Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion

Abstract

The dramatic evolutionary expansion of the cerebral cortex of Homo sapiens underlies our unique higher cortical functions, and therefore bears on the ultimate issue of what makes us human. Recent insights into developmental events during early proliferative stages of cortical development indicate how neural stem and progenitor cells might interact to produce cortical expansion during development, and could shed light on evolutionary changes in cortical structure.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Histogenesis of the cerebral cortex.
Figure 2: Patterns of cell division in the embryonic cortex.
Figure 3: SVZ size predicts sites of gyral and sulcal formation.
Figure 4: Model of how temporal patterns of gene expression may regulate layer formation.

References

  1. Lindblad-Toh, K. Genome sequencing: three's company. Nature 428, 475–476 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Ji, Q. et al. The earliest known eutherian mammal. Nature 416, 816–822 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Lois, C. & Alvarez-Buylla, A. Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc. Natl Acad. Sci. USA 90, 2074–2077 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gadisseux, J. F. & Evrard, P. Glial–neuronal relationship in the developing central nervous system. A histochemical–electron microscope study of radial glial cell particulate glycogen in normal and reeler mice and the human fetus. Dev. Neurosci. 7, 12–32 (1985).

    Article  CAS  PubMed  Google Scholar 

  5. Bruckner, G. & Biesold, D. Histochemistry of glycogen deposition in perinatal rat brain: importance of radial glial cells. J. Neurocytol. 10, 749–757 (1981).

    Article  CAS  PubMed  Google Scholar 

  6. Choi, B. H. & Lapham, L. W. Radial glia in the human fetal cerebrum: a combined Golgi, immunofluorescent and electron microscopic study. Brain Res. 148, 295–311 (1978).

    Article  CAS  PubMed  Google Scholar 

  7. Kriegstein, A. R. & Gotz, M. Radial glia diversity: a matter of cell fate. Glia 43, 37–43 (2003).

    Article  PubMed  Google Scholar 

  8. Noctor, S. C., Flint, A. C., Weissman, T. A., Dammerman, R. S. & Kriegstein, A. R. Neurons derived from radial glial cells establish radial units in neocortex. Nature 409, 714–720 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Misson, J. P., Edwards, M. A., Yamamoto, M. & Caviness, V. S. Jr. Mitotic cycling of radial glial cells of the fetal murine cerebral wall: a combined autoradiographic and immunohistochemical study. Brain Res. 466, 183–190 (1988).

    Article  CAS  PubMed  Google Scholar 

  10. Levitt, P., Cooper, M. L. & Rakic, P. Coexistence of neuronal and glial precursor cells in the cerebral ventricular zone of the fetal monkey: an ultrastructural immunoperoxidase analysis. J. Neurosci. 1, 27–39 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schmechel, D. E. & Rakic, P. Arrested proliferation of radial glial cells during midgestation in rhesus monkey. Nature 277, 303–305 (1979).

    Article  CAS  PubMed  Google Scholar 

  12. Rakic, P. Neuronal migration and contact guidance in the primate telencephalon. Postgrad. Med. J. 1, 25–40 (1978).

    Google Scholar 

  13. Miyata, T., Kawaguchi, A., Okano, H. & Ogawa, M. Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 31, 727–741 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Malatesta, P., Hartfuss, E. & Gotz, M. Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127, 5253–5263 (2000).

    CAS  PubMed  Google Scholar 

  15. Anthony, T. E. et al. Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron 41, 881–890 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Tamamaki, N. et al. Radial glia is a progenitor of neocortical neurons in the developing cerebral cortex. Neurosci. Res. 41, 51–60 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Noctor, S. C., Martinez-Cerdeno, V., Ivic, L. & Kriegstein, A. R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nature Neurosci. 7, 136–144 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Kornack, D. R. & Rakic, P. Radial and horizontal deployment of clonally related cells in the primate neocortex: relationship to distinct mitotic lineages. Neuron 15, 311–321 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Rakic, P. Radial unit hypothesis of neocortical expansion. Novartis Found. Symp. 228, 30–42; discussion 42–52 (2000).

    CAS  PubMed  Google Scholar 

  20. Chenn, A. & Walsh, C. A. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297, 365–369 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Ponting, C. & Jackson, A. P. Evolution of primary microcephaly genes and the enlargement of primate brains. Curr. Opin. Genet. Dev. 15, 241–248 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Gilbert, S. L., Dobyns, W. B. & Lahn, B. T. Genetic links between brain development and brain evolution. Nature Rev. Genet. 6, 581–590 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Woods, C. G., Bond, J. & Enard, W. Autosomal recessive primary microcephaly (MCPH): a review of clinical, molecular, and evolutionary findings. Am. J. Hum. Genet. 76, 717–728 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bond, J. et al. ASPM is a major determinant of cerebral cortical size. Nature Genet. 32, 316–320 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Evans, P. D. et al. Adaptive evolution of ASPM, a major determinant of cerebral cortical size in humans. Hum. Mol. Genet. 13, 489–494 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Evans, P. D. et al. Microcephalin, a gene regulating brain size, continues to evolve adaptively in humans. Science 309, 1717–1720 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Kouprina, N. et al. Accelerated evolution of the ASPM gene controlling brain size begins prior to human brain expansion. PLoS Biol. 2, E126 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhang, J. Evolution of the human ASPM gene, a major determinant of brain size. Genetics 165, 2063–2070 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Mekel-Bobrov, N. et al. Ongoing adaptive evolution of ASPM, a brain size determinant in Homo sapiens. Science 309, 1720–1722 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Ripoll, P., Pimpinelli, S., Valdivia, M. M. & Avila, J. A cell division mutant of Drosophila with a functionally abnormal spindle. Cell 41, 907–912 (1985).

    Article  CAS  PubMed  Google Scholar 

  31. do Carmo Avides, M. & Glover, D. M. Abnormal spindle protein, Asp, and the integrity of mitotic centrosomal microtubule organizing centers. Science 283, 1733–1735 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Wakefield, J. G., Bonaccorsi, S. & Gatti, M. The Drosophila protein asp is involved in microtubule organization during spindle formation and cytokinesis. J. Cell. Biol. 153, 637–648 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ponting, C. P. A novel domain suggests a ciliary function for ASPM, a brain size determining gene. Bioinformatics 22, 1031–1035 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Groszer, M. et al. Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science 294, 2186–2189 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Groszer, M. et al. PTEN negatively regulates neural stem cell self-renewal by modulating G0–G1 cell cycle entry. Proc. Natl Acad. Sci. USA 103, 111–116 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Nieuwenhuys, R., ten Donkelaar, H. J. & Nicholson, C. The Central Nervous System of Vertebrates Vol. 3, 2219 (Springer, Berlin, 1998).

    Book  Google Scholar 

  37. Striedter, G. F. Principles of Brain Evolution 436 (Sinauer Associates, Sunderland, 2005).

    Google Scholar 

  38. Rakic, P. A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci. 18, 383–388 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Rakic, P. Developmental and evolutionary adaptations of cortical radial glia. Cereb. Cortex 13, 541–549 (2003).

    Article  PubMed  Google Scholar 

  40. Roth, K. A. et al. Epistatic and independent functions of caspase-3 and Bcl-XL in developmental programmed cell death. Proc. Natl Acad. Sci. USA 97, 466–471 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Smart, I. H. & McSherry, G. M. Growth patterns in the lateral wall of the mouse telencephalon. II. Histological changes during and subsequent to the period of isocortical neuron production. J. Anat. 134, 415–442 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Megason, S. G. & McMahon, A. P. A mitogen gradient of dorsal midline Wnts organizes growth in the CNS. Development 129, 2087–2098 (2002).

    CAS  PubMed  Google Scholar 

  43. Parr, B. A., Shea, M. J., Vassileva, G. & McMahon, A. P. Mouse Wnt genes exhibit discrete domains of expression in the early embryonic CNS and limb buds. Development 119, 247–261 (1993).

    CAS  PubMed  Google Scholar 

  44. Tarabykin, V., Stoykova, A., Usman, N. & Gruss, P. Cortical upper layer neurons derive from the subventricular zone as indicated by Svet1 gene expression. Development 128, 1983–1993 (2001).

    CAS  PubMed  Google Scholar 

  45. Zimmer, C., Tiveron, M. C., Bodmer, R. & Cremer, H. Dynamics of Cux2 expression suggests that an early pool of SVZ precursors is fated to become upper cortical layer neurons. Cereb. Cortex 14, 1408–1420 (2004).

    Article  PubMed  Google Scholar 

  46. Englund, C. et al. Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J. Neurosci. 25, 247–251 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Anderson, S. A. et al. Mutations of the homeobox genes Dlx-1 and Dlx-2 disrupt the striatal subventricular zone and differentiation of late born striatal neurons. Neuron 19, 27–37 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Krubitzer, L. & Kahn, D. M. Nature versus nurture revisited: an old idea with a new twist. Prog. Neurobiol. 70, 33–52 (2003).

    Article  PubMed  Google Scholar 

  49. Britanova, O. et al. A novel mode of tangential migration of cortical projection neurons. Dev. Biol. 30 Jun 2006 (doi:10.1016/j.ydbio.2006.06.040).

  50. Reid, C. B., Liang, I. & Walsh, C. Systematic widespread clonal organization in cerebral cortex. Neuron 15, 299–310 (1995).

    Article  CAS  PubMed  Google Scholar 

  51. Walsh, C. & Cepko, C. L. Widespread dispersion of neuronal clones across functional regions of the cerebral cortex. Science 255, 434–440 (1992).

    Article  CAS  PubMed  Google Scholar 

  52. Walsh, C. & Cepko, C. L. Clonally related cortical cells show several migration patterns. Science 241, 1342–1345 (1988).

    Article  CAS  PubMed  Google Scholar 

  53. Haubensak, W., Attardo, A., Denk, W. & Huttner, W. B. Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc. Natl Acad. Sci. USA 101, 3196–3201 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Iacopetti, P. et al. Expression of the antiproliferative gene TIS21 at the onset of neurogenesis identifies single neuroepithelial cells that switch from proliferative to neuron-generating division. Proc. Natl Acad. Sci. USA 96, 4639–4644 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Martinez-Cerdeno, V., Noctor, S. C. & Kriegstein, A. R. The role of the intermediate progenitor cells in the evolutionary expansion on the cerebral cortex. Cereb. Cortex 16, 152–161 (2006).

    Article  Google Scholar 

  56. Smart, I. H., Dehay, C., Giroud, P., Berland, M. & Kennedy, H. Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb. Cortex 12, 37–53 (2002).

    Article  PubMed  Google Scholar 

  57. Zecevic, N., Chen, Y. & Filipovic, R. Contributions of cortical subventricular zone to the development of the human cerebral cortex. J. Comp. Neurol. 491, 109–122 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Noctor, S. C., Scholnicoff, N. J. & Juliano, S. L. Histogenesis of ferret somatosensory cortex. J. Comp. Neurol. 387, 179–193 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Kornack, D. R. & Rakic, P. Changes in cell-cycle kinetics during the development and evolution of primate neocortex. Proc. Natl Acad. Sci. USA 95, 1242–1246 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Takahashi, T., Nowakowski, R. S. and Caviness, V. Jr. The cell cycle of the pseudostratified ventricular epithelium of the embryonic murine cerebral wall. J. Neurosci. 15, 6046–6057 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. DeFelipe, J., Alonso-Nanclares, L. & Arellano, J. I. Microstructure of the neocortex: comparative aspects. J. Neurocytol. 31, 299–316 (2002).

    Article  PubMed  Google Scholar 

  62. Richman, D. P., Stewart, R. M., Hutchinson, J. W. & Caviness, V. S. Jr. Mechanical model of brain convolutional development. Science 189, 18–21 (1975).

    Article  CAS  PubMed  Google Scholar 

  63. Bayer, S. A. & Altman, J. The Human Brain During the Second Trimester (Taylor & Francis, Boca Raton, 2005).

    Book  Google Scholar 

  64. Nery, S., Fishell, G. & Corbin, J. G. The caudal ganglionic eminence is a source of distinct cortical and subcortical cell populations. Nature Neurosci. 5, 1279–1287 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. de Carlos, J. A., Lopez-Mascaraque, L. & Valverde, F. Dynamics of cell migration from the lateral ganglionic eminence in the rat. J. Neurosci. 16, 6146–6156 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lavdas, A. A., Grigoriou, M., Pachnis, V. & Parnavelas, J. G. The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J. Neurosci. 19, 7881–7888 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Anderson, S. A., Marin, O., Horn, C., Jennings, K. & Rubenstein, J. L. Distinct cortical migrations from the medial and lateral ganglionic eminences. Development 128, 353–363 (2001).

    CAS  PubMed  Google Scholar 

  68. Anderson, S. A., Eisenstat, D. D., Shi, L. & Rubenstein, J. Interneuron migration from basal forebrain to neocortex: dependence on dlx genes. Science 278, 474–476 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Wichterle, H., Garcia-Verdugo, J. M., Herrera, D. G. & Alvarez-Buylla, A. Young neurons from medial ganglionic eminence disperse in adult and embryonic brain. Nature Neurosci. 2, 461–466 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Wichterle, H., Turnbull, D. H., Nery, S., Fishell, G. & Alvarez-Buylla, A. In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain. Development 128, 3759–3771 (2001).

    CAS  PubMed  Google Scholar 

  71. Sussel, L., Marin, O., Kimura, S. & Rubenstein, J. L. Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum. Development 126, 3359–3370 (1999).

    CAS  PubMed  Google Scholar 

  72. Tamamaki, N., Fujimori, K. E. & Takauji, R. Origin and route of tangentially migrating neurons in the developing neocortical intermediate zone. J. Neurosci. 17, 8313–8323 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Halliday, A. L. & Cepko, C. L. Generation and migration of cells in the developing striatum. Neuron 9, 15–26 (1992).

    Article  CAS  PubMed  Google Scholar 

  74. Walsh, C. & Cepko, C. L. Clonal dispersion in proliferative layers of developing cerebral cortex. Nature 362, 632–635 (1993).

    Article  CAS  PubMed  Google Scholar 

  75. Reid, C. B. & Walsh, C. A. Evidence of common progenitors and patterns of dispersion in rat striatum and cerebral cortex. J. Neurosci. 22, 4002–4014 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Letinic, K., Zoncu, R. & Rakic, P. Origin of GABAergic neurons in the human neocortex. Nature 417, 645–649 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Brody, T. & Odenwald, W. F. Programmed transformations in neuroblast gene expression during Drosophila CNS lineage development. Dev. Biol. 226, 34–44 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Kambadur, R. et al. Regulation of POU genes by castor and hunchback establishes layered compartments in the Drosophila CNS. Genes. Dev. 12, 246–260 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Isshiki, T., Pearson, B., Holbrook, S. & Doe, C. Q. Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny. Cell 106, 511–521 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Cui, X. & Doe, C. Q. ming is expressed in neuroblast sublineages and regulates gene expression in the Drosophila central nervous system. Development 116, 943–952 (1992).

    CAS  PubMed  Google Scholar 

  81. Mellerick, D. M., Kassis, J. A., Zhang, S. D. & Odenwald, W. F. castor encodes a novel zinc finger protein required for the development of a subset of CNS neurons in Drosophila. Neuron 9, 789–803 (1992).

    Article  CAS  PubMed  Google Scholar 

  82. Novotny, T., Eiselt, R. & Urban, J. Hunchback is required for the specification of the early sublineage of neuroblast 7–3 in the Drosophila central nervous system. Development 129, 1027–1036 (2002).

    CAS  PubMed  Google Scholar 

  83. Zhong, W. Diversifying neural cells through order of birth and asymmetry of division. Neuron 37, 11–14 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Frantz, G. D., Weimann, J. M., Levin, M. E. & McConnell, S. K. Otx1 and Otx2 define layers and regions in developing cerebral cortex and cerebellum. J. Neurosci. 14, 5725–5740 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Molyneaux, B. J., Arlotta, P., Hirata, T., Hibi, M. & Macklis, J. D. Fezl is required for the birth and specification of corticospinal motor neurons. Neuron 47, 817–831 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Nieto, M. et al. Expression of Cux-1 and Cux-2 in the subventricular zone and upper layers II–IV of the cerebral cortex. J. Comp. Neurol. 479, 168–180 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Hanashima, C., Li, S. C., Shen, L., Lai, E. & Fishell, G. Foxg1 suppresses early cortical cell fate. Science 303, 56–59 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Shen, Q. et al. The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nature Neurosci. 9, 743–751 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Lavdas, A. A., Mione, M. C. & Parnavelas, J. G. Neuronal clones in the cerebral cortex show morphological and neurotransmitter heterogeneity during development. Cereb. Cortex 6, 490–497 (1996).

    Article  CAS  PubMed  Google Scholar 

  90. Williams, B. P., Read, J. & Price, J. The generation of neurons and oligodendrocytes from a common precursor cell. Neuron 7, 685–693 (1991).

    Article  CAS  PubMed  Google Scholar 

  91. Luskin, M. B., Parnavelas, J. G. & Barfield, J. A. Neurons, astrocytes, and oligodendrocytes of the rat cerebral cortex originate from separate progenitor cells: an ultrastructural analysis of clonally related cells. J. Neurosci. 13, 1730–1750 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Walsh, C. & Cepko, C. L. Cell lineage and cell migration in the developing cerebral cortex. Experientia 46, 940–947 (1990).

    Article  CAS  PubMed  Google Scholar 

  93. Temple, S. Division and differentiation of isolated CNS blast cells in microculture. Nature 340, 471–473 (1989).

    Article  CAS  PubMed  Google Scholar 

  94. Bayer, S. A. & Altman, J. Neocortical Development (Raven, New York, 1991).

    Google Scholar 

Download references

Acknowledgements

The authors thank A. Alvarez-Bullya and J. L. R. Rubenstein for helpful comments on the manuscript. This work has been supported by grants from the National Institutes of Health to A.R.K., and from the the Ministerio de Educación, Cultura y Deporte, Spain, to V.M.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnold Kriegstein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

Primary autosomal recessive microcephaly

FURTHER INFORMATION

Kriegstein's laboratory

Glossary

Asymmetric division

A cell division that produces two cells with different fate potential.

Cladogram

A tree-like diagram depicting evolutionary relationships between different species. In these diagrams, branches that share the same node are closely related.

Cortical plate

The cellular layer of the developing cerebral cortex that will become layers II–VI of the adult cortex.

Gyrencephalic cortex

Adult six-layered neocortex that develops a folded surface associated with gyri and sulci.

Lissencephalic cortex

Adult six-layered neocortex without folds created by gyri and sulci, which therefore has a smooth surface.

Preplate

The first cortical layer to develop, containing the earliest-generated cortical neurons. This layer is split by migrating cortical plate neurons that settle here, dividing it into a superficial layer that becomes the marginal zone and a deep layer that becomes the subplate.

Stem mammal

Putative vertebrate species from which all mammals evolved.

Symmetric division

A cell division that produces two cells with identical fate potential.

Telencephalon

The anterior portion of the forebrain, which includes the cerebral hemispheres, basal ganglia and the olfactory bulbs.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kriegstein, A., Noctor, S. & Martínez-Cerdeño, V. Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nat Rev Neurosci 7, 883–890 (2006). https://doi.org/10.1038/nrn2008

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2008

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing