Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lipid raft microdomains and neurotransmitter signalling

Key Points

  • Lipid rafts are submicroscopic membrane microdomains rich in sphingomyelin and cholesterol.

  • Two common types of lipid raft have been proposed and studied in neurotransmitter signalling: planar lipid rafts (also known as non-caveolar, or glycolipid, rafts) and caveolae.

  • Several classes of neurotransmitter receptors and transporters associate with lipid raft membrane domains and the functional effects of this association are heterogeneous.

  • Lipid rafts are involved in the clustering and trafficking of receptors and transporters, and these rafts seem to be capable of either facilitating or inhibiting neurotransmitter signalling or transport.

  • Cytoskeletal elements such as microtubules or actin microfilaments, and the monomers or dimers that comprise them, associate with lipid rafts and might function to orchestrate neurotransmitter signalling.

  • The localization of signalling components to lipid rafts indicates that molecular events altering this association could contribute to a number of neurological or psychiatric diseases.

  • The heterogeneous action of lipid rafts on neurotransmitter signalling might help to form a uniform hypothesis for the role played by these domains and could help point the way to a mechanism whereby manipulation of rafts generates a pattern of altered information flow.

Abstract

Lipid rafts are specialized structures on the plasma membrane that have an altered lipid composition as well as links to the cytoskeleton. It has been proposed that these structures are membrane domains in which neurotransmitter signalling might occur through a clustering of receptors and components of receptor-activated signalling cascades. The localization of these proteins in lipid rafts, which is affected by the cytoskeleton, also influences the potency and efficacy of neurotransmitter receptors and transporters. The effect of lipid rafts on neurotransmitter signalling has also been implicated in neurological and psychiatric diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lipid raft microdomains and membrane organization of neurotransmitter signalling molecules.
Figure 2: Lipid rafts as sites for endocytosis and trafficking of neurotransmitter receptors.
Figure 3: Cytoskeletal and lipid raft organization of neurotransmitter signalling molecules.

Similar content being viewed by others

References

  1. Singer, S. J. & Nicolson, G. L. The fluid mosaic model of the structure of cell membranes. Science 175, 720–731 (1972).

    Article  CAS  PubMed  Google Scholar 

  2. Nicolau, D. V., Burrage, K., Parton, R. G. & Hancock, J. F. Identifying optimal lipid raft characteristics required to promote nanoscale protein–protein interactions on the plasma membrane. Mol. Cell Biol. 26, 313–323 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rebois, R. V. & Hebert, T. E. Protein complexes involved in heptahelical receptor-mediated signal transduction. Receptors Channels 9, 169–194 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Simons, K. & Toomre, D. Lipid rafts and signal transduction. Nature Rev. Mol. Cell Biol. 1, 31–39 (2000). This review article regarding lipid rafts and signal transduction provides keen insights into lipid raft microdomains and their involvement in cell signalling.

    Article  CAS  Google Scholar 

  5. Trushina, E., Du Charme, J., Parisi, J. & McMurray, C. T. Neurological abnormalities in caveolin-1 knock out mice. Behav. Brain Res. 172, 24–32 (2006). Evaluates Cav1 -knockout mice and their associated neurological phenotypes. The results show that the knockout animals develop phenotypes which dictate impaired motor control.

    Article  CAS  PubMed  Google Scholar 

  6. Lang, D. M. et al. Identification of reggie-1 and reggie-2 as plasmamembrane-associated proteins which cocluster with activated GPI-anchored cell adhesion molecules in non-caveolar micropatches in neurons. J. Neurobiol. 37, 502–523 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Bhatnagar, A., Sheffler, D. J., Kroeze, W. K., Compton-Toth, B. & Roth, B. L. Caveolin-1 interacts with 5-HT2A serotonin receptors and profoundly modulates the signaling of selected Gaq-coupled protein receptors. J. Biol. Chem. 279, 34614–34623 (2004). Utilizes a novel molecular approach to stably knock-down caveolin 1/2 by RNAi in glial cells, resulting in impaired serotonin signalling.

    Article  CAS  PubMed  Google Scholar 

  8. Lenne, P. F. et al. Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork. EMBO J. 25, 3245–3256 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kusumi, A., Koyama-Honda, I. & Suzuki, K. Molecular dynamics and interactions for creation of stimulation-induced stabilized rafts from small unstable steady-state rafts. Traffic 5, 213–230 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Stetzkowski-Marden, F., Gaus, K., Recouvreur, M., Cartaud, A. & Cartaud, J. Agrin elicits membrane lipid condensation at sites of acetylcholine receptor clusters in C2C12 myotubes. J. Lipid Res. 47, 2121–2133 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Hancock, J. F. Lipid rafts: contentious only from simplistic standpoints. Nature Rev. Mol. Cell Biol. 7, 456–462 (2006).

    Article  CAS  Google Scholar 

  12. Babiychuk, E. B. & Draeger, A. Biochemical characterization of detergent-resistant membranes: a systematic approach. Biochem. J. 397, 407–416 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vacca, F., Amadio, S., Sancesario, G., Bernardi, G. & Volonte, C. P2X3 receptor localizes into lipid rafts in neuronal cells. J. Neurosci. Res. 76, 653–661 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Gaudreault, S. B., Chabot, C., Gratton, J. P. & Poirier, J. The caveolin scaffolding domain modifies 2-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor binding properties by inhibiting phospholipase A2 activity. J. Biol. Chem. 279, 356–362 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Sooksawate, T. & Simmonds, M. A. Effects of membrane cholesterol on the sensitivity of the GABAA receptor to GABA in acutely dissociated rat hippocampal neurones. Neuropharmacology 40, 178–184 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Burger, K., Gimpl, G. & Fahrenholz, F. Regulation of receptor function by cholesterol. Cell. Mol. Life Sci. 57, 1577–1592 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Laube, B., Kuhse, J. & Betz, H. Evidence for a tetrameric structure of recombinant NMDA receptors. J. Neurosci. 18, 2954–2961 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang, Z. Z., Hardy, S. F. & Hall, Z. W. Assembly of the nicotinic acetylcholine receptor. The first transmembrane domains of truncated α and δ subunits are required for heterodimer formation in vivo. J. Biol. Chem. 271, 27575–27584 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Pediconi, M. F., Gallegos, C. E., De Los Santos, E. B. & Barrantes, F. J. Metabolic cholesterol depletion hinders cell-surface trafficking of the nicotinic acetylcholine receptor. Neuroscience 128, 239–249 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Hering, H., Lin, C. C. & Sheng, M. Lipid rafts in the maintenance of synapses, dendritic spines, and surface AMPA receptor stability. J. Neurosci. 23, 3262–3271 (2003). These authors demonstrate that, in rat hippocampal neurons, lipid rafts enriched in postsynaptic proteins are abundant in dendrites and are important for maintenance of synaptic morphology and density.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Trinidad, J. C. & Cohen, J. B. Neuregulin inhibits acetylcholine receptor aggregation in myotubes. J. Biol. Chem. 279, 31622–31628 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Bruses, J. L., Chauvet, N. & Rutishauser, U. Membrane lipid rafts are necessary for the maintenance of the α 7 nicotinic acetylcholine receptor in somatic spines of ciliary neurons. J. Neurosci. 21, 504–512 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhu, D., Xiong, W. C. & Mei, L. Lipid rafts serve as a signaling platform for nicotinic acetylcholine receptor clustering. J. Neurosci. 26, 4841–4851 (2006). Describes the raft-dependent signalling events involved in the recruitment and anchoring of the AChR into lipid rafts, thereby providing a mechanism for AChR clustering.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Campagna, J. A. & Fallon, J. Lipid rafts are involved in C95 (4,8) agrin fragment-induced acetylcholine receptor clustering. Neuroscience 138, 123–132 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Fuhrer, C., Gautam, M., Sugiyama, J. E. & Hall, Z. W. Roles of rapsyn and agrin in interaction of postsynaptic proteins with acetylcholine receptors. J. Neurosci. 19, 6405–6416 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Oshikawa, J. et al. Nicotinic acetylcholine receptor α 7 regulates cAMP signal within lipid rafts. Am. J. Physiol. Cell Physiol. 285, C567–C574 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Garcia-Marcos, M. et al. Coupling of two pools of P2X7 receptors to distinct intracellular signaling pathways in rat submandibular gland. J. Lipid Res. 47, 705–714 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Abulrob, A. et al. Protection by cholesterol-extracting cyclodextrins: a role for N-methyl-D-aspartate receptor redistribution. J. Neurochem. 92, 1477–1486 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Frank, C., Giammarioli, A. M., Pepponi, R., Fiorentini, C. & Rufini, S. Cholesterol perturbing agents inhibit NMDA-dependent calcium influx in rat hippocampal primary culture. FEBS Lett. 566, 25–29 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Guirland, C., Suzuki, S., Kojima, M., Lu, B. & Zheng, J. Q. Lipid rafts mediate chemotropic guidance of nerve growth cones. Neuron 42, 51–62 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Neubig, R. R. Membrane organization in G-protein mechanisms. Faseb J. 8, 939–946 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Pucadyil, T. J. & Chattopadhyay, A. Cholesterol modulates ligand binding and G-protein coupling to serotonin1A receptors from bovine hippocampus. Biochim. Biophys. Acta 1663, 188–200 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Monastyrskaya, K., Hostettler, A., Buergi, S. & Draeger, A. The NK1 receptor localizes to the plasma membrane microdomains, and its activation is dependent on lipid raft integrity. J. Biol. Chem. 280, 7135–7146 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Xu, W. et al. Localization of the κ opioid receptor in lipid rafts. J. Pharmacol. Exp. Ther. 317, 1295–1306 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Gines, S. et al. Involvement of caveolin in ligand-induced recruitment and internalization of A1 adenosine receptor and adenosine deaminase in an epithelial cell line. Mol. Pharmacol. 59, 1314–1323 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Lai, H. H. et al. Loss of caveolin-1 expression is associated with disruption of muscarinic cholinergic activities in the urinary bladder. Neurochem. Int. 45, 1185–1193 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Yu, P. et al. D1 dopamine receptor signaling involves caveolin-2 in HEK-293 cells. Kidney Int. 66, 2167–2180 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Burgueno, J. et al. Metabotropic glutamate type 1α receptor localizes in low-density caveolin-rich plasma membrane fractions. J. Neurochem. 86, 785–791 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Burgueno, J. et al. Mutual regulation between metabotropic glutamate type 1α receptor and caveolin proteins: from traffick to constitutive activity. Exp. Cell Res. 300, 23–34 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Rajendran, L. & Simons, K. Lipid rafts and membrane dynamics. J. Cell Sci. 118, 1099–1102 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Nichols, B. Caveosomes and endocytosis of lipid rafts. J. Cell Sci. 116, 4707–4714 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Le Roy, C. & Wrana, J. L. Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling. Nature Rev. Mol. Cell Biol. 6, 112–126 (2005).

    Article  CAS  Google Scholar 

  43. Claing, A., Laporte, S. A., Caron, M. G. & Lefkowitz, R. J. Endocytosis of G protein-coupled receptors: roles of G protein-coupled receptor kinases and β-arrestin proteins. Prog. Neurobiol. 66, 61–79 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Rapacciuolo, A. et al. Protein kinase A and G protein-coupled receptor kinase phosphorylation mediates β-1 adrenergic receptor endocytosis through different pathways. J. Biol. Chem. 278, 35403–35411 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Keren, O. & Sarne, Y. Multiple mechanisms of CB1 cannabinoid receptors regulation. Brain Res. 980, 197–205 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Self, T. J., Oakley, S. M. & Hill, S. J. Clathrin-independent internalization of the human histamine H1-receptor in CHO-K1 cells. Br. J. Pharmacol. 146, 612–624 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rybin, V. O., Xu, X., Lisanti, M. P. & Steinberg, S. F. Differential targeting of β-adrenergic receptor subtypes and adenylyl cyclase to cardiomyocyte caveolae. A mechanism to functionally regulate the cAMP signaling pathway. J. Biol. Chem. 275, 41447–41457 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Allen, J. A., Yu, J. Z., Donati, R. J. & Rasenick, M. M. β-adrenergic receptor stimulation promotes G αs internalization through lipid rafts: a study in living cells. Mol. Pharmacol. 67, 1493–1504 (2005). Examines the endocytic trafficking of activated β-ARs and Gα s , and find that Gα s is endocytosed by a lipid raft-mediated mechanism leading to a putative reduction in cAMP signalling.

    Article  CAS  PubMed  Google Scholar 

  49. Sabourin, T., Bastien, L., Bachvarov, D. R. & Marceau, F. Agonist-induced translocation of the kinin B1 receptor to caveolae-related rafts. Mol. Pharmacol. 61, 546–553 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Toki, S., Donati, R. J. & Rasenick, M. M. Treatment of C6 glioma cells and rats with antidepressant drugs increases the detergent extraction of Gsα from plasma membrane. J. Neurochem. 73, 1114–1120 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Nair, K. S., Balasubramanian, N. & Slepak, V. Z. Signal-dependent translocation of transducin, RGS9–1-Gβ5L complex, and arrestin to detergent-resistant membrane rafts in photoreceptors. Curr. Biol. 12, 421–425 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Head, B. P. et al. G-protein-coupled receptor signaling components localize in both sarcolemmal and intracellular caveolin-3-associated microdomains in adult cardiac myocytes. J. Biol. Chem. 280, 31036–31044 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Dunphy, J. T., Greentree, W. K. & Linder, M. E. Enrichment of G-protein palmitoyltransferase activity in low density membranes: in vitro reconstitution of Gαi to these domains requires palmitoyltransferase activity. J. Biol. Chem. 276, 43300–43304 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Moffett, S., Brown, D. A. & Linder, M. E. Lipid-dependent targeting of G proteins into rafts. J. Biol. Chem. 275, 2191–2198 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Li, S. et al. Evidence for a regulated interaction between heterotrimeric G proteins and caveolin. J. Biol. Chem. 270, 15693–15701 (1995).

    Article  CAS  PubMed  Google Scholar 

  56. Wang, N., Yan, K. & Rasenick, M. M. Tubulin binds specifically to the signal-transducing proteins, Gs α and Gi α 1. J. Biol. Chem. 265, 1239–1242 (1990).

    CAS  PubMed  Google Scholar 

  57. Popova, J. S., Garrison, J. C., Rhee, S. G. & Rasenick, M. M. Tubulin, Gq, and phosphatidylinositol 4, 5-bisphosphate interact to regulate phospholipase Cβ1 signaling. J. Biol. Chem. 272, 6760–6765 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Pesanova, Z., Novotny, J., Cerny, J., Milligan, G. & Svoboda, P. Thyrotropin-releasing hormone-induced depletion of Gqα/G11α proteins from detergent-insensitive membrane domains. FEBS Lett. 464, 35–40 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Oh, P. & Schnitzer, J. E. Segregation of heterotrimeric G proteins in cell surface microdomains. Gq binds caveolin to concentrate in caveolae, whereas Gi and Gs target lipid rafts by default. Mol. Biol. Cell 12, 685–698 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Miura, Y., Hanada, K. & Jones, T. L. Gs signaling is intact after disruption of lipid rafts. Biochemistry 40, 15418–15423 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Hiol, A. et al. Palmitoylation regulates regulators of G-protein signaling (RGS) 16 function. I. Mutation of amino-terminal cysteine residues on RGS16 prevents its targeting to lipid rafts and palmitoylation of an internal cysteine residue. J. Biol. Chem. 278, 19301–19308 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Fagan, K. A., Smith, K. E. & Cooper, D. M. Regulation of the Ca2+-inhibitable adenylyl cyclase type VI by capacitative Ca2+ entry requires localization in cholesterol-rich domains. J. Biol. Chem. 275, 26530–26537 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Toya, Y., Schwencke, C., Couet, J., Lisanti, M. P. & Ishikawa, Y. Inhibition of adenylyl cyclase by caveolin peptides. Endocrinology 139, 2025–2031 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Weerth, S. H., Holtzclaw, L. A. & Russell, J. T. Signaling proteins in raft-like microdomains are essential for Ca2+ wave propagation in glial cells. Cell Calcium 14 Aug 2006 (doi:10.1016/j.ceca.2006.06.006).

  65. Delling, M. et al. The neural cell adhesion molecule regulates cell-surface delivery of G-protein-activated inwardly rectifying potassium channels via lipid rafts. J. Neurosci. 22, 7154–7164 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Toselli, M. et al. Attenuation of G protein-mediated inhibition of N-type calcium currents by expression of caveolins in mammalian NG108-15 cells. J. Physiol. 536, 361–373 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Brady, J. D. et al. Functional role of lipid raft microdomains in cyclic nucleotide-gated channel activation. Mol. Pharmacol. 65, 503–511 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Richelson, E. Interactions of antidepressants with neurotransmitter transporters and receptors and their clinical relevance. J. Clin. Psychiatry 64, 5–12 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. North, P. & Fleischer, S. Alteration of synaptic membrane cholesterol/phospholipid ratio using a lipid transfer protein. Effect on γ-aminobutyric acid uptake. J. Biol. Chem. 258, 1242–1253 (1983).

    CAS  PubMed  Google Scholar 

  70. Scanlon, S. M., Williams, D. C. & Schloss, P. Membrane cholesterol modulates serotonin transporter activity. Biochemistry 40, 10507–10513 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Magnani, F., Tate, C. G., Wynne, S., Williams, C. & Haase, J. Partitioning of the serotonin transporter into lipid microdomains modulates transport of serotonin. J. Biol. Chem. 279, 38770–38778 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Butchbach, M. E., Guo, H. & Lin, C. L. Methyl- β-cyclodextrin but not retinoic acid reduces EAAT3-mediated glutamate uptake and increases GTRAP3-18 expression. J. Neurochem. 84, 891–894 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Butchbach, M. E., Tian, G., Guo, H. & Lin, C. L. Association of excitatory amino acid transporters, especially EAAT2, with cholesterol-rich lipid raft microdomains: importance for excitatory amino acid transporter localization and function. J. Biol. Chem. 279, 34388–34396 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Shouffani, A. & Kanner, B. I. Cholesterol is required for the reconstruction of the sodium- and chloride-coupled, γ-aminobutyric acid transporter from rat brain. J. Biol. Chem. 265, 6002–6008 (1990).

    CAS  PubMed  Google Scholar 

  75. Canolle, B. et al. Glial soluble factors regulate the activity and expression of the neuronal glutamate transporter EAAC1: implication of cholesterol. J. Neurochem. 88, 1521–1532 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Jayanthi, L. D., Samuvel, D. J. & Ramamoorthy, S. Regulated internalization and phosphorylation of the native norepinephrine transporter in response to phorbol esters. Evidence for localization in lipid rafts and lipid raft-mediated internalization. J. Biol. Chem. 279, 19315–19326 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Sorkina, T., Hoover, B. R., Zahniser, N. R. & Sorkin, A. Constitutive and protein kinase C-induced internalization of the dopamine transporter is mediated by a clathrin-dependent mechanism. Traffic 6, 157–170 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Samuvel, D. J., Jayanthi, L. D., Bhat, N. R. & Ramamoorthy, S. A role for p38 mitogen-activated protein kinase in the regulation of the serotonin transporter: evidence for distinct cellular mechanisms involved in transporter surface expression. J. Neurosci. 25, 29–41 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Dremina, E. S., Sharov, V. S. & Schoneich, C. Protein tyrosine nitration in rat brain is associated with raft proteins, flotillin-1 and α-tubulin: effect of biological aging. J. Neurochem. 93, 1262–1271 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Kawabe, J., Okumura, S., Nathanson, M. A., Hasebe, N. & Ishikawa, Y. Caveolin regulates microtubule polymerization in the vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 342, 164–169 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Roychowdhury, S., Panda, D., Wilson, L. & Rasenick, M. M. G protein α subunits activate tubulin GTPase and modulate microtubule polymerization dynamics. J. Biol. Chem. 274, 13485–13490 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Suter, D. M., Schaefer, A. W. & Forscher, P. Microtubule dynamics are necessary for SRC family kinase-dependent growth cone steering. Curr. Biol. 14, 1194–1199 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Golub, T. & Caroni, P. PI(4,5)P2-dependent microdomain assemblies capture microtubules to promote and control leading edge motility. J. Cell Biol. 169, 151–165 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Popova, J. S. & Rasenick, M. M. Clathrin-mediated endocytosis of m3 muscarinic receptors. Roles for Gβγ and tubulin. J. Biol. Chem. 279, 30410–30418 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Yan, K., Popova, J. S., Moss, A., Shah, B. & Rasenick, M. M. Tubulin stimulates adenylyl cyclase activity in C6 glioma cells by bypassing the β-adrenergic receptor: a potential mechanism of G protein activation. J. Neurochem. 76, 182–190 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Donati, R. J. & Rasenick, M. M. Chronic antidepressant treatment prevents accumulation of gsα in cholesterol-rich, cytoskeletal-associated, plasma membrane domains (lipid rafts). Neuropsychopharmacology 30, 1238–1245 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Head, B. P. et al. Microtubules and actin microfilaments regulate lipid raft/caveolae localization of adenylyl cyclase signaling components. J. Biol. Chem. 281, 26391–26399 (2006). Demonstrates that disrupting either the actin or the microtubule cytoskeleton in cardiac myocytes reduces the number of caveolae and also removes adenylyl cyclase molecules from rafts/caveolae, which enhances cAMP signalling.

    Article  CAS  PubMed  Google Scholar 

  88. Rasenick, M. M., Stein, P. J. & Bitensky, M. W. The regulatory subunit of adenylate cyclase interacts with cytoskeletal components. Nature 294, 560–562 (1981).

    Article  CAS  PubMed  Google Scholar 

  89. Caroni, P. New EMBO members' review: actin cytoskeleton regulation through modulation of PI(4,5)P2 rafts. Embo J. 20, 4332–4336 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Pollard, T. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Bittner, M. A. & Holz, R. W. Phosphatidylinositol-4, 5-bisphosphate: actin dynamics and the regulation of ATP-dependent and-independent secretion. Mol. Pharmacol. 67, 1089–1098 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Plowman, S. J., Muncke, C., Parton, R. G. & Hancock, J. F. H-ras, K-ras, and inner plasma membrane raft proteins operate in nanoclusters with differential dependence on the actin cytoskeleton. Proc. Natl Acad. Sci. USA 102, 15500–15505 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Jaksits, S. et al. Lipid raft-associated GTPase signaling controls morphology and CD8+ T cell stimulatory capacity of human dendritic cells. J. Immunol. 173, 1628–1639 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Eisensamer, B. et al. Antidepressants and antipsychotic drugs colocalize with 5-HT3 receptors in raft-like domains. J. Neurosci. 25, 10198–10206 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Menkes, D. B., Rasenick, M. M., Wheeler, M. A. & Bitensky, M. W. Guanosine triphosphate activation of brain adenylate cyclase: enhancement by long-term antidepressant treatment. Science 219, 65–67 (1983).

    Article  CAS  PubMed  Google Scholar 

  96. Donati, R. J. & Rasenick, M. M. G protein signaling and the molecular basis of antidepressant action. Life Sci. 73, 1–17 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Ehehalt, R., Keller, P., Haass, C., Thiele, C. & Simons, K. Amyloidogenic processing of the Alzheimer β-amyloid precursor protein depends on lipid rafts. J. Cell Biol. 160, 113–123 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Taylor, D. R. & Hooper, N. M. The prion protein and lipid rafts. Mol. Membr. Biol. 23, 89–99 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Dineley, K. T., Bell, K. A., Bui, D. & Sweatt, J. D. β-Amyloid peptide activates α 7 nicotinic acetylcholine receptors expressed in Xenopus oocytes. J. Biol. Chem. 277, 25056–25061 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Russelakis-Carneiro, M., Hetz, C., Maundrell, K. & Soto, C. Prion replication alters the distribution of synaptophysin and caveolin 1 in neuronal lipid rafts. Am. J. Pathol. 165, 1839–1848 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hashimoto, M., Takenouchi, T., Rockenstein, E. & Masliah, E. α-synuclein up-regulates expression of caveolin-1 and down-regulates extracellular signal-regulated kinase activity in B103 neuroblastoma cells: role in the pathogenesis of Parkinson's disease. J. Neurochem. 85, 1468–1479 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Suzuki, T. Lipid rafts at postsynaptic sites: distribution, function and linkage to postsynaptic density. Neurosci. Res. 44, 1–9 (2002).

    Article  PubMed  Google Scholar 

  103. Munro, S. Lipid rafts: elusive or illusive? Cell 115, 377–388 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Lichtenberg, D., Goni, F. M. & Heerklotz, H. Detergent-resistant membranes should not be identified with membrane rafts. Trends Biochem. Sci. 30, 430–436 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Douglass, A. D. & Vale, R. D. Single-molecule microscopy reveals plasma membrane microdomains created by protein–protein networks that exclude or trap signaling molecules in T cells. Cell 121, 937–950 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Brown, D. A. & Rose, J. K. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68, 533–544 (1992). Determined that, on entering the Golgi complex, GPI-anchored proteins are localized to glycolipid-rich membranes isolated by differential solubility in non-ionic detergents. This work provided the first reported method to isolate detergent-resistant membranes.

    Article  CAS  PubMed  Google Scholar 

  107. Song, K. S. e. a. Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent-free purification of caveolae microdomains. J. Biol. Chem. 271, 9690–9697 (1996). Introduced the non-detergent method of isolating lipid raft/caveolae membranes using sodium carbonate.

    Article  CAS  PubMed  Google Scholar 

  108. Parton, R. G., Hanzal-Bayer, M. & Hancock, J. F. Biogenesis of caveolae: a structural model for caveolin-induced domain formation. J. Cell Sci. 119, 787–796 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Marchand, S., Devillers-Thiery, A., Pons, S., Changeux, J. P. & Cartaud, J. Rapsyn escorts the nicotinic acetylcholine receptor along the exocytic pathway via association with lipid rafts. J. Neurosci. 22, 8891–8901 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Dalskov, S. M. et al. Lipid raft localization of GABAA receptor and Na+, K+-ATPase in discrete microdomain clusters in rat cerebellar granule cells. Neurochem. Int. 46, 489–499 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Suzuki, T. et al. Biochemical evidence for localization of AMPA-type glutamate receptor subunits in the dendritic raft. Brain Res. Mol. Brain Res. 89, 20–28 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Vial, C. & Evans, R. J. Disruption of lipid rafts inhibits P2X1 receptor-mediated currents and arterial vasoconstriction. J. Biol. Chem. 280, 30705–30711 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Zschocke, J., Bayatti, N. & Behl, C. Caveolin and GLT-1 gene expression is reciprocally regulated in primary astrocytes: association of GLT-1 with non-caveolar lipid rafts. Glia 49, 275–287 (2005).

    Article  PubMed  Google Scholar 

  114. Dessy, C., Kelly, R. A., Balligand, J. L. & Feron, O. Dynamin mediates caveolar sequestration of muscarinic cholinergic receptors and alteration in NO signaling. Embo J. 19, 4272–4280 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ostrom, R. S. et al. Receptor number and caveolar co-localization determine receptor coupling efficiency to adenylyl cyclase. J. Biol. Chem. 276, 42063–42069 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Bari, M., Battista, N., Fezza, F., Finazzi-Agro, A. & Maccarrone, M. Lipid rafts control signaling of type-1 cannabinoid receptors in neuronal cells. Implications for anandamide-induced apoptosis. J. Biol. Chem. 280, 12212–12220 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Genedani, S. et al. Computer-assisted image analysis of caveolin-1 involvement in the internalization process of adenosine A2A-dopamine D2 receptor heterodimers. J. Mol. Neurosci. 26, 177–184 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Becher, A., White, J. H. & McIlhinney, R. A. The γ-aminobutyric acid receptor B, but not the metabotropic glutamate receptor type-1, associates with lipid rafts in the rat cerebellum. J. Neurochem. 79, 787–795 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Becher, A. et al. Ectopically expressed γ-aminobutyric acid receptor B is functionally down-regulated in isolated lipid raft-enriched membranes. Biochem. Biophys. Res. Commun. 321, 981–987 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. Zhao, H., Loh, H. H. & Law, P. Y. Adenylyl cyclase superactivation induced by long-term treatment with opioid agonist is dependent on receptor localized within lipid rafts and is independent of receptor internalization. Mol. Pharmacol. 69, 1421–1432 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Dreja, K. et al. Cholesterol depletion disrupts caveolae and differentially impairs agonist-induced arterial contraction. Arterioscler. Thromb. Vasc. Biol. 22, 1267–1272 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. Navratil, A. M. et al. Constitutive localization of the gonadotropin-releasing hormone (GnRH) receptor to low density membrane microdomains is necessary for GnRH signaling to ERK. J. Biol. Chem. 278, 31593–31602 (2003).

    Article  CAS  PubMed  Google Scholar 

  123. Rimoldi, V. et al. Oxytocin receptor elicits different EGFR/MAPK activation patterns depending on its localization in caveolin-1 enriched domains. Oncogene 22, 6054–6060 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Waheed, A. A. & Jones, T. L. Hsp90 interactions and acylation target the G protein Gα 12 but not Gα 13 to lipid rafts. J. Biol. Chem. 277, 32409–32412 (2002).

    Article  CAS  PubMed  Google Scholar 

  125. Arni, S., Keilbaugh, S. A., Ostermeyer, A. G. & Brown, D. A. Association of GAP-43 with detergent-resistant membranes requires two palmitoylated cysteine residues. J. Biol. Chem. 273, 28478–28485 (1998).

    Article  CAS  PubMed  Google Scholar 

  126. Seno, K. et al. Light- and guanosine 5'-3-O-(thio)triphosphate-sensitive localization of a G protein and its effector on detergent-resistant membrane rafts in rod photoreceptor outer segments. J. Biol. Chem. 276, 20813–20816 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by research grants from the National Institutes of Health to M.M.R and by a National Institutes of Health Training Grant to J.A.A. and R.H. We thank R. Donati for valuable comments about this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark M. Rasenick.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

Alzheimer's disease

Bipolar affective disorder

Parkinson's disease

Schizophrenia

Unipolar depression

FURTHER INFORMATION

Rasenick's laboratory

Glossary

Triton X-100

A commonly used non-ionic surfactant detergent that solubilizes proteins and cell membranes.

Sucrose density gradient centrifugation

Separation of cell organelles and subcellular components from crude cellular extracts based on their buoyant density.

P2X purinoreceptor

A plasma membrane channel that is activated by the binding of ATP and is permeant to mono- and divalent cations.

Synaptosome

A preparation of elements of the presynaptic and postsynaptic terminal, isolated after subcellular fractionation. Synaptosomes retain some anatomical integrity and can take up, store and release neurotransmitters.

Heparan sulphate proteoglycans

A group of proteoglycans in which heparan sulphate chains are attached near the cell surface or on extracellular matrix proteins. Agrin is one such proteoglycan, named for its involvement in aggregation of acetylcholine receptors during synaptogenesis.

HEK293 cells

A hypotriploid human cell line derived from embryonic kidney epithelial cells; commonly used as an expression system to study signalling and recombinant proteins.

CHO cells

A chinese hamster ovary cell line often used as an expression system for studying cell signalling and recombinant proteins.

Bmax

A measure of the total number of receptors, determined by the binding of agonist or antagonist ligands. This number will reflect either surface receptors or surface plus internalized receptors depending on the chemical characteristics of the ligand.

RNA interference

(RNAi). A molecular method in which small interfering RNA sequences are introduced into cells or tissues, and subsequently silence the expression of target genes.

C6 glioma cells

A diploid rat cell line cloned from a glial tumour.

Palmitoylation

The covalent attachment of a palmitate (16-carbon saturated fatty acid) to a cysteine residue through a thioester bond.

Myristoylation

The covalent (and, in the case of a G protein, cotranslational) attachment of a hydrophobic myristoyl group to the amino-terminal glycine residue of a nascent polypeptide.

Liposome

A lipid vesicle artificially formed by sonicating lipids in an aqueous solution.

Scaffolding proteins

Proteins that organize groups of interacting intracellular signalling proteins into signalling complexes.

Second messengers

Small intracellular signalling molecules generated in large numbers in response to the primary message of a hormone or neurotransmitter.

Calcium wave

A phenomena by which calcium released from intracellular stores diffuses within a cell in a pattern of waves.

Microtubules

Hollow tubes, 25 nm in diameter, formed by the lateral association of 13 protofilaments which are themselves polymers of α- and β-tubulin subunits.

Colchicine

Alkaloid used to inhibit the polymerization of tubulin and cause the depolymerization of microtubules.

Postsynaptic density

An electron-dense thickening underneath the postsynaptic membrane at excitatory synapses that contains receptors, structural proteins linked to the actin cytoskeleton and signalling elements, such as kinases and phosphatases.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allen, J., Halverson-Tamboli, R. & Rasenick, M. Lipid raft microdomains and neurotransmitter signalling. Nat Rev Neurosci 8, 128–140 (2007). https://doi.org/10.1038/nrn2059

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2059

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing