Opinion | Published:

The short-latency dopamine signal: a role in discovering novel actions?

Abstract

An influential concept in contemporary computational neuroscience is the reward prediction error hypothesis of phasic dopaminergic function. It maintains that midbrain dopaminergic neurons signal the occurrence of unpredicted reward, which is used in appetitive learning to reinforce existing actions that most often lead to reward. However, the availability of limited afferent sensory processing and the precise timing of dopaminergic signals suggest that they might instead have a central role in identifying which aspects of context and behavioural output are crucial in causing unpredicted events.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Thorndike, E. L. Animal Intelligence (Macmillan, New York, 1911).

  2. 2

    Schultz, W. Predictive reward signal of dopamine neurons. J. Neurophysiol. 80, 1–27 (1998).

  3. 3

    Redgrave, P., Prescott, T. J. & Gurney, K. Is the short latency dopamine response too short to signal reward error? Trends Neurosci. 22, 146–151 (1999).

  4. 4

    Comoli, E. et al. A direct projection from superior colliculus to substantia nigra for detecting salient visual events. Nature Neurosci. 6, 974–980 (2003).

  5. 5

    Dommett, E. et al. How visual stimuli activate dopaminergic neurons at short latency. Science 307, 1476–1479 (2005).

  6. 6

    Montague, P. R., Dayan, P. & Sejnowski, T. J. A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J. Neurosci. 16, 1936–1947 (1996).

  7. 7

    Montague, P. R., Hyman, S. E. & Cohen, J. D. Computational roles for dopamine in behavioural control. Nature 431, 760–767 (2004).

  8. 8

    Schultz, W. Getting formal with dopamine and reward. Neuron 36, 241–263 (2002).

  9. 9

    Schultz, W. Behavioral theories and the neurophysiology of reward. Annu. Rev. Psychol. 57, 87–115 (2006).

  10. 10

    Schultz, W. & Dickinson, A. Neuronal coding of prediction errors. Annu. Rev. Neurosci. 23, 473–500 (2000).

  11. 11

    Gerfen, C. R. & Wilson, C. J. in Handbook of Chemical Neuroanatomy Vol. 12 (eds Swanson, L. W., Bjorklund, A. & Hokfelt, T.) Part III, 371–468 (Elsevier, Amsterdam, 1996).

  12. 12

    Graybiel, A. M. Neurotransmitter and neuromodulators in the basal ganglia. Trends Neurosci. 13, 244–254 (1990).

  13. 13

    Hiroi, N. et al. Molecular dissection of dopamine receptor signaling. J. Chem. Neuroanat. 23, 237–242 (2002).

  14. 14

    Bergman, H. et al. Physiological aspects of information processing in the basal ganglia of normal and Parkinsonian primates. Trends Neurosci. 21, 32–38 (1998).

  15. 15

    Radad, K., Gille, G. & Rausch, W. D. Short review on dopamine agonists: insight into clinical and research studies relevant to Parkinson's disease. Pharm. Rep. 57, 701–712 (2005).

  16. 16

    Wise, R. A. Dopamine, learning and motivation. Nature Rev. Neurosci. 5, 483–494 (2004).

  17. 17

    Berridge, K. C. & Robinson, T. E. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res. Rev. 28, 309–369 (1998).

  18. 18

    Salamone, J. D. & Correa, M. Motivational views of reinforcement: implications for understanding the behavioral functions of nucleus accumbens dopamine. Behav. Brain Res. 137, 3–25 (2002).

  19. 19

    Marr, D. Vision: A Computational Approach (Freeman & Co., San Francisco, 1982).

  20. 20

    Gurney, K., Prescott, T. J., Wickens, J. R. & Redgrave, P. Computational models of the basal ganglia: from robots to membranes. Trends Neurosci. 27, 453–459 (2004).

  21. 21

    Waelti, P., Dickinson, A. & Schultz, W. Dopamine responses comply with basic assumptions of formal learning theory. Nature 412, 43–48 (2001).

  22. 22

    Fiorillo, C. D., Tobler, P. N. & Schultz, W. Discrete coding of reward probability and uncertainty by dopamine neurons. Science 299, 1898–1902 (2003).

  23. 23

    Tobler, P. N., Fiorillo, C. D. & Schultz, W. Adaptive coding of reward value by dopamine neurons. Science 307, 1642–1645 (2005).

  24. 24

    Bayer, H. M. & Glimcher, P. W. Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron 47, 129–141 (2005).

  25. 25

    Satoh, T., Nakai, S., Sato, T. & Kimura, M. Correlated coding of motivation and outcome of decision by dopamine neurons. J. Neurosci. 23, 9913–9923 (2003).

  26. 26

    Nakahara, H., Itoh, H., Kawagoe, R., Takikawa, Y. & Hikosaka, O. Dopamine neurons can represent context-dependent prediction error. Neuron 41, 269–280 (2004).

  27. 27

    Tobler, P. N., Dickinson, A. & Schultz, W. Coding of predicted reward omission by dopamine neurons in a conditioned inhibition paradigm. J. Neurosci. 23, 10402–10410 (2003).

  28. 28

    Ungless, M. A. Dopamine: the salient issue. Trends Neurosci. 27, 702–706 (2004).

  29. 29

    Sugrue, L. P., Corrado, G. S. & Newsome, W. T. Choosing the greater of two goods: neural currencies for valuation and decision making. Nature Rev. Neurosci. 6, 363–375 (2005).

  30. 30

    Salzman, C. D., Belova, M. A. & Paton, J. J. Beetles, boxes and brain cells: neural mechanisms underlying valuation and learning. Curr. Opin. Neurobiol. 15, 721–729 (2005).

  31. 31

    Houk, J. C. Agents of the mind. Biol. Cybern. 92, 427–437 (2005).

  32. 32

    Suri, R. E. TD models of reward predictive responses in dopamine neurons. Neural Netw. 15, 523–533 (2002).

  33. 33

    Bar-Gad, I. & Bergman, H. Stepping out of the box: information processing in the neural networks of the basal ganglia. Curr. Opin. Neurobiol. 11, 689–695 (2001).

  34. 34

    Frank, M. J. Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. J. Cogn. Neurosci. 17, 51–72 (2005).

  35. 35

    Daw, N. D., Niv, Y. & Dayan, P. Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nature Neurosci. 8, 1704–1711 (2005).

  36. 36

    Freeman, A. S. Firing properties of substantia nigra dopaminergic neurons in freely moving rats. Life Sci. 36, 1983–1994 (1985).

  37. 37

    Guarraci, F. A. & Kapp, B. S. An electrophysiological characterization of ventral tegmental area dopaminergic neurons during differential pavlovian fear conditioning in the awake rabbit. Behav. Brain Res. 99, 169–179 (1999).

  38. 38

    Horvitz, J. C., Stewart, T. & Jacobs, B. L. Burst activity of ventral tegmental dopamine neurons is elicited by sensory stimuli in the awake cat. Brain Res. 759, 251–258 (1997).

  39. 39

    Ljungberg, T., Apicella, P. & Schultz, W. Responses of monkey dopamine neurons during learning of behavioural reactions. J. Neurophysiol. 67, 145–163 (1992).

  40. 40

    Pan, W. X., Schmidt, R., Wickens, J. R. & Hyland, B. I. Dopamine cells respond to predicted events during classical conditioning: evidence for eligibility traces in the reward- learning network. J. Neurosci. 25, 6235–6242 (2005).

  41. 41

    Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).

  42. 42

    Mirenowicz, J. & Schultz, W. Importance of unpredictability for reward responses in primate dopamine neurons. J. Neurophysiol. 72, 1024–1027 (1994).

  43. 43

    Coizet, V., Comoli, E., Westby, G. W. M. & Redgrave, P. Phasic activation of substantia nigra and the ventral tegmental area by chemical stimulation of the superior colliculus: an electrophysiological investigation in the rat. Eur. J. Neurosci. 17, 28–40 (2003).

  44. 44

    Overton, P. G., Coizet, V., Dommett, E. J. & Redgrave, P. The parabrachial nucleus is a source of short latency nociceptive input to midbrain dopaminergic neurones in rat. Soc. Neurosci. Abstr. 301.5 (2005).

  45. 45

    Coizet, V., Dommett, E. J., Redgrave, P. & Overton, P. G. Nociceptive responses of midbrain dopaminergic neurones are modulated by the superior colliculus in the rat. Neuroscience 139, 1479–1493 (2006).

  46. 46

    McHaffie, J. G. et al. A direct projection from superior colliculus to substantia nigra pars compacta in the cat. Neuroscience 138, 221–234 (2006).

  47. 47

    Horvitz, J. C. Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events. Neuroscience 96, 651–656 (2000).

  48. 48

    Takikawa, Y., Kawagoe, R. & Hikosaka, O. A possible role of midbrain dopamine neurons in short- and long-term adaptation of saccades to position-reward mapping. J. Neurophysiol. 92, 2520–2529 (2004).

  49. 49

    Jay, M. F. & Sparks, D. L. Sensorimotor integration in the primate superior colliculus. I. Motor convergence. J. Neurophysiol. 57, 22–34 (1987).

  50. 50

    Hikosaka, O. & Wurtz, R. H. Visual and oculomotor function of monkey substantia nigra pars reticulata. I. Relation of visual and auditory responses to saccades. J. Neurophysiol. 49, 1230–1253 (1983).

  51. 51

    Thorpe, S. J. & Fabre-Thorpe, M. Seeking categories in the brain. Science 291, 260–263 (2001).

  52. 52

    Rousselet, G. A., Thorpe, S. J. & Fabre-Thorpe, M. How parallel is visual processing in the ventral pathway? Trends Cogn. Sci. 8, 363–370 (2004).

  53. 53

    Schultz, W. & Romo, R. Dopamine neurons of the monkey midbrain: contingencies of responses to stimuli eliciting immediate behavioural reactions. J. Neurophysiol. 63, 607–624 (1990).

  54. 54

    Hikosaka, O., Sakamoto, M. & Usui, S. Functional properties of monkey caudate neurons. II. Visual and auditory responses. J. Neurophysiol. 61, 799–813 (1989).

  55. 55

    Matsumura, M., Kojima, J., Gardiner, T. W. & Hikosaka, O. Visual and oculomotor functions of monkey subthalamic nucleus. J. Neurophysiol. 67, 1615–1632 (1992).

  56. 56

    May, P. J. et al. Projections from the superior colliculus to substantia nigra pars compacta in a primate. Soc. Neurosci. Abstr. 450.2 (2005).

  57. 57

    Katsuta, H. & Isa, T. Release from GABAA receptor-mediated inhibition unmasks interlaminar connection within superior colliculus in anesthetized adult rats. Neurosci. Res. 46, 73–83 (2003).

  58. 58

    Wurtz, R. H. & Albano, J. E. Visual-motor function of the primate superior colliculus. Ann. Rev. Neurosci. 3, 189–226 (1980).

  59. 59

    Sparks, D. L. Translation of sensory signals into commands for control of saccadic eye movements: role of the primate superior colliculus. Physiol. Rev. 66, 118–171 (1986).

  60. 60

    Grantyn, R. in Neuroanatomy of the Oculomotor System (ed. Buttner-Ennever, J. A.) 273–333 (Elsevier, Amsterdam, 1988).

  61. 61

    Stein, B. E. & Meredith, M. A. The Merging of the Senses (MIT Press, Cambridge, Massachusetts, 1993).

  62. 62

    Horn, G. & Hill, R. M. Effect of removing the neocortex on the response to repeated sensory stimulation of neurones in the mid-brain. Nature 211, 754–755 (1966).

  63. 63

    Sprague, J. M., Marchiafava, P. L. & Rixxolatti, G. Unit responses to visual stimuli in the superior colliculus of the unanesthetized, mid-pontine cat. Arch. Ital. Biol. 106, 169–193 (1968).

  64. 64

    Ikeda, T. & Hikosaka, O. Reward-dependent gain and bias of visual responses in primate superior colliculus. Neuron 39, 693–700 (2003).

  65. 65

    Hikosaka, O., Nakamura, K. & Nakahara, H. Basal ganglia orient eyes to reward. J. Neurophysiol. 95, 567–584 (2006).

  66. 66

    Sutton, R. S. & Barto, A. G. Reinforcement Learning – an Introduction (MIT Press, Cambridge, Massachusetts, 1998).

  67. 67

    White, N. M. Reward or reinforcement: what's the difference? Neurosci. Biobehav. Rev. 13, 181–186 (1989).

  68. 68

    McHaffie, J. G., Stanford, T. R., Stein, B. E., Coizet, V. & Redgrave, P. Subcortical loops through the basal ganglia. Trends Neurosci. 28, 401–407 (2005).

  69. 69

    Reynolds, J. N. J., Schulz, J. M. & Wickens, J. R. Visual responsiveness of striatal spiny neurons in anaesthetised rats: an in vivo intracellular study. Proc. Int. Australas. Wint. Conf. Brain Res. Abstr. 6.4, 39 (2005).

  70. 70

    Schultz, W., Apicella, P., Romo, R. & Scarnati, E. in Models of Information Processing in the Basal Ganglia (eds Houk, J. C., Davis, J. L. & Beiser, D. G.) 11–27 (MIT Press, Cambridge, Massachusetts, 1995).

  71. 71

    Apicella, P., Legallet, E. & Trouche, E. Responses of tonically discharging neurons in the monkey striatum to primary rewards delivered during different behavioral states. Exp. Brain Res. 116, 456–466 (1997).

  72. 72

    Samejima, K., Ueda, Y., Doya, K. & Kimura, M. Representation of action-specific reward values in the striatum. Science 310, 1337–1340 (2005).

  73. 73

    Crutcher, M. D. & DeLong, M. R. Single cell studies of the primate putamen. II. Relations to direction of movement and pattern of muscular activity. Exp. Brain Res. 53, 244–258 (1984).

  74. 74

    Bickford, M. E. & Hall, W. C. Collateral projections of predorsal bundle cells of the superior colliculus in the rat. J. Comp. Neurol. 283, 86–106 (1989).

  75. 75

    Levesque, M., Charara, A., Gagnon, S., Parent, A. & Deschenes, M. Corticostriatal projections from layer V cells in rat are collaterals of long-range corticofugal axons. Brain Res. 709, 311–315 (1996).

  76. 76

    Mink, J. W. The basal ganglia: focused selection and inhibition of competing motor programs. Prog. Neurobiol. 50, 381–425 (1996).

  77. 77

    Reiner, A., Jiao, Y., DelMar, N., Laverghetta, A. V. & Lei, W. L. Differential morphology of pyramidal tract-type and intratelencephalically projecting-type corticostriatal neurons and their intrastriatal terminals in rats. J. Comp. Neurol. 457, 420–440 (2003).

  78. 78

    Alexander, G. E., DeLong, M. R. & Strick, P. L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Ann. Rev. Neurosci. 9, 357–381 (1986).

  79. 79

    Haber, S. N. The primate basal ganglia: parallel and integrative networks. J. Chem. Neuroanat. 26, 317–330 (2003).

  80. 80

    Harting, J. K., Updyke, B. V. & VanLieshout, D. P. The visual-oculomotor striatum of the cat: functional relationship to the superior colliculus. Exp. Brain Res. 136, 138–142 (2001).

  81. 81

    Krout, K. E., Loewy, A. D., Westby, G. W. M. & Redgrave, P. Superior colliculus projections to midline and intralaminar thalamic nuclei of the rat. J. Comp. Neurol. 431, 198–216 (2001).

  82. 82

    Krout, K. E., Belzer, R. E. & Loewy, A. D. Brainstem projections to midline and intralaminar thalamic nuclei of the rat. J. Comp. Neurol. 448, 53–101 (2002).

  83. 83

    Van der Werf, Y. D., Witter, M. P. & Groenewegen, H. J. The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res. Rev. 39, 107–140 (2002).

  84. 84

    Smith, Y., Raju, D. V., Pare, J. F. & Sidibe, M. The thalamostriatal system: a highly specific network of the basal ganglia circuitry. Trends Neurosci. 27, 520–527 (2004).

  85. 85

    Parent, M. & Parent, A. Single-axon tracing and three-dimensional reconstruction of centre median-parafascicular thalamic neurons in primates. J. Comp. Neurol. 481, 127–144 (2005).

  86. 86

    Matsumoto, N., Minamimoto, T., Graybiel, A. M. & Kimura, M. Neurons in the thalamic CM-Pf complex supply striatal neurons with information about behaviorally significant sensory events. J. Neurophysiol. 85, 960–976 (2001).

  87. 87

    Wightman, R. M. & Robinson, D. L. Transient changes in mesolimbic dopamine and their association with 'reward'. J. Neurochem. 82, 721–735 (2002).

  88. 88

    Roitman, M. F., Stuber, G. D., Phillips, P. E. M., Wightman, R. M. & Carelli, R. M. Dopamine operates as a subsecond modulator of food seeking. J. Neurosci. 24, 1265–1271 (2004).

  89. 89

    Centonze, D., Picconi, B., Gubellini, P., Bernardi, G. & Calabresi, P. Dopaminergic control of synaptic plasticity in the dorsal striatum. Eur. J. Neurosci. 13, 1071–1077 (2001).

  90. 90

    Reynolds, J. N. & Wickens, J. R. Dopamine-dependent plasticity of corticostriatal synapses. Neural Netw. 15, 507–521 (2002).

  91. 91

    Wickens, J. A Theory of the Striatum (Pergamon, Oxford, 1993).

  92. 92

    Hikosaka, O. in The Basal ganglia IV: New Ideas and Data on Structure and Function (eds Percheron, G., McKenzie, J. S. & Feger, J.) 589–596 (Plenum, New York, 1994).

  93. 93

    Redgrave, P., Prescott, T. & Gurney, K. N. The basal ganglia: a vertebrate solution to the selection problem? Neuroscience 89, 1009–1023 (1999).

  94. 94

    Gurney, K., Prescott, T. J. & Redgrave, P. A computational model of action selection in the basal ganglia. I. A new functional anatomy. Biol. Cybern. 84, 401–410 (2001).

  95. 95

    Gurney, K., Prescott, T. J. & Redgrave, P. A computational model of action selection in the basal ganglia. II. Analysis and simulation of behaviour. Biol. Cybern. 84, 411–423 (2001).

  96. 96

    Prescott, T. J., Gonzalez, F. M. M., Gurney, K., Humphries, M. D. & Redgrave, P. A robot model of the basal ganglia: behavior and intrinsic processing. Neural Netw. 19, 31–61 (2006).

  97. 97

    Devenport, L. D. & Holloway, F. A. The rat's resistance to superstition: role of the hippocampus. J. Comp. Physiol. Psychol. 94, 691–705 (1980).

  98. 98

    Roberts, S. & Gharib, A. Variation of bar-press duration: where do new responses come from? Behav. Processes 72, 215–223 (2006).

  99. 99

    Wickens, J. R., Reynolds, J. N. J. & Hyland, B. I. Neural mechanisms of reward-related motor learning. Curr. Opin. Neurobiol. 13, 685–690 (2003).

  100. 100

    Paton, J. J., Belova, M. A., Morrison, S. E. & Salzman, C. D. The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature 439, 865–870 (2006).

  101. 101

    Lisman, J. E. & Grace, A. A. The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 46, 703–713 (2005).

  102. 102

    Schultz, W. Multiple reward signals in the brain. Nature Rev. Neurosci. 1, 199–207 (2000).

  103. 103

    Schoenbaum, G., Setlow, B., Saddoris, M. P. & Gallagher, M. Encoding predicted outcome and acquired value in orbitofrontal cortex during cue sampling depends upon input from basolateral amygdala. Neuron 39, 855–867 (2003).

  104. 104

    Corbit, L. H., Ostlund, S. B. & Balleine, B. W. Sensitivity to instrumental contingency degradation is mediated by the entorhinal cortex and its efferents via the dorsal hippocampus. J. Neurosci. 22, 10976–10984 (2002).

  105. 105

    Corbit, L. H. & Balleine, B. W. The role of prelimbic cortex in instrumental conditioning. Behav. Brain Res. 146, 145–157 (2003).

  106. 106

    Padoa-Schioppa, C. & Assad, J. A. Neurons in the orbitofrontal cortex encode economic value. Nature 441, 223–226 (2006).

  107. 107

    Ungless, M. A., Magill, P. J. & Bolam, J. P. Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli. Science 303, 2040–2042 (2004).

  108. 108

    Klop, E. M., Mouton, L. J., Hulsebosch, R., Boers, J. & Holstege, G. In cat four times as many lamina I neurons project to the parabrachial nuclei and twice as many to the periaqueductal gray as to the thalamus. Neuroscience 134, 189–197 (2005).

  109. 109

    Dean, P., Redgrave, P. & Westby, G. W. M. Event or emergency? Two response systems in the mammalian superior colliculus. Trends Neurosci. 12, 137–147 (1989).

  110. 110

    Dickinson, A. The 28th Bartlett Memorial Lecture. Causal learning: an associative analysis. Q. J. Exp. Psychol. B 54, 3–25 (2001).

  111. 111

    Elsner, B. & Hommel, B. Contiguity and contingency in action-effect learning. Psychol. Res. 68, 138–154 (2004).

  112. 112

    Yin, H. H., Knowlton, B. J. & Balleine, B. W. Blockade of NMDA receptors in the dorsomedial striatum prevents action-outcome learning in instrumental conditioning. Eur. J. Neurosci. 22, 505–512 (2005).

  113. 113

    Burgdorf, J. & Panksepp, J. The neurobiology of positive emotions. Neurosci. Biobehav. Rev. 30, 173–187 (2006).

  114. 114

    Roesch, M. R. & Olson, C. R. Neuronal activity related to reward value and motivation in primate frontal cortex. Science 304, 307–310 (2004).

  115. 115

    McDonald, A. J. Topographical organization of amygdaloid projections to the caudatoputamen, nucleus accumbens, and related striatal-like areas of the rat brain. Neuroscience 44, 15–33 (1991).

  116. 116

    Fudge, J. L., Kunishio, K., Walsh, P., Richard, C. & Haber, S. N. Amygdaloid projections to ventromedial striatal subterritories in the primate. Neuroscience 110, 257–275 (2002).

  117. 117

    Singh, S., Barto, A. G. & Chentanez, N. in Advances in Neural Information Processing Systems 17 (eds Saul, L. K., Weiss, H. & Bottou, L.) 1281–1288 (MIT Press, Cambridge, Massachusetts, 2005).

  118. 118

    Robbins, T. W. & Sahakian, B. J. in Metabolic Disorders of the Nervous System (ed. Rose, F. C.) 244–291 (Pitman, London, 1981).

  119. 119

    Saka, E., Goodrich, C., Harlan, P., Madras, B. K. & Graybiel, A. M. Repetitive behaviors in monkeys are linked to specific striatal activation patterns. J. Neurosci. 24, 7557–7565 (2004).

  120. 120

    Daprati, E. et al. Looking for the agent: an investigation into consciousness of action and self-consciousness in schizophrenic patients. Cognition 65, 71–86 (1997).

  121. 121

    Spence, S. A. et al. A PET study of voluntary movement in schizophrenic patients experiencing passivity phenomena (delusions of alien control). Brain 120, 1997–2011 (1997).

  122. 122

    Kapur, S., Mizrahi, R. & Li, M. From dopamine to salience to psychosis — linking biology, pharmacology and phenomenology of psychosis. Schiz. Res. 79, 59–68 (2005).

  123. 123

    Wise, S. P., Murray, E. A. & Gerfen, C. R. The frontal-cortex-basal ganglia system in primates. Crit. Rev. Neurobiol. 10, 317–356 (1996).

  124. 124

    Reed, P., Mitchell, C. & Nokes, T. Intrinsic reinforcing properties of putatively neutral stimuli in an instrumental two-level discrimination task. Anim. Learn. Behav. 24, 38–45 (1996).

  125. 125

    St Clair-Smith, R. & MacLaren, D. Response preconditioning effects. J. Exp. Psychol Anim. Behav. Process. 9, 41–48 (1983).

Download references

Acknowledgements

This work has been supported by the Wellcome Trust (P.R.) and the Engineering and Physical Sciences Research Council (K.G. and P.R.). For their helpful discussions and/or comments on early drafts of the manuscript the authors would like to acknowledge J. Berke, J. Reynolds, A. Seth, E. Salinas, T. Stanford, J. McHaffie, T. Prescott, P. Overton and T. Dickinson.

Author information

Competing interests

The authors declare no competing financial interests.

Correspondence to Peter Redgrave.

Related links

Related links

FURTHER INFORMATION

Redgrave's laboratory

Rights and permissions

Reprints and Permissions

About this article

Further reading

Figure 1: A latency constraint associated with visual input to dopaminergic neurons.
Figure 2: Evidence supporting the SC as the primary source of short-latency visual input to DA neurons in the SNc.
Figure 3: Potentially converging inputs to the dorsal striatum.
Figure 4: The relative timing of proposed inputs to the dorsal striatum could be crucial for determining the source of agency.
Figure 5: Response of dopaminergic neurons to noxious stimuli.
Figure 6: A possible explanation for why the phasic dopaminergic reinforcement signal precedes any motor activity elicited by an unpredicted salient sensory event.