Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The mirror neuron system and the consequences of its dysfunction

Key Points

  • Mirror neurons are cells located in the premotor and posterior parietal cortex of the macaque brain. These cells fire when the monkey performs a goal-directed action and when it sees somebody else performing the same action.

  • Two areas of the macaque brain contain mirror neurons, area F5 in the inferior frontal cortex and area PF/PFG in the inferior parietal cortex. These areas are anatomically interconnected and embedded in parallel frontoparietal networks for sensorimotor integration.

  • Mirror neurons in monkeys also respond to the sound of actions, and code the intention associated with the observed action. This suggests that the mirror neuron system (MNS) is a key neural system for social cognition.

  • In humans, mirror neuron areas are located in the posterior inferior frontal gyrus and adjacent ventral premotor cortex, and in the rostral part of the inferior parietal lobule. The human MNS is causally related to imitation, a crucial factor for social interactions and learning.

  • The human MNS is also concerned with other aspects of social cognition, from understanding the intentions of other people to empathizing with them. Through interactions with the limbic system, the human MNS allows the understanding of emotional states of other people.

  • Evidence of MNS abnormalities in autism spectrum disorder (ASD) is provided by structural MRI, magnetoencephalography, electroencephalography, transcranial magnetic stimulation and functional MRI (fMRI). fMRI data show that children with ASD have reduced MNS activity during social mirroring and that MNS activity correlates with the severity of disease: the higher the impairment, the lower the MNS activity in ASD.

Abstract

The discovery of premotor and parietal cells known as mirror neurons in the macaque brain that fire not only when the animal is in action, but also when it observes others carrying out the same actions provides a plausible neurophysiological mechanism for a variety of important social behaviours, from imitation to empathy. Recent data also show that dysfunction of the mirror neuron system in humans might be a core deficit in autism, a socially isolating condition. Here, we review the neurophysiology of the mirror neuron system and its role in social cognition and discuss the clinical implications of mirror neuron dysfunction.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Neural circuitry for imitation.
Figure 2: Mirror neurons in area F5.
Figure 3: The human mirror neuron system and imitation.
Figure 4: Grasping intentions with mirror neurons.
Figure 5: The human mirror neuron system and autism.

References

  1. Hurley, S. & Chater, N. Perspective on Imitation: From Neuroscience to Social Science (MIT Press, Cambridge, Massachusetts, 2005).

    Book  Google Scholar 

  2. Meltzoff, A. N. & Prinz, W. The Imitative Mind: Development, Evolution and Brain Bases (Cambridge Univ. Press, Cambridge, 2002).

    Book  Google Scholar 

  3. Rizzolatti, G & Craighero L. The mirror-neuron system. Annu. Rev. Neurosci. 27, 169–192 (2004).

    CAS  Article  PubMed  Google Scholar 

  4. Hatfield, E., Cacioppo, J. T. & Rapson, R. L. Emotional Contagion (Cambridge Univ. Press, Paris, 1994).

    Google Scholar 

  5. Williams, J. H., Whiten, A., Suddendorf, T. & Perrett, D. I. Imitation, mirror neurons and autism. Neurosci. Biobehav. Rev. 25, 287–295 (2001).

    CAS  PubMed  Article  Google Scholar 

  6. Rizzolatti, G. & Luppino, G. The cortical motor system. Neuron 31, 889–901 (2001).

    CAS  Article  PubMed  Google Scholar 

  7. Rizzolatti, G., Luppino, G. & Matelli, M. The organization of the cortical motor system: new concepts. Electroencephalogr. Clin. Neurophysiol. 106, 283–296 (1998).

    CAS  Article  PubMed  Google Scholar 

  8. Matelli, M., Luppino, G. & Rizzolatti, G. Patterns of cytochrome oxidase activity in the frontal agranular cortex of the macaque monkey. Behav. Brain Res. 18, 125–136 (1985).

    CAS  PubMed  Article  Google Scholar 

  9. Gentilucci, M. et al. Functional organization of inferior area 6 in the macaque monkey. I. Somatotopy and the control of proximal movements. Exp. Brain Res. 71, 475–490 (1988).

    CAS  PubMed  Article  Google Scholar 

  10. Graziano, M. S. & Gross, C. G. Spatial maps for the control of movement. Curr. Opin. Neurobiol. 8, 195–201 (1998).

    CAS  Article  PubMed  Google Scholar 

  11. Graziano, M. S. & Cooke, D. F. Parieto-frontal interactions, personal space, and defensive behavior. Neuropsychologia 44, 845–859 (2006).

    PubMed  Article  Google Scholar 

  12. Rizzolatti, G., Scandolara, C., Matelli, M. & Gentilucci, M. Afferent properties of periarcuate neurons in macaque monkeys. II. Visual responses. Behav. Brain Res. 2, 147–163 (1981).

    CAS  Article  PubMed  Google Scholar 

  13. Rizzolatti, G., Scandolara, C., Matelli, M. & Gentilucci, M. Afferent properties of periarcuate neurons in macaque monkeys. I. Somatosensory responses. Behav. Brain Res. 2, 125–146 (1981).

    CAS  PubMed  Article  Google Scholar 

  14. Graziano, M. S., Taylor, C. S., Moore, T. & Cooke, D. F. The cortical control of movement revisited. Neuron 36, 349–362 (2002).

    CAS  Article  PubMed  Google Scholar 

  15. Sakata, H., Taira, M., Kusunoki, M., Murata, A. & Tanaka, Y. The TINS Lecture. The parietal association cortex in depth perception and visual control of hand action. Trends Neurosci. 20, 350–357 (1997).

    CAS  Article  PubMed  Google Scholar 

  16. Jeannerod, M., Arbib, M. A., Rizzolatti, G. & Sakata, H. Grasping objects: the cortical mechanisms of visuomotor transformation. Trends Neurosci. 18, 314–320 (1995).

    CAS  Article  PubMed  Google Scholar 

  17. Raos, V., Umiltá, M. A., Murata, A., Fogassi, L. & Gallese, V. Functional properties of grasping-related neurons in the ventral premotor area F5 of the macaque monkey. J. Neurophysiol. 95, 709–729 (2006).

    PubMed  Article  Google Scholar 

  18. Fogassi, L. & Luppino, G. Motor functions of the parietal lobe. Curr. Opin. Neurobiol. 15, 626–631 (2005).

    CAS  PubMed  Article  Google Scholar 

  19. Gallese, V., Fadiga, L., Fogassi, L. & Rizzolatti, G. Action recognition in the premotor cortex. Brain 119, 593–609 (1996). The first full report on mirror neurons in monkeys studied with single-cell recordings. It provides a detailed description of the basic properties of mirror neurons in area F5.

    PubMed  Article  Google Scholar 

  20. Ferrari, P. F. et al. Neonatal imitation in rhesus macaques. PLoS Biol. 4, e302 (2006). This behavioural study shows that infant monkeys can imitate facial and hand gestures, thereby demonstrating that imitative capacities are neither uniquely human nor restricted to great apes in other primates.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  21. Paukner, A., Anderson, J. R., Borelli, E., Visalberghi, E. & Ferrari, P. F. Macaques (Macaca nemestrina) recognize when they are being imitated. Biol. Lett. 1, 219–222 (2005).

    PubMed  PubMed Central  Article  Google Scholar 

  22. di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V. & Rizzolatti, G. Understanding motor events: a neurophysiological study. Exp. Brain Res. 91, 176–180 (1992).

    CAS  PubMed  Article  Google Scholar 

  23. Umiltà, M. A. et al. I know what you are doing. A neurophysiological study. Neuron 31, 155–165 (2001).

    PubMed  Article  Google Scholar 

  24. Kohler, E. et al. Hearing sounds, understanding actions: action representation in mirror neurons. Science 297, 846–848 (2002).

    CAS  Article  PubMed  Google Scholar 

  25. Keysers, C. et al. Audiovisual mirror neurons and action recognition. Exp. Brain Res. 153, 628–636 (2003).

    CAS  PubMed  Article  Google Scholar 

  26. Fogassi, L. et al. Parietal lobe: from action organization to intention understanding. Science 308, 662–667 (2005). This single-cell recording study of area PF of the macaque shows that mirror neurons do not simply code the observed action, but rather the intention associated with it, thereby predicting probable future actions.

    CAS  PubMed  Article  Google Scholar 

  27. Ferrari, P. F., Gallese, V., Rizzolatti, G. & Fogassi, L. Mirror neurons responding to the observation of ingestive and communicative mouth actions in the monkey ventral premotor cortex. Eur. J. Neurosci. 17, 1703–1714 (2003).

    PubMed  Article  Google Scholar 

  28. Ferrari, P. F., Rozzi, S. & Fogassi, L. Mirror neurons responding to observation of actions made with tools in monkey ventral premotor cortex. J. Cogn. Neurosci. 17, 212–226 (2005).

    PubMed  Article  Google Scholar 

  29. Fadiga, L., Fogassi, L., Pavesi, G. & Rizzolatti, G. Motor facilitation during action observation: a magnetic stimulation study. J. Neurophysiol. 73, 2608–2611 (1995).

    CAS  PubMed  Article  Google Scholar 

  30. Rizzolatti, G. et al. Localization of grasp representations in humans by PET: 1. Observation versus execution. Exp. Brain Res. 111, 246–252 (1996).

    CAS  PubMed  Article  Google Scholar 

  31. Logothetis, N. K. & Wandell, B. A. Interpreting the BOLD signal. Annu, Rev. Physiol. 66, 735–769 (2004).

    CAS  Article  Google Scholar 

  32. Mukamel, R. et al. Coupling between neuronal firing, field potentials, and fMRI in human auditory cortex. Science 309, 951–954 (2005).

    CAS  PubMed  Article  Google Scholar 

  33. Iacoboni, M. et al. Cortical mechanisms of human imitation. Science 286, 2526–2528 (1999). This fMRI study of imitation of hand actions shows that the human inferior frontal cortex (Broca's area) and rostral posterior parietal cortex have mirror neuron properties, showing activation during observation and execution of action, and increased activation during imitation.

    CAS  Article  PubMed  Google Scholar 

  34. Heiser, M., Iacoboni, M., Maeda, F., Marcus, J. & Mazziotta, J. C. The essential role of Broca's area in imitation. Eur. J. Neurosci. 17, 1123–1128 (2003). In this repetitive TMS study, a transient lesion induced in Broca's area caused imitative deficits. This study shows that the activation of Broca's area during imaging studies of imitation is not epiphenomenal, but rather causally related to imitation.

    PubMed  Article  Google Scholar 

  35. Wapner, S. & Cirillo, L. Imitation of a model's hand movement: age changes in transposition of left-right relations. Child Dev. 39, 887–894 (1968).

    CAS  PubMed  Article  Google Scholar 

  36. Koski, L., Iacoboni, M., Dubeau, M. C., Woods, R. P. & Mazziotta, J. C. Modulation of cortical activity during different imitative behaviors. J. Neurophysiol. 89, 460–471 (2003).

    PubMed  Article  Google Scholar 

  37. Bekkering, H., Wohlschlager, A. & Gattis, M. Imitation of gestures in children is goal-directed. Quart. J. Exp. Psychol. 53, 153–164 (2000).

    CAS  Article  Google Scholar 

  38. Koski, L. et al. Modulation of motor and premotor activity during imitation of target-directed actions. Cereb. Cortex 12, 847–855 (2002).

    PubMed  Article  Google Scholar 

  39. Chaminade, T., Meltzoff, A. N. & Decety, J. Does the end justify the means? A PET exploration of the mechanisms involved in human imitation. Neuroimage 15, 318–328 (2002).

    PubMed  Article  Google Scholar 

  40. Chaminade, T., Meltzoff, A. N. & Decety, J. An fMRI study of imitation: action representation and body schema. Neuropsychologia 43, 115–127 (2005).

    PubMed  PubMed Central  Article  Google Scholar 

  41. Iacoboni M. Neural mechanisms of imitation. Curr. Opin. Neurobiol. 15, 632–637 (2005).

    CAS  PubMed  Article  Google Scholar 

  42. Iacoboni, M. et al. Reafferent copies of imitated actions in the right superior temporal cortex. Proc. Natl Acad. Sci. USA 98, 13995–13999 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. Catani, M., Jones, D. K. & Ffytche, D. H. Perisylvian language networks of the human brain. Ann. Neurol. 57, 8–16 (2005).

    PubMed  Article  Google Scholar 

  44. Baird, A. A., Colvin, M. K., Vanhorn, J. D., Inati, S. & Gazzaniga, M. S. Functional connectivity: integrating behavioral, diffusion tensor imaging, and functional magnetic resonance imaging data sets. J. Cogn. Neurosci. 17, 687–693 (2005).

    PubMed  Article  Google Scholar 

  45. Buccino, G. et al. Neural circuits underlying imitation learning of hand actions: an event-related fMRI study. Neuron 42, 323–334 (2004).

    CAS  PubMed  Article  Google Scholar 

  46. Molnar-Szakacs, I., Iacoboni, M., Koski, L. & Mazziotta, J. C. Functional segregation within pars opercularis of the inferior frontal gyrus: evidence from fMRI studies of imitation and action observation. Cereb. Cortex 15, 986–994 (2005).

    PubMed  Article  Google Scholar 

  47. Wolpert, D. M., Ghahramani, Z. & Flanagan, J. R. Perspectives and problems in motor learning. Trends Cogn. Sci. 5, 487–494 (2001).

    PubMed  Article  Google Scholar 

  48. Carr, L., Iacoboni, M., Dubeau, M. C., Mazziotta, J. C. & Lenzi, G. L. Neural mechanisms of empathy in humans: a relay from neural systems for imitation to limbic areas. Proc. Natl Acad. Sci. USA 100, 5497–5502 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. Chartrand, T. L. & Bargh, J. A. The chameleon effect: the perception-behavior link and social interaction. J. Pers. Soc. Psychol. 76, 893–910 (1999).

    CAS  PubMed  Article  Google Scholar 

  50. Augustine, J. R. Circuitry and functional aspects of the insular lobes in primates including humans. Brain Res. Rev. 2, 229–294 (1996).

    Article  Google Scholar 

  51. Avenanti, A., Bueti, D., Galati, G. & Aglioti, S. M. Transcranial magnetic stimulation highlights the sensorimotor side of empathy for pain. Nature Neurosci. 8, 955–960 (2005).

    CAS  PubMed  Article  Google Scholar 

  52. Wicker, B. et al. Both of us disgusted in My insula: the common neural basis of seeing and feeling disgust. Neuron 40, 655–664 (2003).

    CAS  PubMed  Article  Google Scholar 

  53. Leslie, K. R., Johnson-Frey, S. H. & Grafton, S. T. Functional imaging of face and hand imitation: towards a motor theory of empathy. Neuroimage 21, 601–607 (2004).

    PubMed  Article  Google Scholar 

  54. Gallese, V. & Goldman, A. Mirror neurons and the simulation theory of mind-reading. Trends Cogn. Sci. 2, 493–501 (1998).

    CAS  Article  PubMed  Google Scholar 

  55. Iacoboni, M. et al. Grasping the intentions of others with one's own mirror neuron system. PLoS Biol. 3, e79 (2005). This fMRI study shows that the right inferior frontal mirror neuron area responds differently to the sight of the same grasping action embedded in different contexts suggesting different intentions. This demonstrates that the MNS codes the intention of the observed action.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  56. Iacoboni, M. et al. Watching social interactions produces dorsomedial prefrontal and medial parietal BOLD fMRI signal increases compared to a resting baseline. Neuroimage 21, 1167–1173 (2004).

    PubMed  Article  Google Scholar 

  57. Uddin, L. Q., Kaplan, J. T., Molnar-Szakacs, I., Zaidel, E. & Iacoboni, M. Self-face recognition activates a frontoparietal 'mirror' network in the right hemisphere: an event-related fMRI study. Neuroimage 25, 926–935 (2005).

    PubMed  Article  Google Scholar 

  58. Uddin, L., Molnar-Szakacs, I., Zaidel, E. & Iacoboni, M. rTMS to the right inferior parietal area disrupts self–other discrimination. Soc. Cogn. Affect. Neurosci. 1, 65–71 (2006).

    PubMed  PubMed Central  Article  Google Scholar 

  59. Urgesi, C., Moro, V., Candidi, M. & Aglioti, S. M. Mapping implied body actions in the human motor system. J. Neurosci. 26, 7942–7949 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  60. Asendorpf, J. B. & Baudonniere, P.-M. Self-awareness and other-awareness: mirror self-recognition and synchronic imitation among unfamiliar peers. Dev. Psychol. 29, 88–95 (1993).

    Article  Google Scholar 

  61. Calvo-Merino, B., Glaser, D. E., Grèzes, J., Passingham, R. E. & Haggard, P. Action observation and acquired motor skills: an fMRI study with expert dancers. Cereb. Cortex 15, 1243–1249 (2005).

    CAS  PubMed  Article  Google Scholar 

  62. Buccino, G. et al. Neural circuits involved in the recognition of actions performed by nonconspecifics: an fMRI study. J. Cogn. Neurosci. 16, 114–126 (2004).

    PubMed  Article  Google Scholar 

  63. Falck-Ytter, T., Gredebäck, G. & von Hofsten, C. Infants predict other people's action goals. Nature Neurosci. 9, 878–879 (2006).

    CAS  PubMed  Article  Google Scholar 

  64. Meltzoff, A. N. & Moore, M. K. Imitation of facial and manual gestures by human neonates. Science 198, 74–78 (1977).

    CAS  PubMed  Article  Google Scholar 

  65. Myowa-Yamakoshi, M., Tomonaga, M., Tanaka, M. & Matsuzawa, T. Imitation in neonatal chimpanzees (Pan troglodytes). Dev. Sci. 7, 437–442 (2004).

    PubMed  Article  Google Scholar 

  66. Lepage, J. F. & Théoret, H. EEG evidence for the presence of an action observation-execution matching system in children. Eur. J. Neurosci. 23, 2505–2510 (2006).

    PubMed  Article  Google Scholar 

  67. Hari, R. et al. Activation of human primary motor cortex during action observation: a neuromagnetic study. Proc. Natl Acad. Sci. USA 95, 15061–15065 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. Shimada, S. & Hiraki, K. Infant's brain responses to live and televised action. Neuroimage 32, 930–939 (2006).

    PubMed  Article  Google Scholar 

  69. Pfeifer, H., Iacoboni, M., Mazziotta, C. & Dapretto, M. Mirror neuron system activity in children and its relation to empathy and interpersonal competence, in Abstract Viewer/Itinerary Planner. Soc. Neurosci. Abstr. 660.24 (2005).

  70. Gallese, V., Keysers, C. & Rizzolatti, G. A unifying view of the basis of social cognition. Trends. Cogn. Sci. 8, 396–403 (2004).

    PubMed  Article  Google Scholar 

  71. Gazzola, V., Aziz-Zadeh, L. & Keysers, C. Empathy and the somatotopic auditory mirror system in humans. Curr. Biol. 16, 1824–1829 (2006).

    CAS  PubMed  Article  Google Scholar 

  72. Rogers, S. J. & Pennington, B. F. A theoretical approach to the deficits in infantile autism. Dev. Psychol. 3, 137–162 (1991).

    Article  Google Scholar 

  73. Altschuler, E. L. et al. Mu wave blocking by observation of movement and its possible use to study the theory of other minds. Soc. Neurosci. Abstr. 68.1 (2000).

  74. Gallese, V. Intentional attunement: a neurophysiological perspective on social cognition and its disruption in autism. Brain Res. 1079, 15–24 (2006).

    CAS  PubMed  Article  Google Scholar 

  75. Hadjikhani, N., Joseph, R. M., Snyder, J. & Tager-Flusberg, H. Anatomical differences in the mirror neuron system and social cognition network in autism. Cereb. Cortex 16, 1276–1282 (2006).

    PubMed  Article  Google Scholar 

  76. Nishitani, N., Avikainen, S. & Hari, R. Abnormal imitation-related cortical activation sequences in Asperger's syndrome. Ann. Neurol. 55, 558–562 (2004). This MEG study shows that the temporal progression of activation in MNS areas is delayed in patients with Asperger's syndrome, suggesting a deficit of connectivity between these areas.

    PubMed  Article  Google Scholar 

  77. Villalobos, M. E., Mizuno, A., Dahl, B. C., Kemmotsu, N. & Müller, R. A. Reduced functional connectivity between V1 and inferior frontal cortex associated with visuomotor performance in autism. Neuroimage 25, 916–925 (2005).

    PubMed  Article  Google Scholar 

  78. Just, M. A., Cherkassky, V. L., Keller, T. A., Kana, R. K. & Minshew, N. J. Functional and anatomical cortical underconnectivity in autism: evidence from an fMRI study of an executive function task and corpus callosum morphometry. Cereb. Cortex 13 June 2006 (doi: 10.1093/cercor/bh1006).

  79. Oberman, L. M. et al. EEG evidence for mirror neuron dysfunction in autism spectrum disorders. Brain Res. Cogn. Brain Res. 24, 190–198 (2005).

    PubMed  Article  Google Scholar 

  80. Théoret, H. et al. Impaired motor facilitation during action observation in individuals with autism spectrum disorder. Curr. Biol. 15, R84–R85 (2005).

    PubMed  Article  CAS  Google Scholar 

  81. Williams, J. H. et al. Neural mechanisms of imitation and 'mirror neuron' functioning in autistic spectrum disorder. Neuropsychologia 44, 610–621 (2006).

    PubMed  Article  Google Scholar 

  82. Dapretto, M. et al. Understanding emotions in others: mirror neuron dysfunction in children with autism spectrum disorders. Nature Neurosci. 9, 28–30 (2006). This fMRI study demonstrates that children with ASD have reduced MNS activity during social mirroring compared with typically developing children. The MNS activity in children with ASD inversely correlates with the severity of disease: the higher the severity of disease, the lower the MNS activity.

    CAS  PubMed  Article  Google Scholar 

  83. Escalona, A., Field, T., Nadel, J. & Lundy, B. Brief report: imitation effects on children with autism. J. Autism Dev. Disord. 32, 141–144 (2002).

    PubMed  Article  Google Scholar 

  84. Field, T., Sanders, C. & Nadel, J. Children with autism display more social behaviors after repeated imitation sessions. Autism 5, 317–323 (2001).

    CAS  PubMed  Article  Google Scholar 

  85. Arbib, M. A., Billard, A., Iacoboni, M. & Oztop, E. Synthetic brain imaging: grasping, mirror neurons and imitation. Neural Netw. 13, 975–997 (2000).

    CAS  PubMed  Article  Google Scholar 

  86. Luppino, G., Matelli, M., Camarda, R. & Rizzolatti, G. Corticocortical connections of area F3 (SMA-proper) and area F6 (pre-SMA) in the macaque monkey. J. Comp. Neurol. 338, 114–140 (1993).

    CAS  PubMed  Article  Google Scholar 

  87. Iacoboni, M. Failure to deactivate in autism: the co-constitution of self and other. Trends Cogn. Sci. 10, 431–433 (2006).

    PubMed  Article  Google Scholar 

  88. Gusnard, D. A. & Raichle, M. E. Searching for a baseline: functional imaging and the resting human brain. Nature Rev. Neurosci. 2, 685–694 (2001).

    CAS  Article  Google Scholar 

  89. Heyes, C. Causes and consequences of imitation. Trends Cogn. Sci. 5, 253–261 (2001).

    CAS  PubMed  Article  Google Scholar 

  90. Whiten, A. Primate culture and social learning. Cogn. Sci. 24, 477–508 (2000).

    Article  Google Scholar 

  91. Baron-Cohen, S., Tager-Flusberg, H. & Cohen, D. J. Understanding Other Minds: Perspectives From Autism (Oxford Univ. Press, Oxford, 1993).

    Google Scholar 

  92. Prinz, W. in Perspectives on Imitation: from Neuroscience to Social Science (eds Hurley, S. & Chater, N.) 141–156 (MIT Press, Cambridge, Massachusetts, 2005).

    Google Scholar 

  93. Rizzolatti, G. & Arbib, M. A. Language within our grasp. Trends Neurosci. 21, 188–194 (1998).

    CAS  Article  PubMed  Google Scholar 

  94. Arbib, M. A. From monkey-like action recognition to human language: an evolutionary framework for neurolinguistics. Behav. Brain Sci. 28, 105–124; discussion 125–167 (2005).

    PubMed  Article  Google Scholar 

  95. Corballis, M. C. From mouth to hand: gesture, speech, and the evolution of right-handedness. Behav. Brain Sci. 26, 199–208; discussion 208–260 (2003).

    PubMed  Google Scholar 

  96. Liberman, A. M. & Mattingly, I. G. The motor theory of speech perception revised. Cognition 21, 1–36 (1985).

    CAS  PubMed  Article  Google Scholar 

  97. Fadiga, L., Craighero, L., Buccino, G. & Rizzolatti, G. Speech listening specifically modulates the excitability of tongue muscles: a TMS study. Eur. J. Neurosci. 15, 399–402 (2002).

    Article  PubMed  Google Scholar 

  98. Watkins, K. & Paus, T. Modulation of motor excitability during speech perception: the role of Broca's area. J. Cogn. Neurosci. 16, 978–987 (2004).

    PubMed  Article  Google Scholar 

  99. Watkins, K. E., Strafella, A. P. & Paus, T. Seeing and hearing speech excites the motor system involved in speech production. Neuropsychologia 41, 989–994 (2003).

    CAS  Article  PubMed  Google Scholar 

  100. Wilson, S. M. & Iacoboni, M. Neural responses to non-native phonemes varying in producibility: evidence for the sensorimotor nature of speech perception. Neuroimage 33, 316–325 (2006).

    PubMed  Article  Google Scholar 

  101. Wilson, S. M., Saygin, A. P., Sereno, M. I. & Iacoboni, M. Listening to speech activates motor areas involved in speech production. Nature Neurosci. 7, 701–702 (2004).

    CAS  PubMed  Article  Google Scholar 

  102. Barsalou, L. W. Perceptual symbol systems. Behav. Brain Sci. 22, 577–609; discussion 610–660 (1999).

    CAS  PubMed  Article  Google Scholar 

  103. Glenberg, A. M. & Kaschak, M. P. Grounding language in action. Psychon. Bull. Rev. 9, 558–565 (2002).

    PubMed  Article  Google Scholar 

  104. Gallese, V. & Lakoff, G. The brain's concepts: The role of the sensory-motor system in reason and language. Cogn. Neuropsychol. 22, 455–479 (2005).

    PubMed  Article  Google Scholar 

  105. Meister, I. G. et al. Motor cortex hand area and speech: implications for the development of language. Neuropsychologia 41, 401–406 (2003).

    PubMed  Article  Google Scholar 

  106. Tettamanti, M. et al. Listening to action-related sentences activates fronto-parietal motor circuits. J. Cogn. Neurosci. 17, 273–281 (2005).

    PubMed  Article  Google Scholar 

  107. Hauk, O., Johnsrude, I. & Pulvermüller, F. Somatotopic representation of action words in human motor and premotor cortex. Neuron 41, 301–307 (2004).

    CAS  PubMed  Article  Google Scholar 

  108. Aziz-Zadeh, L., Wilson, S. M., Rizzolatti, G. & Iacoboni, M. Congruent embodied representations for visually presented actions and linguistic phrases describing actions. Curr. Biol. 16, 1818–1823 (2006).

    CAS  PubMed  Article  Google Scholar 

  109. Aziz-Zadeh, L., Koski, L., Zaidel, E., Mazziotta, J. & Iacoboni, M. Lateralization of the human mirror neuron system. J. Neurosci. 26, 2964–2970 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  110. Aziz-Zadeh, L., Maeda, F., Zaidel, E., Mazziotta, J. & Iacoboni, M. Lateralization in motor facilitation during action observation: a TMS study. Exp. Brain Res. 144, 127–131 (2002).

    PubMed  Article  Google Scholar 

  111. Aziz-Zadeh, L., Iacoboni, M., Zaidel, E., Wilson, S. & Mazziotta, J. Left hemisphere motor facilitation in response to manual action sounds. Eur. J. Neurosci. 19, 2609–2612 (2004).

    PubMed  Article  Google Scholar 

  112. Hauser, M. D., Chomsky, N. & Fitch, W. T. The faculty of language: what is it, who has it, and how did it evolve? Science 298, 1569–1579 (2002).

    CAS  PubMed  Article  Google Scholar 

  113. Allison, T., Puce, A. & McCarthy, G. Social perception from visual cues: role of the STS region. Trends Cogn. Sci. 4, 267–278 (2000).

    CAS  Article  PubMed  Google Scholar 

  114. Martin, J. H. Neuroanatomy: Text and Atlas 2nd edn (Appleton & Lange, Stamford, Connecticut, 1996).

    Google Scholar 

  115. Rizzolatti, G., Fogassi, L. & Gallese, V. Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Rev. Neurosci. 2, 661–670 (2001).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors' work is supported in part by the National Science Foundation and the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

Asperger's syndrome

autism spectrum disorder

FURTHER INFORMATION

Iacoboni's homepage

Glossary

Theory of mind

Awareness that other people have beliefs and desires as we do, but different from our own, and that these beliefs and desires can explain the behaviour of others.

Transcranial magnetic stimulation

(TMS). TMS involves creating a strong localized transient magnetic field that induces current flow in underlying neural tissue, causing a temporary disruption of activity in small regions of the brain.

Positron emission tomography

(PET). In vivo imaging technique used for diagnostic examination that involves the acquisition of physiological images based on the detection of positrons, which are emitted from a radioactive substance previously administered to the patient.

Diffusion tensor imaging

A technique developed in the mid-1990s, based on MRI in which diffusion constants of water molecules are measured along many (>6) orientations and diffusion anisotropy is characterized. It is used to visualize the location, orientation and anisotropy of the brain's white matter tracts, and is sensitive to directional parameters of water diffusion in the brain.

Mu rhythm

Ongoing spontaneous electrical activity generated by the primary sensorimotor cortices, consisting of prominent frequencies between 10 and 20 Hz.

Near infrared spectroscopy

(NIRS). Recently developed non-invasive neuroimaging technique based on light in the near infrared, highly applicable to the study of the infant brain in naturalistic settings.

Magnetoencephalography

(MEG). A non-invasive technique that allows the detection of the changing magnetic fields that are associated with brain activity on the timescale of milliseconds.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Iacoboni, M., Dapretto, M. The mirror neuron system and the consequences of its dysfunction. Nat Rev Neurosci 7, 942–951 (2006). https://doi.org/10.1038/nrn2024

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2024

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing