Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ideas about pain, a historical view

Abstract

The expression 'painful' can be used to describe both an embarrassing moment and a cut on the finger. An explanation for this dichotomy can be found in the convoluted history of ideas about pain. Whether pain is an independent sensation and the product of dedicated neural mechanisms continues to be a topic of debate. This overview concentrates on the issue of specificity together with other notable information regarding pain that has emerged since 1800.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Theories of pain.
Figure 2: The compound action potential.
Figure 3: Peripheral sensitization of nociceptors.

References

  1. Dallenbach, K. M. Pain: history and present status. Am. J. Psychol. 3, 331–347 (1939).

    Article  Google Scholar 

  2. Keele, K. D. Anatomies of Pain (Charles C. Thomas, Springfield, Illinois, 1957).

    Google Scholar 

  3. Gruner, O. C. A Treatise on the Canon of Medicine of Avicenna, Incorporating a Translation of the First Book (Luzac & Co., London, 1930).

    Google Scholar 

  4. Craig, A. D. Pain mechanisms: labeled lines versus convergence in central processing. Annu. Rev. Neurosci. 26, 1–30 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Bell, C. Idea of a New Anatomy of the Brain; Submitted for the Observations of His Friends (Strahan and Preston, London, 1811).

    Google Scholar 

  6. Cranefield, P. F. The Way In and the Way Out: Francois Magendie, Charles Bell and the Roots of the Spinal Nerves (Futura Publishing Company, Mount Kisco, New York, 1974).

    Google Scholar 

  7. Müller, J. Handbuch der Physiologie des Menschen (J. Holscher, Koblenz, 1840) (in German).

    Google Scholar 

  8. Dubois-Reymond, E. Untersuchungen über thierische Elektricität (Georg Reimer, Berlin, 1848–1849) (in German).

    Google Scholar 

  9. Schiff, J. M. Lehrbuch der Physiologie des Menschen. Muskel und Nervenphysiologie (Schauenberg, Lahr, 1858) (in German).

    Google Scholar 

  10. Brown-Séquard, C. E. Course of Lectures on the Physiology and Pathology of the Central Nervous System (Collins, Philadelphia, 1860).

    Google Scholar 

  11. Brown-Séquard, C. E. Lectures on the physiology and pathology of the nervous system; and on the treatment of organic nervous affections. Lancet 2, 593–596 (1868).

    Article  Google Scholar 

  12. Gowers, W. R. A case of unilateral gunshot injury to the spinal cord. Trans. Clin. Lond. 11, 24–32 (1878).

    Google Scholar 

  13. Erb, W. Handbuch der Krankheiten des Nervensystems II (F. C. W. Vogel, Leipzig, 1874) (in German).

    Google Scholar 

  14. Blix, M. Experimentelle beiträge zur lösung der frage über die specifische energie der hautnerven. Z. Biol. 20, 141–156 (1884) (in German).

    Google Scholar 

  15. Goldscheider, A. Die specifische energie der gefühlsnerven der haut. Monatshft. Prak. Derm. 3, 283 (1884) (in German).

    Google Scholar 

  16. von Frey, M. Beiträge zur physiologie des schmerzsinns. Königl. Sächs. Ges. Wiss., Math. Phys. Classe 46, 185–196 (1894) (in German).

    Google Scholar 

  17. von Frey, M. Beiträge zur sinnesphysiologie der haut. Dritte mittheilung. Königl. Sächs. Ges. Wiss., Math. Phys. Classe 47, 166–184 (1895) (in German).

    Google Scholar 

  18. von Frey, M. Untersuchungen über der sinnesfunctionen der menschlichen haut. Erste ablandlung: druckempfindung und schmerz. Königl. Sächs. Ges. Wiss., Math. Phys. Classe 48, 175–266 (1896) (in German).

    Google Scholar 

  19. von Frey, M. Beiträge zur sinnesphysiologie der haut. Vierte mittheilung. Königl. Sächs. Ges. Wiss., Math. Phys. Classe 49, 462–468 (1897) (in German).

    Google Scholar 

  20. Sherrington, C. S. The Integrative Action of the Nervous System (Cambridge Univ. Press, Cambridge, UK, 1906).

    Google Scholar 

  21. Waldeyer, W. Über einige neurere forschungen in gebiete der anatomie des centralnervensystems. Deutsche Med. Wochenschr. 44, 1–64 (1891) (in German).

    Google Scholar 

  22. Edinger, L. Einigles von verlauf der gefühlsbahnen in centralen nervensysteme. Deutsche Med. Woch. 16, 421–426 (1890) (in German).

    Article  Google Scholar 

  23. Edinger, L. Zwölf Vorlesungen über den Bau der Nervösen Centralorgane. Für Ärzte und Studirende 150–153 (F. C. W. Vogel, Leipzig, 1892).

    Google Scholar 

  24. Bechterew, V. M. Les Voies de Conduction du Cerveau et de la Moelle (A. Maloine, Paris, 1900) (in French).

    Google Scholar 

  25. Spiller, W. G. & Martin, E. The treatment of persistent pain of organic origin in the lower part of the body by division of the anterolateral column of the spinal cord. J. Am. Med. Assoc. 58, 1489–1490 (1912).

    Article  Google Scholar 

  26. Dejerine, J. & Roussy, G. Le syndrome thalamique. Rev. Neurol. (Paris) 14, 521–532 (1906) (in French).

    Google Scholar 

  27. Head, H. & Holmes, G. Sensory disturbances from cerebral lesions. Brain 34, 102–254 (1911).

    Article  Google Scholar 

  28. Head, H., Rivers, W. H. R. & Sherren, J. The afferent nervous system from a new aspect. Brain 28, 99–115 (1905).

    Article  Google Scholar 

  29. Ranson, S. W. Unmyelinated nerve-fibres as conductors of protopathic sensation. Brain 38, 381–389 (1915).

    Article  Google Scholar 

  30. Erlanger, J., Gasser, H. S. & Bishop, G. H. The compound nature of the action current of nerve as disclosed by the cathode ray oscillograph. Am. J. Physiol. 70, 624–666 (1924).

    Article  Google Scholar 

  31. Heinbecker, P., Bishop, G. H. & O'Leary, J. Pain and touch fibers in peripheral nerves. Arch. Neurol. Psychiatry 29, 771–789 (1933).

    Article  Google Scholar 

  32. Zotterman, Y. Studies in the peripheral nervous mechanism of pain. Acta Med. Scand. 80, 1–64 (1933).

    Google Scholar 

  33. Clark, D., Hughes, J. & Gasser, H. S. Afferent function in the group of nerve fibers of slowest conduction velocity. Am. J. Physiol. 114, 69–76 (1935).

    Article  Google Scholar 

  34. Landau, W. & Bishop, G. H. Pain from dermal, periosteal, and fascial endings and from inflammation. AMA. Arch. Neurol. Psychiatry 69, 490–504 (1953).

    Article  CAS  PubMed  Google Scholar 

  35. Collins, W. F. Jr, Nulsen, F. E. & Randt, C. T. Relation of peripheral nerve fiber size and sensation in man. Arch. Neurol. 3, 381–385 (1960).

    Article  PubMed  Google Scholar 

  36. Lewis, T. & Pochin, E. E. The double pain response of the human skin to a single stimulus. Clin. Sci. 3, 67–76 (1937).

    Google Scholar 

  37. Adrian, E. D. & Zotterman, Y. The impulses produced by sensory nerve endings. Part 2. The response of a single end-organ. J. Physiol. 61, 11–171 (1926).

    Google Scholar 

  38. Nafe, J. P. A quantitative theory of feeling. J. Gen. Psychol. 2, 199–211 (1929).

    Article  Google Scholar 

  39. Zotterman, Y. Specific action potentials in the lingual nerve of cat. Skand. Arch. Physiol. 75, 105–120 (1936).

    Article  Google Scholar 

  40. Zotterman, Y. Touch, pain and tickling: and electrophysiological investigation on cutaneous sensory nerves. J. Physiol. 95, 1–28 (1939).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sinclair, D. C., Weddell, G. & Zander, E. The relationship of cutaneous sensibility to neurohistology in the human pinna. J. Anat. 86, 402–411 (1952).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Weddell, G. Somesthesis and the chemical senses. Ann. Rev. Psychol. 6, 119–136 (1955).

    Article  CAS  Google Scholar 

  43. Sinclair, D. C. Cutaneous sensation and the doctrine of specific energy. Brain 78, 584–614 (1955).

    Article  CAS  PubMed  Google Scholar 

  44. Lele, P. P. & Weddell, G. The relationship between neurohistology and corneal sensibility. Brain 79, 119–154 (1956).

    Article  CAS  PubMed  Google Scholar 

  45. Maruhashi, J., Mizuguchi, K. & Tasaki, I. Action currents in single afferent nerve fibres elicited by stimulation of the skin of the toad and the cat. J. Physiol. 117, 129–151 (1952).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Paintal, A. S. Functional analysis of group III afferent fibres of mammalian muscles. J. Physiol. 152, 250–270 (1960).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bessou, P. & Laporte, Y. Étude des récepteurs musculaires innervés par les fibres afférentes du groupe III (fibres myelinisées fines) chez le chat. Arch. Ital. Biol. 99, 293–321 (1961) (in French).

    Google Scholar 

  48. Hunt, C. C. & McIntyre, A. K. Properties of cutaneous touch receptors in cat. J. Physiol. 153, 88–98 (1960).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hunt, C. C. & McIntyre, A. K. An analysis of fibre diameter and receptor characteristics of myelinated cutaneous afferent fibers in cat. J. Physiol. 153, 99–112 (1960).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Iggo, A. Cutaneous heat and cold receptors with slowly conducting (C) afferent fibres. Quart. J. Exp. Physiol. 44, 362–370 (1959).

    Article  CAS  PubMed  Google Scholar 

  51. Iggo, A. Cutaneous mechanoreceptors with afferent C fibres. J. Physiol. 152, 337–353 (1960).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Iriuchijima, J. & Zotterman, Y. The specificity of afferent cutaneous C fibres in mammals. Acta. Physiol. Scand. 49, 267–278 (1960).

    Article  CAS  PubMed  Google Scholar 

  53. Melzack, R. & Wall, P. D. On the nature of cutaneous sensory mechanisms. Brain 85, 331–356 (1962).

    Article  CAS  PubMed  Google Scholar 

  54. Melzack, R. & Wall, P. D. Pain mechanisms: a new theory. Science 150, 971–979 (1965).

    Article  CAS  PubMed  Google Scholar 

  55. Eccles, R. M. & Lundberg, A. Supraspinal control of interneurones mediating spinal reflexes. J. Physiol. 147, 565–584 (1959).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kuno, M. & Perl, E. R. Alteration of spinal reflexes by interaction with suprasegmental and dorsal root activity. J. Physiol. 151, 103–122 (1960).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Burgess, P. R. & Perl, E. R. Myelinated afferent fibres responding specifically to noxious stimulation of the skin. J. Physiol. 190, 541–562 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Perl, E. R. Myelinated afferent fibres innervating the primate skin and their response to noxious stimuli. J. Physiol. 197, 593–615 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bessou, P. & Perl, E. R. Response of cutaneous sensory units with unmyelinated fibers to noxious stimuli. J. Neurophysiol. 32, 1025–1043 (1969).

    Article  CAS  PubMed  Google Scholar 

  60. Bessou, P., Burgess, P. R., Perl, E. R. & Taylor, C. B. Dynamic properties of mechanoreceptors with unmyelinated (C) fibers. J. Neurophysiol. 34, 116–131 (1971).

    Article  CAS  PubMed  Google Scholar 

  61. Caterina, M. J. et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816–824 (1997).

    Article  CAS  PubMed  Google Scholar 

  62. Ritter, A. M. & Mendell, L. M. Somal membrane properties of physiologically identified sensory neurons in the rat: effects of nerve growth factor. J. Neurophysiol. 68, 2033–2041 (1992).

    Article  CAS  PubMed  Google Scholar 

  63. Hökfelt, T., Kellerth, J. O., Nilsson, G. & Pernow, B. Substance P: localization in the central nervous system and in some primary sensory neurons. Science 190, 889–890 (1975).

    Article  PubMed  Google Scholar 

  64. Perl, E. R. in The Nervous System. (ed. Darian-Smith, I.) 915–975; Series, Handbook of Physiology (eds Brookhart, J. M. & Mountcastle, V. B.) (American Physiological Society, Bethesda, Maryland, 1984).

    Google Scholar 

  65. Lawson, S. N. in Peripheral Neuropathy (eds Dyck, P. J. & Thomas, P. K.) 163–202 (Saunders, Philadelphia, 2005).

    Book  Google Scholar 

  66. Light, A. R. & Perl, E. R. Spinal termination of functionally identified primary afferent neurons with slowly conducting myelinated fibers. J. Comp. Neurol. 186, 133–150 (1979).

    Article  CAS  PubMed  Google Scholar 

  67. Sugiura, Y., Lee, C. L. & Perl, E. R. Central projections of identified, unmyelinated (C) afferent fibers innervating mammalian skin. Science 234, 358–361 (1986).

    Article  CAS  PubMed  Google Scholar 

  68. Echlin, F. & Propper, N. 'Sensitization' by injury of the cutaneous nerve endings in the frog. J. Physiol. 88, 388–400 (1936).

    Article  Google Scholar 

  69. Witt, I. & Griffin, J. P. Afferent cutaneous C-fibre reactivity to repeated thermal stimuli. Nature 194, 776–777 (1962).

    Article  CAS  PubMed  Google Scholar 

  70. Belmonte, C. & Cervero, F. Neurobiology of Nociceptors (Oxford Univ. Press, Oxford, 1996).

    Book  Google Scholar 

  71. Lewis, T. Pain (Macmillan, New York, 1942).

    Google Scholar 

  72. Hardy, J. D., Woolf, H. G. & Goodell, H. Pain Sensations and Reactions (Williams and Wilkins, Baltimore, Maryland, 1952).

    Google Scholar 

  73. Schaible, H. G. & Grubb, B. D. Afferent and spinal mechanisms of joint pain. Pain 55, 5–54 (1993).

    Article  CAS  PubMed  Google Scholar 

  74. Schmidt, R. F. & Schaible, H.-G. in Cellular Mechanisms of Sensory Processing (ed. Urban, L.) 289–296 (Springer, Berlin, 1994).

    Book  Google Scholar 

  75. Schaible, H.-G. & Schmidt, R. F. in Neurobiology of Nociceptors (eds Belmonte, C. & Cervero, F.) 202–219 (Oxford Univ. Press, Oxford, 1996).

    Google Scholar 

  76. Dubner, R., Price, D. D., Beitel, R. E. & Hu, J. W. in Pain in the Trigeminal Region (eds Anderson, D. J. & Matthews, B.) 57–66 (Elsevier/North-Holland Biomedical Press, Amsterdam, 1977).

    Google Scholar 

  77. Torebjörk, H. E. Afferent C units responding to mechanical, thermal and chemical stimuli in human non-glabrous skin. Acta Physiol. Scand. 92, 374–390 (1974).

    Article  PubMed  Google Scholar 

  78. Hagbarth, K. E., Hongell, A., Hallin, R. G. & Torebjörk, H. E. Afferent impulses in median nerve fascicles evoked by tactile stimuli of the human hand. Brain Res. 24, 423–442 (1970).

    Article  CAS  PubMed  Google Scholar 

  79. Torebjörk, H. E. & Ochoa, J. Specific sensations evoked by activity in single identified sensory units in man. Acta Physiol. Scand. 110, 445–447 (1980).

    Article  PubMed  Google Scholar 

  80. Konietzny, F., Perl, E. R., Trevino, D., Light, A. & Hensel, H. Sensory experiences in man evoked by intraneural electrical stimulation of intact cutaneous afferent fibers. Exp. Brain Res. 42, 219–222 (1981).

    Article  CAS  PubMed  Google Scholar 

  81. Ochoa, J. & Torebjörk, E. Sensations evoked by intraneural microstimulation of single mechanoreceptor units innervating the human hand. J. Physiol. 342, 633–654 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wall, P. D. & McMahon, S. B. Microneurography and its relation to perceived sensation. A critical review. Pain 21, 209–229 (1985).

    Article  CAS  PubMed  Google Scholar 

  83. Torebjörk, H. E., Vallbo, Å. B. & Ochoa, J. L. Intraneural microstimulation in man. Its relation to specificity of tactile sensations. Brain 110, 1509–1529 (1987).

    Article  PubMed  Google Scholar 

  84. Christensen, B. N. & Perl, E. R. Spinal neurons specifically excited by noxious or thermal stimuli: marginal zone of the dorsal horn. J. Neurophysiol. 33, 293–307 (1970).

    Article  CAS  PubMed  Google Scholar 

  85. Kumazawa, T. & Perl, E. R. Excitation of marginal and substantia gelatinosa neurons in the primate spinal cord: indication of their place in dorsal horn functional organization. J. Comp. Neurol. 177, 417–434 (1978).

    Article  CAS  PubMed  Google Scholar 

  86. Light, A. R. The Initial Processing of Pain and its Descending Control: Spinal and Trigeminal Systems (ed. Reichmann, H.) (S. Karger AG, Basel, 1992).

    Google Scholar 

  87. Foerster, O. & Gagel, O. Die vorderseitenstrangdurch-schneidung beim menschen. Eine klinisch-patho-physiologische-anatomische studie. Z. ges. Neurol. Psychiat. 138, 1–92 (1932) (in German).

    Article  Google Scholar 

  88. Kuru, M. The Sensory Paths in the Spinal Cord and Brain Stem of Man (Sogensya, Tokyo, 1949).

    Google Scholar 

  89. Willis, W. D., Kenshalo, D. R. Jr & Leonard, R. B. The cells of origin of the primate spinothalamic tract. J. Comp. Neurol. 188, 543–573 (1979).

    Article  CAS  PubMed  Google Scholar 

  90. Mendell, L. M. Physiological properties of unmyelinated fiber projection to the spinal cord. Exp. Neurol. 16, 316–332 (1966).

    Article  CAS  PubMed  Google Scholar 

  91. Mayer, D. J., Price, D. D. & Becker, D. P. Neurophysiological characterization of the anterolateral spinal cord neurons contributing to pain perception in man. Pain 1, 51–58 (1975).

  92. Price, D. D. & Mayer, D. J. Neurophysiological characterization of the anterolateral quadrant neurons subserving pain in M. mulatta. Pain 1, 59–72 (1975).

    Article  CAS  PubMed  Google Scholar 

  93. Willis, W. D. The Pain System (Karger, Basel, 1985).

    Google Scholar 

  94. Perl, E. R. in Somatosensory Mechanisms (eds Euler, C. N., Franzin, O., Lindblom, U. & Ottoson, J. D.) 1–21 (Plenum, New York, 1984).

    Google Scholar 

  95. Willis, W. D. & Westlund, K. N. Neuroanatomy of the pain system and of the pathways that modulate pain. J. Clin. Neurophysiol. 14, 2–31 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Dostrovsky, J. O. in Nervous System Plasticity and Chronic Pain (eds Sandkuhler, J., Bromm, B. & Gebhart, G. F.) 245–258 (Elsevier, Amsterdam, 2000).

    Book  Google Scholar 

  97. Woolf, C. J. Evidence for a central component of post-injury pain hypersensitivity. Nature 306, 686–688 (1983).

    Article  CAS  PubMed  Google Scholar 

  98. Ji, R. R., Kohno, T., Moore, K. A. & Woolf, C. J. Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci. 26, 696–705 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Lever, I. J. et al. Brain-derived neurotrophic factor is released in the dorsal horn by distinctive patterns of afferent fiber stimulation. J. Neurosci. 21, 4469–4477 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mantyh, P. W. et al. Receptor endocytosis and dendrite reshaping in spinal neurons after somatosensory stimulation. Science 268, 1629–1632 (1995).

    Article  CAS  PubMed  Google Scholar 

  101. Trevino, D. L., Maunz, R. A., Bryan, R. N. & Willis, W. D. Location of cells of origin of the spinothalamic tract in the lumbar enlargement of cat. Exp. Neurol. 34, 64–77 (1972).

    Article  CAS  PubMed  Google Scholar 

  102. Trevino, D. L. & Carstens, E. Confirmation of the location of spinothalamic neurons in the cat and monkey by the retrograde transport of horseradish peroxidase. Brain Res. 98, 177–182 (1975).

    Article  CAS  PubMed  Google Scholar 

  103. Dilly, P. N., Wall, P. D. & Webster, K. E. Cells of origin of the spinothalamic tract in the cat and rat. Exp. Neurol. 21, 550–562 (1968).

    Article  CAS  PubMed  Google Scholar 

  104. Mehler, W. R. in Basic Research in Paraplegia (eds French, J. D. & Porter, R. W.) 26–55 (Charles C. Thomas, Springfield, Illinois, 1962).

    Google Scholar 

  105. Mehler, W. R., Feferman, M. E. & Nauta, W. J. H. Ascending axon degeneration following anterolateral cordotomy. An experimental study in the monkey. Brain 83, 718–750 (1960).

    Article  CAS  PubMed  Google Scholar 

  106. Hirshberg, R. M., Al-Chaer, E. D., Lawand, N. B., Westlund, K. N. & Willis, W. D. Is there a pathway in the posterior funiculus that signals visceral pain? Pain 67, 291–305 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Al-Chaer, E. D., Lawand, N. B., Westlund, K. N. & Willis, W. D. Pelvic visceral input into the nucleus gracilis is largely mediated by the postsynaptic dorsal column pathway. J. Neurophysiol. 76, 2675–2690 (1996).

    Article  CAS  PubMed  Google Scholar 

  108. Al-Chaer, E. D., Lawand, N. B., Westlund, K. N. & Willis, W. D. Visceral nociceptive input into the ventral posterolateral nucleus of the thalamus: a new function for the dorsal column pathway. J. Neurophysiol. 76, 2661–2674 (1996).

    Article  CAS  PubMed  Google Scholar 

  109. Hitchcock, E. Stereotactic cervical myelotomy. J. Neurol. Neurosurg. Psychiatry 33, 224–230 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Burstein, R., Cliffer, K. D. & Giesler, G. J. Jr. Direct somatosensory projections from the spinal cord to the hypothalamus and telencephalon. J. Neurosci. 7, 4159–4164 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bernard, J. F. & Besson, J. M. The spino(trigemino)pontoamygdaloid pathway: electrophysiological evidence for an involvement in pain processes. J. Neurophysiol. 63, 473–490 (1990).

    Article  CAS  PubMed  Google Scholar 

  112. Cliffer, K. D., Burstein, R. & Giesler, G. J. Jr. Distributions of spinothalamic, spinohypothalamic, and spinotelencephalic fibers revealed by anterograde transport of PHA-L in rats. J. Neurosci. 11, 852–868 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Craig, A. D., Bushnell, M. C., Zhang, E. T. & Blomqvist, A. A thalamic nucleus specific for pain and temperature sensation. Nature 372, 770–773 (1994).

    Article  CAS  PubMed  Google Scholar 

  114. Graziano, A. & Jones, E. G. Widespread thalamic terminations of fibers arising in the superficial medullary dorsal horn of monkeys and their relation to calbindin immunoreactivity. J. Neurosci. 24, 248–256 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Head, H. Studies in Neurology (Oxford Univ. Press, London, 1920).

    Google Scholar 

  116. Penfield, W. & Boldrey, E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60, 389–443 (1937).

    Article  Google Scholar 

  117. Dejerine, J. & Mouzon, J. Un nouveau type de syndrome sensitif cortical observé dans un cas de monoplégie corticale dissociés. Rev. Neurol. 18, 1265–1273 (1915) (in French).

    Google Scholar 

  118. Kleist, K. in Handbuch der Artzlichen Erfahrungen im Weltkriege 1914–1918 Geistesund Nervenkrankheiten (ed. von Schjerning, O.) 343–1393 (Barth, Leipzig, 1934).

    Google Scholar 

  119. Russell, W. R. Transient disturbances following gunshot wounds of the head. Brain 68, 6–97 (1945).

  120. Marshall, J. Sensory disturbances in cortical wounds with special reference to pain. J. Neurol. Neurosurg. Psychiatry 14, 187–204 (1951).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Derbyshire, S. W. G. et al. Pain processing during three levels of noxious stimulation produces differential patterns of central activity. Pain 73, 431–445 (1997).

    Article  CAS  PubMed  Google Scholar 

  122. Derbyshire, S. W. G. & Jones, A. K. P. Cerebral responses to a continual tonic pain stimulus measured using positron emission tomography. Pain 76, 127–135 (1998).

    Article  CAS  PubMed  Google Scholar 

  123. Tommerdahl, M., Delemos, K. A., Vierck, C. J. Jr, Favorov, O. V. & Whitsel, B. L. Anterior parietal cortical response to tactile and skin-heating stimuli applied to the same skin site. J. Neurophysiol. 75, 2662–2670 (1996).

    Article  CAS  PubMed  Google Scholar 

  124. Rainville, P., Duncan, G. H., Price, D. D., Carrier, B. & Bushnell, M. C. Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 277, 968–971 (1997).

    Article  CAS  PubMed  Google Scholar 

  125. Craig, A. D., Chen, K., Bandy, D. & Reiman, E. M. Thermosensory activation of insular cortex. Nature Neurosci. 3, 184–190 (2000).

    Article  CAS  PubMed  Google Scholar 

  126. Brooks, J. C., Nurmikko, T. J., Bimson, W. E., Singh, K. D. & Roberts, N. fMRI of thermal pain: effects of stimulus laterality and attention. Neuroimage 15, 293–301 (2002).

    Article  PubMed  Google Scholar 

  127. Davis, K. D., Taylor, S. J., Crawley, A. P., Wood, M. L. & Mikulis, D. J. Functional MRI of pain- and attention-related activations in the human cingulate cortex. J. Neurophysiol. 77, 3370–3380 (1997).

    Article  CAS  PubMed  Google Scholar 

  128. Derbyshire, S. W. G., Vogt, B. A. & Jones, A. K. P. Pain and stroop interference tasks activate separate processing modules in anterior cingulate cortex. Exp. Brain Res. 118, 52–60 (1998).

    Article  CAS  PubMed  Google Scholar 

  129. Reynolds, D. V. Surgery in the rat during electrical analgesia induced by focal brain stimulation. Science 164, 444–445 (1969).

    Article  CAS  PubMed  Google Scholar 

  130. Mason, P. Deconstructing endogenous pain modulations. J. Neurophysiol. 94, 1659–1663 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Pert, C. B. & Snyder, S. H. Opiate receptor: demonstration in nervous tissue. Science 179, 1011–1014 (1973).

    Article  CAS  PubMed  Google Scholar 

  132. Hughes, J. Isolation of an endogenous compound from the brain with pharmacological properties similar to morphine. Brain Res. 88, 295–308 (1975).

    Article  CAS  PubMed  Google Scholar 

  133. Kosterlitz, H. W. & Hughes, J. Some thoughts on the significance of enkephalin, the endogenous ligand. Life Sci. 17, 91–96 (1975).

    Article  CAS  PubMed  Google Scholar 

  134. Simantov, R. & Snyder, S. H. Morphine-like peptides in mammalian brain: isolation, structure elucidation, and interactions with the opiate receptor. Proc. Natl Acad. Sci. 73, 2515–2519 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Gasser, H. S. & Erlanger, J. The role played by the sizes of the constituent fibers of a nerve trunk in determining the form of its action potential wave. Am. J. Physiol. 80, 522–547 (1927).

    Article  Google Scholar 

  136. Erlanger, J. & Gasser, H. S. The action potential in fibers of slow conduction in spinal roots and somatic nerves. Am. J. Physiol. 92, 43–82 (1930).

    Article  Google Scholar 

  137. Erlanger, J. & Gasser, H. S. Electrical Signs of Nervous Activity (Univ. Pennsylvania Press, Philadelphia, 1937).

    Book  Google Scholar 

  138. Gasser H. S. The classification of nerve fibres. Ohio J. Sci. 41, 145–159 (1941).

    Google Scholar 

  139. Gasser H. S. & Grundfest H. Axon diameters in relation to the spike dimension and the conduction velocity in mammalian A fibres. Am. J. Physiol. 127, 393–414 (1939).

    Article  Google Scholar 

  140. Kumazawa, T. & Perl, E. R. Primate cutaneous sensory units with unmyelinated (C) afferent fibres. J. Neurophysiol. 40, 1325–1338 (1977).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I am very grateful to B. Taylor-Blake for her invaluable help with the bibliography and preparation of the manuscript. Support for the preparation of this article was provided by a grant from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Perl's homepage

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Perl, E. Ideas about pain, a historical view. Nat Rev Neurosci 8, 71–80 (2007). https://doi.org/10.1038/nrn2042

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2042

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing