurosci. 20, 798–805 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pu, L., Liu, Q. S. & Poo, M. M. BDNF-dependent synaptic sensitization in midbrain dopamine neurons after cocaine withdrawal. Nature Neurosci. 9, 605–607 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Lu, L., Dempsey, J., Liu, S. Y., Bossert, J. M. & Shaham, Y. A single infusion of brain-derived neurotrophic factor into the ventral tegmental area induces long-lasting potentiation of cocaine seeking after withdrawal. J. Neurosci. 24, 1604–1611 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Liu, S. J. & Zukin, R. S. Ca2+-permeable AMPA receptors in synaptic plasticity and neuronal death. Trends Neurosci. 30, 126–134 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Carlezon Jr, W. A. & Nestler, E. J. Elevated levels of GluR1 in the midbrain: a trigger for sensitization to drugs of abuse? Trends Neurosci. 25, 610–615 (2002).

    Article  Google Scholar 

  76. Ju, W. et al. Activity-dependent regulation of dendritic synthesis and trafficking of AMPA receptors. Nature Neurosci. 7, 244–253 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Clem, R. L. & Barth, A. Pathway-specific trafficking of native AMPARs by in vivo experience. Neuron 49, 663–670 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Plant, K. et al. Transient incorporation of native GluR2-lacking AMPA receptors during hippocampal long-term potentiation. Nature Neurosci. 9, 602–604 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Adesnik, H. & Nicoll, R. A. Conservation of glutamate receptor 2-containing AMPA receptors during long-term potentiation. J. Neurosci. 27, 4598–4602 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bagal, A. A., Kao, J. P., Tang, C. M. & Thompson, S. M. Long-term potentiation of exogenous glutamate responses at single dendritic spines. Proc. Natl Acad. Sci. USA 102, 14434–14439 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bellone, C. & Luscher, C. Cocaine triggered AMPA receptor redistribution is reversed in vivo by mGluR-dependent long-term depression. Nature Neurosci. 9, 636–641 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Mameli, M., Balland, B., Lujan, R. & Luscher, C. Rapid synthesis and synaptic insertion of GluR2 for mGluR-LTD in the ventral tegmental area. Science 317, 530–533 (2007). References 81 and 82 present evidence that a novel form of mGluR-LTD reverses the cocaine-induced LTP at excitatory synapses on ventral tegmental area dopamine cells.

    Article  CAS  PubMed  Google Scholar 

  83. de Lecea, L. et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc. Natl Acad. Sci. USA 95, 322–327 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sakurai, T. et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92, 573–585 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Harris, G. C. & Aston-Jones, G. Arousal and reward: a dichotomy in orexin function. Trends Neurosci. 29, 571–577 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Fadel, J. & Deutch, A. Y. Anatomical substrates of orexin-dopamine interactions: lateral hypothalamic projections to the ventral tegmental area. Neuroscience 111, 379–387 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Baldo, B. A., Daniel, R. A., Berridge, C. W. & Kelley, A. E. Overlapping distributions of orexin/hypocretin- and dopamine-β-hydroxylase immunoreactive fibers in rat brain regions mediating arousal, motivation, and stress. J. Comp. Neurol. 464, 220–237 (2003).

    Article  PubMed  Google Scholar 

  88. Boutrel, B. Hypocretins: between desire and needs. toward the understanding of a new hypothalamic brain pathway involved in motivation and addiction. Med. Sci. (Paris) 22, 573–575 (2006).

    Article  Google Scholar 

  89. Harris, G. C., Wimmer, M. & Aston-Jones, G. A role for lateral hypothalamic orexin neurons in reward seeking. Nature 437, 556–559 (2005). Demonstration that orexin neurons in the lateral hypothalamus play a key role in the reinstatement of drug-seeking behaviour at least in part due to actions of orexin A in the ventral tegmental area.

    Article  CAS  PubMed  Google Scholar 

  90. Narita, M. et al. Direct involvement of orexinergic systems in the activation of the mesolimbic dopamine pathway and related behaviors induced by morphine. J. Neurosci. 26, 398–405 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Borgland, S. L., Taha, S. A., Sarti, F., Fields, H. L. & Bonci, A. Orexin A in the VTA is critical for the induction of synaptic plasticity and behavioral sensitization to cocaine. Neuron 49, 589–601 (2006). Demonstration that orexin A enhances NMDAR-mediated synaptic currents in ventral tegmental area (VTA) dopamine neurons and that its actions in the VTA are required for behavioural sensitization to cocaine.

    Article  CAS  PubMed  Google Scholar 

  92. Schilstrom, B. et al. Cocaine enhances NMDA receptor-mediated currents in ventral tegmental area cells via dopamine D5 receptor-dependent redistribution of NMDA receptors. J. Neurosci. 26, 8549–8558 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yim, C. Y. & Mogenson, G. J. Electrophysiological studies of neurons in the ventral tegmental area of Tsai. Brain Res. 181, 301–313 (1980).

    Article  CAS  PubMed  Google Scholar 

  94. Johnson, S. W. & North, R. A. Opioids excite dopamine neurons by hyperpolarization of local interneurons. J. Neurosci. 12, 483–488 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mansvelder, H. D., Keath, J. R. & McGehee, D. S. Synaptic mechanisms underlie nicotine-induced excitability of brain reward areas. Neuron 33, 905–919 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Nugent, F. S., Penick, E. C. & Kauer, J. A. Opioids block long-term potentiation of inhibitory synapses. Nature 446, 1086–1090 (2007). Demonstration of LTP of inhibitory synapses on ventral tegmental area dopamine neurons due to a long-lasting enhancement of GABA release triggered by NMDAR-dependent release of nitric oxide from the dopamine neurons. Exposure to morphine in vivo blocks this LTP by interrupting the signalling from nitric oxide to guanylate cyclase.

    Article  CAS  PubMed  Google Scholar 

  97. Martin, M., Chen, B. T., Hopf, F. W., Bowers, M. S. & Bonci, A. Cocaine self-administration selectively abolishes LTD in the core of the nucleus accumbens. Nature Neurosci. 9, 868–869 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Cardinal, R. N. & Everitt, B. J. Neural and psychological mechanisms underlying appetitive learning: links to drug addiction. Curr. Opin. Neurobiol. 14, 156–162 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Kalivas, P. W., Volkow, N. & Seamans, J. Unmanageable motivation in addiction: a pathology in prefrontal-accumbens glutamate transmission. Neuron 45, 647–650 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Pierce, R. C. & Kumaresan, V. The mesolimbic dopamine system: the final common pathway for the reinforcing effect of drugs of abuse? Neurosci. Biobehav. Rev. 30, 215–238 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Kombian, S. B. & Malenka, R. C. Simultaneous LTP of non-NMDA- and LTD of NMDA-receptor-mediated responses in the nucleus accumbens. Nature 368, 242–246 (1994).

    Article  CAS  PubMed  Google Scholar 

  102. Schramm, N. L., Egli, R. E. & Winder, D. G. LTP in the mouse nucleus accumbens is developmentally regulated. Synapse 45, 213–219 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Yao, W. D. et al. Identification of PSD-95 as a regulator of dopamine-mediated synaptic and behavioral plasticity. Neuron 41, 625–638 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Robbe, D., Kopf, M., Remaury, A., Bockaert, J. & Manzoni, O. J. Endogenous cannabinoids mediate long-term synaptic depression in the nucleus accumbens. Proc. Natl Acad. Sci. USA 99, 8384–8388 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hoffman, A. F., Oz, M., Caulder, T. & Lupica, C. R. Functional tolerance and blockade of long-term depression at synapses in the nucleus accumbens after chronic cannabinoid exposure. J. Neurosci. 23, 4815–4820 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Brebner, K. et al. Nucleus accumbens long-term depression and the expression of behavioral sensitization. Science 310, 1340–1343 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Thomas, M. J., Beurrier, C., Bonci, A. & Malenka, R. C. Long-term depression in the nucleus accumbens: a neural correlate of behavioral sensitization to cocaine. Nature Neurosci. 4, 1217–1223 (2001). References 106 and 107 demonstrate that in animals, which had previously been exposed to cocaine to elicit sensitization, a single subsequent dose of cocaine elicits LTD at excitatory synapses in the nucleus accumbens and that preventing this LTD in vivo prevents the expression of behavioral sensitization.

    Article  CAS  PubMed  Google Scholar 

  108. Schramm-Sapyta, N. L., Olsen, C. M. & Winder, D. G. Cocaine self-administration reduces excitatory responses in the mouse nucleus accumbens shell. Neuropsychopharmacology 31, 1444–1451 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Kourrich, S., Rothwell, P., Klug, J. & Thomas, M. Cocaine experience controls bidirectional synaptic plasticity in the nucleus accumbens. J. Neurosci. 27, 7921–7928 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Robinson, T. E. & Kolb, B. Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology 47, S33–S46 (2004).

    Article  CAS  Google Scholar 

  111. Boudreau, A. C. & Wolf, M. E. Behavioral sensitization to cocaine is associated with increased AMPA receptor surface expression in the nucleus accumbens. J. Neurosci. 25, 9144–9151 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Pierce, R. C., Bell, K., Duffy, P. & Kalivas, P. W. Repeated cocaine augments excitatory amino acid transmission in the nucleus accumbens only in rats having developed behavioral sensitization. J. Neurosci. 16, 1550–1560 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Cornish, J. L. & Kalivas, P. W. Glutamate transmission in the nucleus accumbens mediates relapse in cocaine addiction. J. Neurosci. 20, RC89 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Fourgeaud, L. et al. A single in vivo exposure to cocaine abolishes endocannabinoid-mediated long-term depression in the nucleus accumbens. J. Neurosci. 24, 6939–6945 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mato, S. et al. A single in vivo exposure to δ9THC blocks endocannabinoid-mediated synaptic plasticity. Nature Neurosci. 7, 585–596 (2004). References 114 and 115 demonstrate that a single in vivo dose of cocaine or THC abolishes endocannabinoid-mediated LTD in the nucleus accumbens.

    Article  CAS  PubMed  Google Scholar 

  116. Mato, S., Robbe, D., Puente, N., Grandes, P. & Manzoni, O. J. Presynaptic homeostatic plasticity rescues long-term depression after chronic δ9-tetrahydrocannabinol exposure. J. Neurosci. 25, 11619–11627 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Goto, Y. & Grace, A. A. Dopamine-dependent interactions between limbic and prefrontal cortical plasticity in the nucleus accumbens: disruption by cocaine sensitization. Neuron 47, 255–266 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Baker, D. A. et al. Neuroadaptations in cystine-glutamate exchange underlie cocaine relapse. Nature Neurosci. 6, 743–749 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Szumlinski, K. K., Kalivas, P. W. & Worley, P. F. Homer proteins: implications for neuropsychiatric disorders. Curr. Opin. Neurobiol. 16, 251–257 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Sutton, M. A. et al. Extinction-induced upregulation in AMPA receptors reduces cocaine-seeking behaviour. Nature 421, 70–75 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Kelz, M. B. et al. Expression of the transcription factor δFosB in the brain controls sensitivity to cocaine. Nature 401, 272–276 (1999).

    Article  CAS  PubMed  Google Scholar 

  122. Todtenkopf, M. S. et al. Brain reward regulated by AMPA receptor subunits in nucleus accumbens shell. J. Neurosci. 26, 11665–11669 (2006). References 120–122 demonstrate that expression of AMPA receptor subunits in the nucleus accumbens influence cocaine-induced behaviours as well as the rewarding impact of electrical stimulation in the medial forebrain bundle.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhang, X. F., Hu, X. T. & White, F. J. Whole-cell plasticity in cocaine withdrawal: reduced sodium currents in nucleus accumbens neurons. J. Neurosci. 18, 488–498 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Hu, X. T., Basu, S. & White, F. J. Repeated cocaine administration suppresses HVA-Ca2+ potentials and enhances activity of K+ channels in rat nucleus accumbens neurons. J. Neurophysiol. 92, 15971–15977 (2004).

    Article  Google Scholar 

  125. Dong, Y. et al. CREB modulates excitability of nucleus accumbens neurons. Nature Neurosci. 9, 475–477 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Tsankova, N., Renthal, W., Kumar, A. & Nestler, E. J. Epigenetic regulation in psychiatric disorders. Nature Rev. Neurosci. 8, 355–367 (2007).

    Article  CAS  Google Scholar 

  127. Delfs, J. M., Zhu, Y., Druhan, J. P. & Aston-Jones, G. Noradrenaline in the ventral forebrain is critical for opiate withdrawal-induced aversion. Nature 403, 430–434 (2000).

    Article  CAS  PubMed  Google Scholar 

  128. Walker, J. R., Ahmed, S. H., Gracy, K. N. & Koob, G. F. Microinjections of an opiate receptor antagonist into the bed nucleus of the stria terminalis suppress heroin self-administration in dependent rats. Brain Res. 854, 85–92 (2000).

    Article  CAS  PubMed  Google Scholar 

  129. Weitlauf, C., Egli, R. E., Grueter, B. A. & Winder, D. G. High-frequency stimulation induces ethanol-sensitive long-term potentiation at glutamatergic synapses in the dorsolateral bed nucleus of the stria terminalis. J. Neurosci. 24, 5741–5747 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Dumont, E. C., Mark, G. P., Mader, S. & Williams, J. T. Self-administration enhances excitatory synaptic transmission in the bed nucleus of the stria terminalis. Nature Neurosci. 8, 413–414 (2005). Demonstration that self-administration of cocaine potentiates excitatory synaptic transmission in the bed nucleus of the stria terminalis, but that passive administration of cocaine or food does not.

    Article  CAS  PubMed  Google Scholar 

  131. Grueter, B. A. et al. Extracellular-signal regulated kinase 1-dependent metabotropic glutamate receptor 5-induced long-term depression in the bed nucleus of the stria terminalis is disrupted by cocaine administration. J. Neurosci. 26, 3210–3219 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Sigurdsson, T., Doyere, V., Cain, C. K. & LeDoux, J. E. Long-term potentiation in the amygdala: a cellular mechanism of fear learning and memory. Neuropharmacology 52, 215–227 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Childress, A. R. et al. Limbic activation during cue-induced cocaine craving. Am. J. Psychiatry 156, 11–18 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Fu, Y. et al. Long-term potentiation (LTP) in the central amygdala (CeA) is enhanced after prolonged withdrawal from chronic cocaine and requires CRF1 receptors. J. Neurophysiol. 97, 937–941 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Richter, R. M. & Weiss, F. In vivo CRF release in rat amygdala is increased during cocaine withdrawal in self-administering rats. Synapse 32, 254–261 (1999).

    Article  CAS  PubMed  Google Scholar 

  136. Pollandt, S. et al. Cocaine withdrawal enhances long-term potentiation induced by corticotropin-releasing factor at central amygdala glutamatergic synapses via CRF, NMDA receptors and PKA. Eur. J. Neurosci. 24, 1733–1743 (2006).

    Article  PubMed  Google Scholar 

  137. Gong, S. et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425, 917–925 (2003).

    Article  CAS  PubMed  Google Scholar 

  138. Kreitzer, A. C. & Malenka, R. C. Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson's disease models. Nature 445, 643–647 (2007).

    Article  CAS  PubMed  Google Scholar 

  139. Day, M. et al. Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models. Nature Neurosci. 9, 251–259 (2006).

    Article  CAS  PubMed  Google Scholar 

  140. Lee, K. W. et al. Cocaine-induced dendritic spine formation in D1 and D2 dopamine receptor-containing medium spiny neurons in nucleus accumbens. Proc. Natl Acad. Sci. USA 103, 3399–4304 (2006). References 138–140 use BAC transgenic mice to demonstrate cell specific modifications of medium spiny neuron synapses in the dorsal and ventral striatum following in vivo manipulations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zhang, F. et al. Multimodal fast optical interrogation of neural circuitry. Nature 446, 633–639 (2007).

    Article  CAS  PubMed  Google Scholar 

  142. Zhang, F., Aravanis, A. M, Adamantidis, A., de Lecea, L. & Deisseroth, K. Circuit-breakers: optical technologies for probing neural signals and systems. Nature Rev. Neurosci. 8, 577–581 (2007).

    Article  CAS  Google Scholar 

  143. Schultz W. Multiple dopamine functions at different time courses. Annu. Rev. Neurosci. 30, 259–288 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. Malenka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Glossary

Long-term potentiation

(LTP). Activity-dependent strengthening of synaptic transmission that lasts at least one hour.

Long-term depression

(LTD). Activity-dependent weakening of synaptic transmission that lasts at least one hour.

Conditioned place preference

A behavioural task during which a subject learns to associate the drug experience with a specific physical environment. A subject will choose to spend more time in an environment in which it previously had a 'rewarding' experience and less time in an environment in which it had an aversive experience.

Induction of synaptic plasticity

Refers to the cellular mechanisms required for the events initiating or triggering LTP or LTD.

Excitatory postsynaptic currents

(EPSCs). Currents measured using electrophysiological recordings from a single neuron while electrically stimulating axons to release neurotransmitter. For the purposes of this Review, EPSCs are glutamate-mediated.

Expression of synaptic plasticity

Refers to the cellular mechanisms responsible for maintaining a change in synaptic strength, for example, an increase in neurotransmitter release.

Occlusion

The observation that synaptic stimulation produces no further LTP (or LTD) presumably because the underlying cellular mechanisms have been maximally activated by some preceding stimulus. When LTP (or LTD) is absent, it is often difficult to determine whether it has been 'occluded' or blocked by inhibition or inactivation of one or more essential cellular mechanisms.

Inhibitory postsynaptic currents

(IPSCs). Currents measured using electrophysiological recordings from a single neuron while electrically stimulating axons to release neurotransmitter. For the purposes of this Review, IPSCs are GABA-mediated.

Yoked design

Experimental protocol in which a 'yoked' control animal receives a drug administered by the investigator in a non-contingent manner, in the same amount and temporal pattern as an animal that is self-administering the drug.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kauer, J., Malenka, R. Synaptic plasticity and addiction. Nat Rev Neurosci 8, 844–858 (2007). https://doi.org/10.1038/nrn2234

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2234

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing