Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The machinery of colour vision

Key Points

  • Normal human colour vision depends on three types of cone photoreceptors (short-, medium- and long-wavelength sensitive — S, M and L) that have different but overlapping spectral sensitivities.

  • Genes that code for the photosensitive pigments in L- and M-cones are juxtaposed on the X-chromosome, and are vulnerable to alteration or loss, resulting in impaired colour vision, particularly in men.

  • S-cones constitute 5–10% of the total number of cones; proportions of L- and M-cones vary widely among individuals, although L-cones generally predominate. Cones of the different types are randomly distributed in the mosaic, and large clusters of L- or M-cones are common.

  • Signals from different types of cones are combined in the retina to form cone-opponent pathways that project to the cortex, one opposing L- and M-cone signals, and others carrying strong S-cone signals variably opposed by L- and M-cone signals.

  • Signals regarding colour are substantially transformed on entry to the primary visual cortex, where most neurons respond weakly or not at all to pure colour variation. Neurons that respond well to colour variation have distinctive receptive fields that lack a spatially antagonistic organization.

  • The detection of contour and texture in coloured surfaces requires a receptive field that contains spatially distinct regions which are chromatically opponent. Neurons with such 'double-opponent' receptive fields are seldom found in the primary visual cortex, and might be more common in higher cortical areas.

  • Although neurons that respond well to coloured stimuli are found in multiple visual cortical areas, there is at present little evidence for a pathway that is specialized for the transmission of information about colour.

Abstract

Some fundamental principles of colour vision, deduced from perceptual studies, have been understood for a long time. Physiological studies have confirmed the existence of three classes of cone photoreceptors, and of colour-opponent neurons that compare the signals from cones, but modern work has drawn attention to unexpected complexities of early organization: the proportions of cones of different types vary widely among individuals, without great effect on colour vision; the arrangement of different types of cones in the mosaic seems to be random, making it hard to optimize the connections to colour-opponent mechanisms; and new forms of colour-opponent mechanisms have recently been discovered. At a higher level, in the primary visual cortex, recent studies have revealed a simpler organization than had earlier been supposed, and in some respects have made it easier to reconcile physiological and perceptual findings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spectral sensitivity and spatial distribution of photoreceptors in the primate retina.
Figure 2: Cone inputs to four different types of neuron in the macaque lateral geniculate nucleus.
Figure 3: Binocular responses of a colour-preferring neuron in the visual cortex of a macaque.

Similar content being viewed by others

References

  1. Young, T. On theory of light and colours. Phil. Trans. R. Soc. 92, 12–48 (1802).

    Google Scholar 

  2. Hering, E. Outlines of a Theory of the Light Sense (Harvard Univ. Press, Cambridge, Massachusetts, 1874/1964).

  3. Krauskopf, J. & Gegenfurtner, K. R. Color discrimination and adaptation. Vision Res. 32, 2165–2175 (1992).

    CAS  PubMed  Google Scholar 

  4. Rushton, W. A. H. Pigments and signals in colour vision. J. Physiol. 220, 1–31 (1972).

    Google Scholar 

  5. Jacobs, G. H., Deegan, J. F., Neitz, J., Crognale, M. A. & Neitz, M. Photopigments and color vision in the nocturnal monkey, Aotus. Vision Res. 33, 1773–1783 (1993).

    CAS  PubMed  Google Scholar 

  6. Wald, G. The receptors of human color vision. Science 145, 1007–1016 (1964).

    CAS  PubMed  Google Scholar 

  7. Neitz, M., Neitz, J. & Jacobs, G. H. Spectral tuning of pigments underlying red–green color vision. Science 252, 971–973 (1991).

    CAS  PubMed  Google Scholar 

  8. Nathans, J. The evolution and physiology of human color vision: insights from molecular genetic studies of visual pigments. Neuron 24, 299–312 (1999).

    CAS  PubMed  Google Scholar 

  9. Jacobs, G. H. & Rowe, M. P. Evolution of vertebrate colour vision. Clin. Exp. Optom. 87, 206–216 (2004).

    PubMed  Google Scholar 

  10. Hayashi, T., Motulsky, A. G. & Deeb, S. S. Position of a 'green–red' hybrid gene in the visual pigment array determines colour-vision phenotype. Nature Genet. 22, 90–93 (1999).

    CAS  PubMed  Google Scholar 

  11. Nathans, J., Thomas, D. & Hogness, D. S. Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. Science 232, 193–202 (1986). A genetic analysis of human photopigments that underpins our knowledge of the evolution of colour vision.

    CAS  PubMed  Google Scholar 

  12. Neitz, J., Neitz, M., He, J. C. & Shevell, S. K. Trichromatic color vision with only two spectrally distinct photopigments. Nature Neurosci. 2, 884–888 (1999).

    CAS  PubMed  Google Scholar 

  13. Carroll, J., Neitz, M., Hofer, H., Neitz, J. & Williams, D. R. Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness. Proc. Natl Acad. Sci. USA 101, 8461–8466 (2004).

    CAS  PubMed  Google Scholar 

  14. Kremers, J., Usui, T., Scholl, H. P. & Sharpe, L. T. Cone signal contributions to electroretinograms [correction of electrograms] in dichromats and trichromats. Invest. Ophthalmol. Vis. Sci. 40, 920–930 (1999).

    CAS  PubMed  Google Scholar 

  15. Jagla, W. M., Jagle, H., Hayashi, T., Sharpe, L. T. & Deeb, S. S. The molecular basis of dichromatic color vision in males with multiple red and green visual pigment genes. Hum. Mol. Genet. 11, 23–32 (2002).

    CAS  PubMed  Google Scholar 

  16. Neitz, M. et al. Variety of genotypes in males diagnosed as dichromatic on a conventional clinical anomaloscope. Vis. Neurosci. 21, 205–216 (2004).

    PubMed  PubMed Central  Google Scholar 

  17. Carroll, J., Neitz, J. & Neitz, M. Estimates of L:M cone ratio from ERG flicker photometry and genetics. J. Vis. 2, 531–542 (2002).

    PubMed  Google Scholar 

  18. Hofer, H., Carroll, J., Neitz, J., Neitz, M. & Williams, D. R. Organization of the human trichromatic cone mosaic. J. Neurosci. 25, 9669–9679 (2005).

    CAS  PubMed  Google Scholar 

  19. Neitz, J., Carroll, J., Yamauchi, Y., Neitz, M. & Williams, D. R. Color perception is mediated by a plastic neural mechanism that is adjustable in adults. Neuron 35, 783–792 (2002). An elegant experiment showing the dependence of colour sensation on experience, and its independence from the proportions of different classes of receptors in the cone mosaic.

    CAS  PubMed  Google Scholar 

  20. Berson, D. M. Strange vision: ganglion cells as circadian photoreceptors. Trends Neurosci. 26, 314–320 (2003).

    CAS  PubMed  Google Scholar 

  21. Gooley, J. J., Lu, J., Fischer, D. & Saper, C. B. A broad role for melanopsin in nonvisual photoreception. J. Neurosci. 23, 7093–7106 (2003).

    CAS  PubMed  Google Scholar 

  22. Dacey, D. M. et al. Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 433, 749–754 (2005).

    CAS  PubMed  Google Scholar 

  23. Curcio, C. A. et al. Distribution and morphology of human cone photoreceptors stained with anti-blue opsin. J. Comp. Neurol. 312, 610–624 (1991).

    CAS  PubMed  Google Scholar 

  24. de Monasterio, F. M., Schein, S. J. & McCrane, E. P. Staining of blue-sensitive cones of the macaque retina by a fluorescent dye. Science 213, 1278–1281 (1981).

    CAS  Google Scholar 

  25. Martin, P. R. & Grunert, U. Analysis of the short wavelength-sensitive ('blue') cone mosaic in the primate retina: comparison of New World and Old World monkeys. J. Comp. Neurol. 406, 1–14 (1999).

    CAS  PubMed  Google Scholar 

  26. Mollon, J. D. & Bowmaker, J. K. The spatial arrangement of cones in the primate fovea. Nature 360, 677–679 (1992).

    CAS  PubMed  Google Scholar 

  27. Packer, O. S., Williams, D. R. & Bensinger, D. G. Photopigment transmittance imaging of the primate photoreceptor mosaic. J. Neurosci. 16, 2251–2260 (1996).

    CAS  PubMed  Google Scholar 

  28. Roorda, A. & Williams, D. R. The arrangement of the three cone classes in the living human eye. Nature 397, 520–522 (1999). An important technical innovation — adaptive optics — allows for ultra-high resolution in vivo imaging of the photoreceptor mosaic.

    CAS  PubMed  Google Scholar 

  29. Roorda, A., Metha, A. B., Lennie, P. & Williams, D. R. Packing arrangement of the three cone classes in primate retina. Vision Res. 41, 1291–1306 (2001).

    CAS  PubMed  Google Scholar 

  30. Bowmaker, J. K., Parry, J. W. L. & Mollon, J. D. in Normal and Defective Colour Vision (eds Mollon, J. D., Pokorny, J. & Knoblauch, K.) 39–50 (Oxford Univ. Press, New York, 2003).

    Google Scholar 

  31. Deeb, S. S., Diller, L. C., Williams, D. R. & Dacey, D. M. Interindividual and topographical variation of L:M cone ratios in monkey retinas. J. Opt. Soc. Am. A 17, 538–544 (2000).

    CAS  Google Scholar 

  32. Hagstrom, S. A., Neitz, J. & Neitz, M. Variations in cone populations for red–green color vision examined by analysis of mRNA. Neuroreport 9, 1963–1967 (1998).

    CAS  PubMed  Google Scholar 

  33. Neitz, M., Balding, S. D., McMahon, C., Sjoberg, S. A. & Neitz, J. Topography of long- and middle-wavelength sensitive cone opsin gene expression in human and Old World monkey retina. Vis. Neurosci 23, 379–385 (2006).

    PubMed  Google Scholar 

  34. Hofer, H., Singer, B. & Williams, D. R. Different sensations from cones with the same photopigment. J. Vis. 5, 444–454 (2005).

    PubMed  Google Scholar 

  35. Krauskopf, J. Color appearance of small stimuli and the spatial distribution of color receptors. J. Opt. Soc. Am. 54, 1171–1178 (1964).

    Google Scholar 

  36. Hurvich, L. M. & Jameson, D. An opponent-process theory of color vision. Psychol. Rev. 64, 384–404 (1957).

    PubMed  Google Scholar 

  37. De Valois, R. L., Abramov, I. & Jacobs, G. H. Analysis of response patterns of LGN cells. J. Opt. Soc. Am. 56, 966–977 (1966). The first physiological study of colour opponency in neurons of the macaque LGN highlights mechanisms of the kind postulated by Hering.

    CAS  PubMed  Google Scholar 

  38. Hubel, D. H. & Wiesel, T. N. Effects of varying stimulus size and color on single lateral geniculate cells in Rhesus monkeys. Proc. Natl Acad. Sci. USA 55, 1345–1346 (1966).

    CAS  PubMed  Google Scholar 

  39. Derrington, A. M., Krauskopf, J. & Lennie, P. Chromatic mechanisms in lateral geniculate nucleus of macaque. J. Physiol. 357, 241–265 (1984). A quantitative analysis of responses of LGN neurons to chromatic modulation shows two distinct chromatically opponent groups.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lankheet, M. J., Lennie, P. & Krauskopf, J. Distinctive characteristics of subclasses of red–green P-cells in LGN of macaque. Vis. Neurosci. 15, 37–46 (1998).

    CAS  PubMed  Google Scholar 

  41. Smith, V. C., Lee, B. B., Pokorny, J., Martin, P. R. & Valberg, A. Responses of macaque ganglion cells to the relative phase of heterochromatically modulated lights. J. Physiol. 458, 191–221 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Rodieck, R. W. in Comparative Primate Biology Volume 4: Neurosciences (eds. Steklis, H. D. & Erwin, J.) 203–278 (Alan R. Liss, New York, 1988).

    Google Scholar 

  43. Calkins, D. J. & Sterling, P. Evidence that circuits for spatial and color vision segregate at the first retinal synapse. Neuron 24, 313–321 (1999).

    CAS  PubMed  Google Scholar 

  44. Lennie, P. Parallel visual pathways: a review. Vision Res. 20, 561–594 (1980).

    CAS  PubMed  Google Scholar 

  45. Paulus, W. & Kröger-Paulus, A. A new concept of retinal colour coding. Vision Res. 23, 529–540 (1983).

    CAS  PubMed  Google Scholar 

  46. Shapley, R. M. & Perry, V. H. Cat and monkey retinal ganglion cells and their visual functional roles. Trends Neurosci. 9, 229–235 (1986).

    Google Scholar 

  47. Ingling, C. R. Jr & Martinez-Uriegas, E. The relationship between spectral sensitivity and spatial sensitivity for the primate r-g X-channel. Vision Res. 23, 1495–1500 (1983).

    PubMed  Google Scholar 

  48. Dreher, B., Fukada, Y. & Rodieck, R. W. Identification, classification and anatomical segregation of cells with X-like and Y-like properties in the lateral geniculate nucleus of Old World primates. J. Physiol. 258, 433–452 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Mullen, K. T. & Kingdom, F. A. A. Losses in peripheral colour sensitivity predicted from 'hit and miss' post-receptoral cone connections. Vision Res. 36, 1995–2000 (1996).

    CAS  PubMed  Google Scholar 

  50. Mullen, K. T. & Kingdom, F. A. Differential distributions of red-green and blue-yellow cone opponency across the visual field. Vis. Neurosci. 19, 109–118 (2002).

    PubMed  Google Scholar 

  51. Calkins, D. J. & Sterling, P. Absence of spectrally specific lateral inputs to midget ganglion cells in primate retina. Nature 381, 613–615 (1996).

    CAS  PubMed  Google Scholar 

  52. Dacey, D. M., Lee, B. B., Stafford, D. K., Pokorny, J. & Smith, V. C. Horizontal cells of the primate retina: cone specificity without spectral opponency. Science 271, 656–659 (1996).

    CAS  PubMed  Google Scholar 

  53. Jusuf, P. R., Martin, P. R. & Grunert, U. Synaptic connectivity in the midget-parvocellular pathway of primate central retina. J. Comp. Neurol. 494, 260–274 (2006).

    PubMed  Google Scholar 

  54. Dacey, D. M. Parallel pathways for spectral coding in primate retina. Ann. Rev. Neurosci. 23, 743–775 (2000).

    CAS  PubMed  Google Scholar 

  55. Dacey, D. M. et al. Center-surround receptive field structure of cone bipolar cells in primate retina. Vision Res. 40, 1801–1811 (2000).

    CAS  PubMed  Google Scholar 

  56. McMahon, M. J., Lankheet, M. J., Lennie, P. & Williams, D. R. Fine structure of parvocellular receptive fields in the primate fovea revealed by laser interferometry. J. Neurosci. 20, 2043–2053 (2000).

    CAS  PubMed  Google Scholar 

  57. Polyak, S. L. The Retina (Univ. Chicago Press, Chicago, 1941).

    Google Scholar 

  58. Reid, R. C. & Shapley, R. M. Space and time maps of cone photoreceptor signals in macaque lateral geniculate nucleus. J. Neurosci. 22, 6158–6175 (2002).

    CAS  PubMed  Google Scholar 

  59. Lankheet, M. J., Lennie, P. & Krauskopf, J. Temporal–chromatic interactions in LGN P-cells. Vis. Neurosci. 15, 47–54 (1998).

    CAS  PubMed  Google Scholar 

  60. Lee, B. B. & Yeh, T. Receptive fields of primate retinal ganglion cells studied with a novel technique. Vis. Neurosci. 15, 161–175 (1998).

    CAS  PubMed  Google Scholar 

  61. Solomon, S. G., Lee, B. B., White, A. J., Ruttiger, L. & Martin, P. R. Chromatic organization of ganglion cell receptive fields in the peripheral retina. J. Neurosci. 25, 4527–4539 (2005).

    CAS  PubMed  Google Scholar 

  62. Buzas, P., Blessing, E. M., Szmajda, B. A. & Martin, P. R. Specificity of M and L cone inputs to receptive fields in the parvocellular pathway: random wiring with functional bias. J. Neurosci. 26, 11148–11161 (2006).

    CAS  PubMed  Google Scholar 

  63. Diller, L. et al. L and M cone contributions to the midget and parasol ganglion cell receptive fields of macaque monkey retina. J. Neurosci. 24, 1079–1088 (2004).

    CAS  PubMed  Google Scholar 

  64. Martin, P. R., Lee, B. B., White, A. J., Solomon, S. G. & Ruttiger, L. Chromatic sensitivity of ganglion cells in the peripheral primate retina. Nature 410, 933–936 (2001).

    CAS  PubMed  Google Scholar 

  65. Kouyama, N. & Marshak, D. W. Bipolar cells specific for blue cones in the macaque retina. J. Neurosci. 12, 1233–1252 (1992).

    CAS  PubMed  Google Scholar 

  66. Mariani, A. P. Bipolar cells in monkey retina selective for the cones likely to be blue-sensitive. Nature 308, 184–186 (1984).

    CAS  PubMed  Google Scholar 

  67. Ghosh, K. K., Martin, P. R. & Grünert, U. Morphological analysis of the blue cone pathway in the retina of a New World monkey, the marmoset Callithrix jacchus. J. Comp. Neurol. 379, 211–225 (1997).

    CAS  PubMed  Google Scholar 

  68. Haverkamp, S. et al. The primordial, blue-cone color system of the mouse retina. J. Neurosci. 25, 5438–5445 (2005).

    CAS  PubMed  Google Scholar 

  69. Mollon, J. D. “Tho' she kneel'd in that place where they grew...” The uses and origins of primate color vision. J. Exp. Biol 146, 21–38 (1989).

    CAS  PubMed  Google Scholar 

  70. Dacey, D. M. & Lee, B. B. The 'blue-on' opponent pathway in primate retina originates from a distinct bistratified ganglion cell type. Nature 367, 731–735 (1994). The first intracellular recordings from macaque retinal ganglion cells showed that different morphological types have different chromatic properties.

    CAS  PubMed  Google Scholar 

  71. Dacey, D. M., Peterson, B. B., Robinson, F. R. & Gamlin, P. D. Fireworks in the primate retina: in vitro photodynamics reveals diverse LGN-projecting ganglion cell types. Neuron 37, 15–27 (2003).

    CAS  PubMed  Google Scholar 

  72. Hendry, S. H. C. & Reid, R. C. The koniocellular pathway in primate vision. Ann. Rev. Neurosci. 23, 127–153 (2000).

    CAS  PubMed  Google Scholar 

  73. Martin, P. R., White, A. J. R., Goodchild, A. K., Wilder, H. D. & Sefton, A. E. Evidence that blue-on cells are part of the third geniculocortical pathway in primates. Eur. J. Neurosci. 9, 1536–1541 (1997).

    CAS  PubMed  Google Scholar 

  74. Chatterjee, S. & Callaway, E. M. Parallel colour-opponent pathways to primary visual cortex. Nature 426, 668–671 (2003). Afferents from the LGN are recorded in V1, revealing a strict segregation of chromatic properties in the inputs to each layer.

    CAS  PubMed  Google Scholar 

  75. Solomon, S. G. Striate cortex in dichromatic and trichromatic marmosets: neurochemical compartmentalization and geniculate input. J. Comp. Neurol. 450, 366–381 (2002).

    PubMed  Google Scholar 

  76. Hendry, S. H. C. & Yoshioka, T. A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus. Science 264, 575–577 (1994).

    CAS  PubMed  Google Scholar 

  77. Derrington, A. M. & Lennie, P. Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. J. Physiol. 357, 219–240 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Chichilnisky, E. J. & Baylor, D. A. Receptive-field microstructure of blue–yellow ganglion cells in primate retina. Nature Neurosci. 2, 889–893 (1999).

    CAS  PubMed  Google Scholar 

  79. Tailby, C., Solomon, S. G. & Lennie, P. Multiple S-cone pathways in the macaque visual system. COSYNE, 20 (2006).

  80. Forte, J. D., Hashemi-Nezhad, M., Dobbie, W. J., Dreher, B. & Martin, P. R. Spatial coding and response redundancy in parallel visual pathways of the marmoset Callithrix jacchus. Vis. Neurosci. 22, 479–491 (2005).

    PubMed  Google Scholar 

  81. Dacey, D. M. & Packer, O. S. Colour coding in the primate retina: diverse cell types and cone-specific circuitry. Curr. Opin. Neurobiol. 13, 421–427 (2003).

    CAS  PubMed  Google Scholar 

  82. Klug, K., Herr, S., Ngo, I. T., Sterling, P. & Schein, S. Macaque retina contains an S-cone OFF midget pathway. J. Neurosci. 23, 9881–9887 (2003).

    CAS  PubMed  Google Scholar 

  83. Lee, S. C., Telkes, I. & Grunert, U. S-cones do not contribute to the OFF-midget pathway in the retina of the marmoset, Callithrix jacchus. Eur. J. Neurosci. 22, 437–447 (2005).

    PubMed  Google Scholar 

  84. Solomon, S. G. & Lennie, P. Chromatic gain controls in visual cortical neurons. J. Neurosci. 25, 4779–4792 (2005).

    CAS  PubMed  Google Scholar 

  85. Chatterjee, S. & Callaway, E. M. S cone contributions to the magnocellular visual pathway in macaque monkey. Neuron 35, 1135–1146 (2002).

    CAS  PubMed  Google Scholar 

  86. Sun, H., Smithson, H. E., Zaidi, Q. & Lee, B. B. Specificity of cone inputs to macaque retinal ganglion cells. J. Neurophysiol. 95, 837–849 (2006).

    PubMed  PubMed Central  Google Scholar 

  87. Sun, H., Smithson, H. E., Zaidi, Q. & Lee, B. B. Do magnocellular and parvocellular ganglion cells avoid short-wavelength cone input? Vis. Neurosci. 23, 441–446 (2006).

    PubMed  PubMed Central  Google Scholar 

  88. De Valois, R. L., Cottaris, N. P., Elfar, S. D., Mahon, L. E. & Wilson, J. A. Some transformations of color information from lateral geniculate nucleus to striate cortex. Proc. Natl Acad. Sci. USA 97, 4997–5002 (2000).

    CAS  PubMed  Google Scholar 

  89. Valberg, A., Lee, B. B. & Tigwell, D. A. Neurones with strong inhibitory S-cone inputs in the macaque lateral geniculate nucleus. Vision Res. 26, 1061–1064 (1986).

    CAS  PubMed  Google Scholar 

  90. Lennie, P., Krauskopf, J. & Sclar, G. Chromatic mechanisms in striate cortex of macaque. J. Neurosci. 10, 649–669 (1990). A comparison of chromatic properties of V1 neurons with those in the LGN, showing how colour signals are transformed.

    CAS  PubMed  Google Scholar 

  91. Conway, B. R. Spatial structure of cone inputs to color cells in alert macaque primary visual cortex (V-1). J. Neurosci. 21, 2768–2783 (2001).

    CAS  PubMed  Google Scholar 

  92. Conway, B. R., Hubel, D. H. & Livingstone, M. S. Color contrast in macaque V1. Cereb. Cortex 12, 915–925 (2002).

    PubMed  Google Scholar 

  93. Cottaris, N. P. & De Valois, R. L. Temporal dynamics of chromatic tuning in macaque primary visual cortex. Nature 395, 896–900 (1998).

    CAS  PubMed  Google Scholar 

  94. Conway, B. R. & Livingstone, M. S. Spatial and temporal properties of cone signals in alert macaque primary visual cortex. J. Neurosci. 26, 10826–10846 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Horwitz, G. D., Chichilnisky, E. J. & Albright, T. D. Blue–yellow signals are enhanced by spatiotemporal luminance contrast in macaque V1. J. Neurophysiol. 93, 2263–2278 (2005).

    PubMed  Google Scholar 

  96. Johnson, E. N., Hawken, M. J. & Shapley, R. Cone inputs in macaque primary visual cortex. J. Neurophysiol. 91, 2501–2514 (2004).

    PubMed  Google Scholar 

  97. Vidyasagar, T. R., Kulikowski, J. J., Lipnicki, D. M. & Dreher, B. Convergence of parvocellular and magnocellular information channels in the primary visual cortex of the macaque. Eur. J. Neurosci. 16, 945–956 (2002).

    CAS  PubMed  Google Scholar 

  98. Angelucci, A. & Sainsbury, K. Contribution of feedforward thalamic afferents and corticogeniculate feedback to the spatial summation area of macaque V1 and LGN. J. Comp. Neurol. 498, 330–351 (2006).

    PubMed  Google Scholar 

  99. Lennie, P. & D'Zmura, M. Mechanisms of color vision. Crit. Rev. Neurobiol. 3, 333–400 (1988).

    CAS  PubMed  Google Scholar 

  100. Johnson, E. N., Hawken, M. J. & Shapley, R. The spatial transformation of color in the primary visual cortex of the macaque monkey. Nature Neurosci. 4, 409–416 (2001). An analysis of the spatial and chromatic properties of different types of receptive fields in V1.

    CAS  PubMed  Google Scholar 

  101. Solomon, S. G., Peirce, J. W. & Lennie, P. The impact of suppressive surrounds on chromatic properties of cortical neurons. J. Neurosci. 24, 148–160 (2004).

    CAS  PubMed  Google Scholar 

  102. Thorell, L. G., De Valois, R. L. & Albrecht, D. G. Spatial mapping of monkey V1 cells with pure color and luminance stimuli. Vision Res. 24, 751–769 (1984).

    CAS  PubMed  Google Scholar 

  103. De Valois, R. L. & De Valois, K. K. A multi-stage color model. Vision Res. 33, 1053–1065 (1993). Reviews the discrepancies between known physiology and colour perception, and presents a plausible model to reconcile them.

    CAS  PubMed  Google Scholar 

  104. De Valois, R. L., De Valois, K. K. & Mahon, L. E. Contribution of S opponent cells to color appearance. Proc. Natl Acad. Sci. USA 97, 512–517 (2000).

    CAS  PubMed  Google Scholar 

  105. Krauskopf, J., Williams, D. R. & Heeley, D. W. Cardinal directions of color space. Vision Res. 22, 1123–1131 (1982). A seminal study that reveals through habituation three mechanisms that have a fundamental input to colour vision; the subsequent paper shows that these three mechanisms must be complemented by other, less fundamental ones.

    CAS  PubMed  Google Scholar 

  106. Krauskopf, J., Williams, D. R., Mandler, M. B. & Brown, A. M. Higher order color mechanisms. Vision Res. 26, 23–32 (1986).

    CAS  PubMed  Google Scholar 

  107. Carandini, M., Movshon, J. A. & Ferster, D. Pattern adaptation and cross-orientation interactions in the primary visual cortex. Neuropharmacology 37, 501–511 (1998).

    CAS  PubMed  Google Scholar 

  108. Tailby, C., Solomon, S. G., Dhruv, N. T., Majaj, N. J. & Lennie, P. Habituation reveals cardinal chromatic mechanisms in striate cortex of macaque. J. Vis. 5, 80a (2005).

    Google Scholar 

  109. Solomon, S. G., Peirce, J. W., Dhruv, N. T. & Lennie, P. Profound contrast adaptation early in the visual pathway. Neuron 42, 155–162 (2004).

    CAS  PubMed  Google Scholar 

  110. Cardinal, K. S. & Kiper, D. C. The detection of colored Glass patterns. J. Vis. 3, 199–208 (2003).

    PubMed  Google Scholar 

  111. Mandelli, M. J. & Kiper, D. C. The local and global processing of chromatic Glass patterns. J. Vis 5, 405–416 (2005).

    PubMed  Google Scholar 

  112. Bradley, A., Switkes, E. & De Valois, K. Orientation and spatial frequency selectivity of adaptation to color and luminance gratings. Vision Res. 28, 841–856 (1988).

    CAS  PubMed  Google Scholar 

  113. Clifford, C. W., Spehar, B., Solomon, S. G., Martin, P. R. & Zaidi, Q. Interactions between color and luminance in the perception of orientation. J. Vis 3, 106–115 (2003).

    PubMed  Google Scholar 

  114. Forte, J. D. & Clifford, C. W. Inter-ocular transfer of the tilt illusion shows that monocular orientation mechanisms are colour selective. Vision Res. 45, 2715–2721 (2005).

    PubMed  Google Scholar 

  115. Daw, N. W. Goldfish retina: organization for simultaneous color contrast. Science 158, 942–944 (1967).

    CAS  PubMed  Google Scholar 

  116. Livingstone, M. S. & Hubel, D. H. Anatomy and physiology of a color system in the primate visual cortex. J. Neurosci. 4, 309–356 (1984).

    CAS  PubMed  Google Scholar 

  117. Desimone, R., Schein, S. J., Moran, J. & Ungerleider, L. G. Contour, color and shape analysis beyond the striate cortex. Vision Res. 25, 441–452 (1985).

    CAS  PubMed  Google Scholar 

  118. Schein, S. J. & Desimone, R. Spectral properties of V4 neurons in the macaque. J. Neurosci. 10, 3369–3389 (1990).

    CAS  PubMed  Google Scholar 

  119. Wachtler, T., Sejnowski, T. J. & Albright, T. D. Representation of color stimuli in awake macaque primary visual cortex. Neuron 37, 681–691 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Zeki, S. M. Colour coding in the cerebral cortex: the reaction of cells in monkey visual cortex to wavelengths and colours. Neuroscience 9, 741–765 (1983).

    CAS  PubMed  Google Scholar 

  121. Zeki, S. M. Colour coding in the cerebral cortex: the responses of wavelength-selective and colour-coded cells in monkey visual cortex to changes in wavelength composition. Neuroscience 9, 767–781 (1983).

    CAS  PubMed  Google Scholar 

  122. Livingstone, M. & Hubel, D. Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science 240, 740–749 (1988).

    CAS  PubMed  Google Scholar 

  123. Shapley, R. & Hawken, M. Neural mechanisms for color perception in the primary visual cortex. Curr. Opin. Neurobiol. 12, 426–432 (2002).

    CAS  PubMed  Google Scholar 

  124. Ts'o, D. Y. & Gilbert, C. D. The organization of chromatic and spatial interactions in the primate striate cortex. J. Neurosci. 8, 1712–1727 (1988).

    CAS  PubMed  Google Scholar 

  125. Gegenfurtner, K. R., Kiper, D. C. & Fenstemaker, S. B. Processing of color, form, and motion in macaque area V2. Vis. Neurosci 13, 161–172 (1996).

    CAS  PubMed  Google Scholar 

  126. Gegenfurtner, K. R., Kiper, D. C. & Levitt, J. B. Functional properties of neurons in macaque area V3. J. Neurophysiol. 77, 1906–1923 (1997).

    CAS  PubMed  Google Scholar 

  127. Kiper, D. C., Fenstemaker, S. B. & Gegenfurtner, K. R. Chromatic properties of neurons in macaque area V2. Vis. Neurosci. 14, 1061–1072 (1997).

    CAS  PubMed  Google Scholar 

  128. Moutoussis, K. & Zeki, S. Responses of spectrally selective cells in macaque area V2 to wavelengths and colors. J. Neurophysiol. 87, 2104–2112 (2002).

    CAS  PubMed  Google Scholar 

  129. Kusunoki, M., Moutoussis, K. & Zeki, S. Effect of background colors on the tuning of color-selective cells in monkey area V4. J. Neurophysiol. 95, 3047–3059 (2006).

    PubMed  Google Scholar 

  130. Friedman, H. S., Zhou, H. & Von Der Heydt, R. The coding of uniform colour figures in monkey visual cortex. J. Physiol. 548, 593–613 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Leventhal, A. G., Thompson, K. G., Liu, D., Zhou, Y. & Ault, S. J. Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex. J. Neurosci. 15, 1808–1818 (1995).

    CAS  PubMed  Google Scholar 

  132. Hubel, D. H. & Livingstone, M. S. Segregation of form, color, and stereopsis in primate area 18. J. Neurosci. 7, 3378–3415 (1987).

    CAS  PubMed  Google Scholar 

  133. Horton, J. C. & Hubel, D. H. Regular patchy distribution of cytochrome oxidase staining in primary visual cortex of macaque monkey. Nature 292, 762–764 (1981).

    CAS  PubMed  Google Scholar 

  134. Livingstone, M. & Hubel, D. H. Thalamic inputs to cytochrome oxidase-rich regions in monkey visual cortex. Proc. Natl Acad. Sci. USA 79, 6098–6101 (1982).

    CAS  PubMed  Google Scholar 

  135. Landisman, C. E. & Ts'o, D. Y. Color processing in macaque striate cortex: relationships to ocular dominance, cytochrome oxidase, and orientation. J. Neurophysiol. 87, 3126–3137 (2002).

    CAS  PubMed  Google Scholar 

  136. Landisman, C. E. & Ts'o, D. Y. Color processing in macaque striate cortex: electrophysiological properties. J. Neurophysiol. 87, 3138–3151 (2002).

    PubMed  Google Scholar 

  137. Kingdom, F. A. & Simmons, D. R. Stereoacuity and colour contrast. Vision Res. 36, 1311–1319 (1996).

    CAS  PubMed  Google Scholar 

  138. Krauskopf, J. & Forte, J. D. Influence of chromaticity on vernier and stereo acuity. J. Vis. 2, 645–652 (2002).

    PubMed  Google Scholar 

  139. Livingstone, M. S. & Hubel, D. H. Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. J. Neurosci. 7, 3416–3468 (1987). Outlines the strong hypothesis of vision as a serial, parallel and hierarchical process.

    CAS  PubMed  Google Scholar 

  140. Ikeda, M. & Nakashima, Y. Wavelength difference limit for binocular color fusion. Vision Res. 20, 693–697 (1980).

    CAS  PubMed  Google Scholar 

  141. Simmons, D. R. The binocular combination of chromatic contrast. Perception 34, 1035–1042 (2005).

    PubMed  Google Scholar 

  142. Peirce, J. W., Solomon, S. G., Forte, J., Krauskopf, J. & Lennie, P. Chromatic tuning of binocular neurons in early visual cortex. J. Vis. 3, 24a (2003).

    Google Scholar 

  143. Cumming, B. G. & DeAngelis, G. C. The physiology of stereopsis. Ann. Rev. Neurosci. 24, 203–238 (2001).

    CAS  PubMed  Google Scholar 

  144. Gur, M. & Snodderly, D. M. A dissociation between brain activity and perception: chromatically opponent cortical neurons signal chromatic flicker that is not perceived. Vision Res. 37, 377–382 (1997).

    CAS  PubMed  Google Scholar 

  145. Shady, S. & MacLeod, D. I. Color from invisible patterns. Nature Neurosci. 5, 729–730 (2002).

    CAS  PubMed  Google Scholar 

  146. Shady, S., MacLeod, D. I. & Fisher, H. S. Adaptation from invisible flicker. Proc. Natl Acad. Sci. USA 101, 5170–5173 (2004).

    CAS  PubMed  Google Scholar 

  147. Gallant, J. L., Braun, J. & Van Essen, D. C. Selectivity for polar, hyperbolic, and Cartesian gratings in macaque visual cortex. Science 259, 100–103 (1993).

    CAS  PubMed  Google Scholar 

  148. Tootell, R. B., Nelissen, K., Vanduffel, W. & Orban, G. A. Search for color 'center(s)' in macaque visual cortex. Cereb. Cortex 14, 353–363 (2004).

    PubMed  Google Scholar 

  149. Bouvier, S. E. & Engel, S. A. Behavioral deficits and cortical damage loci in cerebral achromatopsia. Cereb. Cortex 16, 183–191 (2006).

    PubMed  Google Scholar 

  150. Damasio, A., Yamada, T., Damasio, H., Corbett, J. & McKee, J. Central achromatopsia: behavioral, anatomic, and physiologic aspects. Neurology 30, 1064–1071 (1980).

    CAS  PubMed  Google Scholar 

  151. Ruttiger, L. et al. Selective color constancy deficits after circumscribed unilateral brain lesions. J. Neurosci. 19, 3094–3106 (1999).

    CAS  PubMed  Google Scholar 

  152. Zeki, S. A century of cerebral achromatopsia. Brain 113, 1721–1777 (1990).

    PubMed  Google Scholar 

  153. Brewer, A. A., Liu, J., Wade, A. R. & Wandell, B. A. Visual field maps and stimulus selectivity in human ventral occipital cortex. Nature Neurosci. 8, 1102–1109 (2005). A convincing analysis of the functional specialization of early extrastriate cortical areas.

    CAS  PubMed  Google Scholar 

  154. Hadjikhani, N., Liu, A. K., Dale, A. M., Cavanagh, P. & Tootell, R. B. Retinotopy and color sensitivity in human visual cortical area V8. Nature Neurosci. 1, 235–241 (1998).

    CAS  PubMed  Google Scholar 

  155. McKeefry, D. J. & Zeki, S. The position and topography of the human colour centre as revealed by functional magnetic resonance imaging. Brain 120, 2229–2242 (1997).

    PubMed  Google Scholar 

  156. Engel, S. A. & Furmanski, C. S. Selective adaptation to color contrast in human primary visual cortex. J. Neurosci. 21, 3949–3954 (2001).

    CAS  PubMed  Google Scholar 

  157. Engel, S. A. Adaptation of oriented and unoriented color-selective neurons in human visual areas. Neuron 45, 613–623 (2005).

    CAS  PubMed  Google Scholar 

  158. Liu, J. & Wandell, B. A. Specializations for chromatic and temporal signals in human visual cortex. J. Neurosci. 25, 3459–3468 (2005).

    CAS  PubMed  Google Scholar 

  159. Smallwood, P. M., Wang, Y. & Nathans, J. Role of a locus control region in the mutually exclusive expression of human red and green cone pigment genes. Proc. Natl Acad. Sci. USA 99, 1008–1011 (2002).

    CAS  PubMed  Google Scholar 

  160. Smallwood, P. M. et al. Genetically engineered mice with an additional class of cone photoreceptors: implications for the evolution of color vision. Proc. Natl Acad. Sci. USA 100, 11706–11711 (2003).

    CAS  PubMed  Google Scholar 

  161. Newsome, W. T., Britten, K. H. & Movshon, J. A. Neuronal correlates of a perceptual decision. Nature 341, 52–54 (1989).

    CAS  PubMed  Google Scholar 

  162. Salzman, C. D., Britten, K. H. & Newsome, W. T. Cortical microstimulation influences perceptual judgements of motion direction. Nature 346, 174–177 (1990).

    CAS  PubMed  Google Scholar 

  163. Sincich, L. C., Park, K. F., Wohlgemuth, M. J. & Horton, J. C. Bypassing V1: a direct geniculate input to area MT. Nature Neurosci. 7, 1123–1128 (2004).

    CAS  PubMed  Google Scholar 

  164. MacLeod, D. I. & Boynton, R. M. Chromaticity diagram showing cone excitation by stimuli of equal luminance. J. Opt. Soc. Am. 69, 1183–1186 (1979). Describes a simple colour space, which has become standard, where hue is defined in a plane formed by two axes — one of S-cone activation and another of differential L- and M-cone activation.

    CAS  PubMed  Google Scholar 

  165. Webb, B. S., Dhruv, N. T., Solomon, S. G., Tailby, C. & Lennie, P. Early and late mechanisms of surround suppression in striate cortex of macaque. J. Neurosci. 25, 11666–11675 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Dhruv, J. Forte, J. Krauskopf, J. Peirce and C. Tailby for help in experiments and analysis, and for many discussions, over several years, at the Center for Neural Science, New York University, USA. We are grateful to H. Hofer and D. Williams for providing the mosaics of Figure 1; N. Gilroy, E. Weston and A. White also commented on the figures. Supporting grants were made to S.G.S. from the National Institutes of Health, and the Australian National Health and Medical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Lennie.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Solomon's laboratory

Glossary

Opsin

A G protein membrane-bound receptor usually found in rod and cone photoreceptors that initiates phototransduction. Its spectral sensitivity depends on the sequence of amino acids.

Chromophore

A molecule, or part of one, that changes conformation upon absorbing light, inducing a conformational change in the opsin bound to it and thereby triggering phototransduction.

Crossing over

During meiosis, two like-chromosomes can both break; each can reconnect with the fragment from the other, exchanging genes or parts of genes in the process.

Deuteranomaly

Small deviations of colour vision from the normal observer (often only revealed in tasks requiring fine discriminations) brought about by mutations that shift the spectral sensitivity of the M-cone opsin.

Protanomaly

Small deviations of colour vision from the normal observer (often only revealed in tasks requiring fine discriminations) brought about by mutations that shift the spectral sensitivity of the L-cone opsin.

Ganzfelds

Formless fields of light, and ineffective stimuli for ganglion cells driven by photoreceptors.

Receptive fields

The region of visual space (or, equivalently, an area on the retinal surface) where presentation of an appropriate pattern of light causes changes in the activity of a neuron.

Contrast adaptation

The change in sensitivity (of human perception, or of individual neurons) to stimulus contrast that results from prolonged exposure to modulation of a visual stimulus.

Stereopsis

The capacity to determine the distance to a surface through the comparison of the disparate images formed in the two eyes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solomon, S., Lennie, P. The machinery of colour vision. Nat Rev Neurosci 8, 276–286 (2007). https://doi.org/10.1038/nrn2094

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2094

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing