Abstract
Whenever food is placed in the mouth, taste receptors are stimulated. Simultaneously, different types of sensory fibre that monitor several food attributes such as texture, temperature and odour are activated. Here, we evaluate taste and oral somatosensory peripheral transduction mechanisms as well as the multi-sensory integrative functions of the central pathways that support the complex sensations that we usually associate with gustation. On the basis of recent experimental data, we argue that these brain circuits make use of distributed ensemble codes that represent the sensory and post-ingestive properties of tastants.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
A neuronal prospect theory model in the brain reward circuitry
Nature Communications Open Access 04 October 2022
-
METTL3-mediated m6A RNA methylation regulates dorsal lingual epithelium homeostasis
International Journal of Oral Science Open Access 17 May 2022
-
CB1 cannabinoid receptor-mediated plasticity of GABAergic synapses in the mouse insular cortex
Scientific Reports Open Access 28 April 2020
Access options
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout







References
Marks, L. E. & Wheeler, M. E. Attention and the detectability of weak taste stimuli. Chem. Senses 23, 19–29 (1998).
Breslin, P. A. & Huang, L. Human taste: peripheral anatomy, taste transduction, and coding. Adv. Otorhinolaryngol. 63, 152–190 (2006).
Desimone, J. A. & Lyall, V. Salty and sour taste: sensing of sodium and protons by the tongue. Am. J. Physiol. Gastrointest. Liver Physiol. 29 June 2006 (doi:10.1152/ajpgi.00235).
Margolskee, R. F. Sensory systems: taste perception. Sci. STKE 290, tr20 (2005).
Roper, S. D. Cell communication in taste buds. Cell. Mol. Life Sci. 63, 1494–1500 (2006).
Scott, K. Taste recognition. Neuron 48, 455–464 (2005).
Smith, D. V. & St. John, S. J. Neural coding of gustatory information. Curr. Opin. Neurobiol. 9, 427–435 (1999).
de Araujo, I. E. et al. Neural ensemble coding of satiety states. Neuron 51, 483–494 (2006).
Fontanini, A. & Katz, D. B. State-dependent modulation of time-varying gustatory responses. J. Neurophysiol. 23 Aug 2006 (doi:10.1152/jn.00804).
Gutierrez, R., Carmena, J. M., Nicolelis, M. A. & Simon, S. A. Orbitofrontal ensemble activity monitors licking and distinguishes among natural rewards. J. Neurophysiol. 95, 119–133 (2006).
Stapleton, J. A., Lavine, M., Wolpert, R., Nicolelis, M. A. L. & Simon, S. A. Rapid taste responses in the gustatory cortex during licking. J. Neurosci. 26, 4126–4138 (2006).
Finger, T. E. & Simon, S. A. in The Neurobiology of Taste and Smell (eds Finger, T. E., Silver, W. L. & Restrepo, D.) 287–314 (Wiley-Liss, New York, 2002).
Scott, T. R. & Verhagen, J. V. Taste as a factor in the management of nutrition. Nutrition 16, 874–885 (2000).
Spector, A. C. & Travers, S. P. The representation of taste quality in the mammalian nervous system. Behav. Cogn. Neurosci. Rev. 4, 143–191 (2005).
Holland, V. F., Zampighi, G. A. & Simon, S. A. Morphology of fungiform papillae in canine lingual epithelium: location of intercellular junctions in the epithelium. J. Comp. Neurol. 279, 13–27 (1989).
Yang, J. & Roper, S. D. Dye-coupling in taste buds in the mudpuppy. J. Neurosci. 7, 3561–3565 (1987).
Yoshii, K. Gap junctions among taste bud cells in mouse fungiform papillae. Chem. Senses 30, i35–i36 (2005).
Herness, S., Zhao, F. L., Kaya, N., Lu, S. G. & Cao, Y. Communication routes within the taste bud by neurotransmitters and neuropeptides. Chem. Senses 30, i37–i38 (2005).
Zhao, F. L. et al. Expression, physiological action, and coexpression patterns of neuropeptide Y in rat taste-bud cells. Proc. Natl Acad. Sci. USA 102, 11100–11105 (2005).
Danilova, V., Danilov, Y., Roberts, T. & Hellekant, G. Sense of taste of the common marmoset: recordings from the chorda tympani and glossopharyngeal nerves. J. Neurophys. 88, 579–594 (2002).
Hanamori, T., Miller, I. J. Jr & Smith, D. V. Gustatory responsiveness of fibers in the hamster glossopharyngeal nerve. J. Neurophysiol. 60, 478–498 (1988).
Spector, A. C. Linking gustatory neurobiology to behavior in vertebrates. Neurosci. Biobehav. Rev. 391, 391–416 (2000).
Travers, S. P. in Mechanisms of Taste Transduction (eds Simon, S. A. & Roper, S. D.) 339–395 (CRC, Boca Raton, 1993).
Finger, T. E. et al. ATP signaling is crucial for communication from taste buds to gustatory nerves. Science 310, 1495–1499 (2005).
Bigiani, A. R., Delay, R. J., Chaudhari, N., Kinnamon, S. C. & Roper, S. D. Responses to glutamate in rat taste cells. J. Neurophysiol. 77, 3048–3059 (1997).
Huang, Y. J. et al. Mouse taste buds use serotonin as a neurotransmitter. J. Neurosci. 25, 843–847 (2005).
Ogura, T. Acetylcholine increases intracellular Ca2+ in taste cells via activation of muscarinic receptors. J. Neurophysiol. 87, 2643–2649 (2002).
Bradbury, J. Taste perception: cracking the code. PLoS Biol. 2, e64 (2004).
Zhang, Y. et al. Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 112, 293–301 (2003).
Adler, E. et al. A novel family of mammalian taste receptors. Cell 100, 693–702 (2000).
Chrandrashekar, J. et al. T2Rs function as bitter taste receptors. Cell 100, 703–711 (2000).
Liu, D. & Liman, E. R. Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5. Proc. Natl Acad. Sci. USA 100, 15160–15165 (2003).
Max, M. et al. Tas1r3, encoding a new candidate taste receptor, is allelic to the sweet responsiveness locus Sac. Nature Genet. 28, 58–63 (2001).
Montmayeur, J. P., Liberlis, S. D., Matsunami, H. & Buck, L. A candidate taste receptor gene near a sweet taste locus. Nature Neurosci. 4, 492–498 (2001).
Mueller, K. L. et al. The receptors and coding logic for bitter taste. Nature 434, 225–229 (2005).
Perez, C. A., Margolskee, R. F., Kinnamon, S. C. & Ogura, T. Making sense with TRP channels: store-operated calcium entry and the ion channel Trpm5 in taste receptor cells. Cell Calcium 33, 541–549 (2003).
Zhao, G. Q. et al. The receptors for mammalian sweet and umami taste. Cell 115, 255–266 (2003).
Huang, A. L. et al. The cells and logic for mammalian sour taste detection. Nature 442, 934–938 (2006).
Kellenberger, S. & Schild, L. Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol. Rev. 82, 735–767 (2002).
Nelson, G., Hoon, M. A., Chandrashekar, J., Ryba, N. J. P. & Zuker, C. S. Mammalian sweet taste receptors. Cell 106, 381–390 (2001).
Galindo-Cuspinera, V., Winnig, M., Bufe, B., Meyerhof, W. & Breslin, P. A. A TAS1R receptor-based explanation of sweet 'water-taste'. Nature 441, 354–357 (2006).
Nelson, G. et al. An amino-acid taste receptor. Nature 416, 199–202 (2002).
Rong, M. et al. Signal transduction of umami taste: insights from knockout mice. Chem. Senses 30, i33–i34 (2005).
Chaudhari, N. et al. The taste of monosodium glutamate: membrane receptors in taste buds. J. Neurosci. 16, 3817–3826 (1996).
Maruyama, Y., Pereira, E., Margolskee, R. F., Chaudhari, N. & Roper, S. D. Umami responses in mouse taste cells indicate more than one receptor. J. Neurosci. 26, 2227–2234 (2006).
Ming, D., Ninomiya, T. & Margolskee, R. F. Blocking taste receptor activation of gustducin inhibits gustatory responses to bitter compounds. Proc. Natl Acad. Sci. USA 96, 9903–9908 (2000).
Parry, C. M., Erkner, A. & le Coutre, J. Divergence of T2R chemosensory receptor families in humans, bonobos, and chimpanzees. Proc. Natl Acad. Sci. USA 101, 14830–14834 (2004).
Nelson, T., Munger, S. & Boughter, J. Haplotypes at the Tas2r locus on distal chromosome 6 vary with quinine taste sensitivity in inbred mice. BMC Genet. 6, 32 (2005).
Chandrashekar, J. et al. T2Rs function as bitter taste receptors. Cell 100, 703–711 (2000).
Bufe, B. et al. The molecular basis of individual differences in phenylthiocarbamide and propylthiouracil bitterness perception. Curr. Biol. 15, 322–327 (2005).
Kim, U. K. & Drayna, D. Genetics of individual differences in bitter taste perception: lessons from the PTC gene. Clin. Genet. 67, 275–280 (2005).
Kretz, O., Barbry, P., Bock, R. & Lindemann, B. Differential expression of RNA and protein of the three pore-forming subunits of the amiloride-sensitive epithelial sodium channel in taste buds of the rat. J. Histochem. Cytochem. 47, 51–64 (1999).
Schiffman, S. S., Lockhead, E. & Maes, F. W. Amiloride reduces the taste intensity of Na+ and Li+ salts and sweeteners. Proc. Natl Acad. Sci. USA 80, 6136–6140 (1983).
DeSimone, J. A. & Ferrell, F. Analysis of amiloride inhibition of chorda tympani taste response of rat to NaCl. Am. J. Physiol. Cell Physiol. 249, R52–R61 (1985).
Elliott, E. J. & Simon, S. A. The anion in salt taste: a possible role of tight junctions. Brain Res. 535, 9–17 (1990).
Ossebaard, C. A. & Smith, D. V. Effect of amiloride on the taste of NaCl, Na-gluconate and KCl in humans: implications for Na+ receptor mechanisms. Chem. Senses 20, 37–46 (1995).
Schiffman, S. S. Taste quality and neural coding: implications from psychophysics and neurophysiology. Physiol. Behav. 69, 147–159 (2000).
Stevens, D. A., Smith, R. F. & Lawless, H. T. Multidimensional scaling of ferrous sulfate and basic tastes. Physiol. Behav. 87, 272–279 (2006).
Lyall, V. et al. The mammalian amiloride-insensitive non-specific salt taste receptor is a vanilloid receptor-1 variant. J. Physiol. 558, 147–159 (2004).
Lyall, V. et al. A novel vanilloid receptor-1 (VR-1) variant mammalian salt taste receptor. Chem. Senses 30, i42–i43 (2005).
Ishimaru, Y. et al. Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc. Natl Acad. Sci. USA 103, 12569–12574 (2006).
LopezJimenez, N. D. et al. Two members of the TRPP family of ion channels, Pkd1l3 and Pkd2l1, are co-expressed in a subset of taste receptor cells. J. Neurochem. 98, 68–77 (2006).
Lyall, V. et al. Decrease in rat taste receptor cell intracellular pH is the proximate stimulus in sour taste transduction. Am. J. Physiol. Cell Physiol. 281, C1005–C1013 (2001).
French, S. & Robinson, T. Fats and food intake. Curr. Opin. Clin. Nutr. Metab. Care 6, 629–634 (2003).
Kadohisa, M., Verhagen, J. V. & Rolls, E. T. The primate amygdala: neuronal representations of the viscosity, fat texture, temperature, grittiness and taste of foods. Neuroscience 132, 33–48 (2005).
Rolls, E. T. Taste, olfactory, and food texture processing in the brain, and the control of food intake. Physiol. Behav. 85, 45–56 (2005).
Laugerette, F. et al. CD36 involvement in orosensory detection of dietary lipids, spontaneous fat preference, and digestive secretions. J. Clin. Invest. 115, 3177–3184 (2005).
Kawai, T. & Fushiki, T. Importance of lipolysis in oral cavity for orosensory detection of fat. Am. J. Physiol 285, R447–R454 (2003).
Gilbertson, T. A., Fontenot, D. T., Liu, L., Zhang, H. & Monroe, W. T. Fatty acid modulation of K+ channels in taste receptor cells: gustatory cues for dietary fat. Am. J. Physiol. Cell Physiol. 272, C1203–C1210 (1997).
Gilbertson, T. A., Liu, L., Kim, I., Burks, C. A. & Hansen, D. R. Fatty acid responses in taste cells from obesity-prone and -resistant rats. Physiol. Behav. 86, 681–690 (2005).
Lindemann, B. Sodium taste. Curr. Opin. Neph. Hypertens. 6, 425–429 (1997).
Rajan, R., Clement, J. P. & Bhalla, U. S. Rats smell in stereo. Science 311, 667–670 (2006).
Lu, S. G., Kaya, N. & Herness, M. S. Cholecystokinin increases intracellular calcium levels in rat posterior taste receptor cells. Chem. Senses 25, 685 (2000).
Zhao, F. L. & Herness, M. S. Physiological actions of cholecystokinin on rat taste receptor cells. Chem. Senses 26, 1065 (2001).
Cruz, A. & Green, B. G. Thermal stimulation of taste. Nature 403, 889–892 (2000).
Bartoshuck, L. M., Rennert, K., Rodin, J. & Stevens, J. C. Effects of temperature on the perceived sweetness of sucrose. Physiol. Behav. 28, 905–910 (2001).
Talavera, K. et al. Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature 438, 1022–1025 (2005).
Green, B. G. Sensory interactions between capsaicin and temperature. Chem. Senses 11, 371–382 (1986).
Liu, L. & Simon, S. A. Capsaicin, acid and heat evoked currents in rat trigeminal ganglion neurons: evidence for functional VR1 receptors. Physiol. Behav 69, 363–378 (2000).
Patapoutaian, A. TRP channels and thermoreception. Chem. Senses 30, i193–i194 (2005).
Halata, H. & Munger, B. L. The sensory innervation of primate facial skin 11 Vermilion boarder and mucosa of lip. Brain Res. Rev. 5, 81–107 (1983).
Munger, B. L. in Mechanisms of Taste Transduction (eds Simon, S. A. & Roper, S. D.) 83–102 (CRC, Boca Raton, 1993).
Liu, L. & Simon, S. A. Capsaicin-induced currents with distinct desensitization and Ca+ dependence in rat trigeminal ganglion cells. J. Neurophysiol. 75, 1503–1514 (1996).
Wang, Y., Erickson, R. E. & Simon, S. A. Modulation of chorda tympani nerve activity by lingual nerve stimulation. J. Neurophysiol. 73, 1468–1483 (1995).
Chuang, H. H., Neuhausser, W. M. & Julius, D. The super-cooling agent icilin reveals a mechanism of coincidence detection by a temperature-sensitive TRP channel. Neuron 43, 859–869 (2004).
Xu, H., Delling, M., Jun, J. C. & Clapham, D. E. Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nature Neurosci. 9, 628–635 (2006).
Carstens, E., Kuenzler, N. & Handwerker, K. O. Activation of neurons in rat trigeminal subnucleus caudalis by different irritant chemicals applied to the oral or ocular mucosa. J. Neurophysiol. 80, 465–492 (1998).
Simons, C. T., Dressier, J. M., Carstens, M. I., O'Mahoney, M. & Carstens, E. Neurobiological and psychophysical mechanisms underlying the oral sensation produced by carbonated water. J. Neurosci. 15, 8134–8144 (1999).
Wang, Y., Erickson, R. P. & Simon, S. A. Selectivity of lingual nerve fibers to chemical stimuli. J. Gen. Physiol. 101, 843–866 (1993).
Danilova, V. & Hellekant, G. Oral sensation of ethanol in a primate model III: responses in the lingual branch of the trigeminal nerve of Macaca mulatta. Alcohol 26, 3–16 (2002).
Bennick, A. Interaction of plant polyphenols with salivary proteins. Crit. Rev. Oral Bio. Med. 13, 184–196 (2002).
Breslin, P. A. S., Gilmore, M. M., Beauchamp, G. K. & Green, B. G. Physiophysical evidence that oral astringency is a tactile sensation. Chem. Senses 18, 405–417 (1993).
Kawamura, Y., Okamoto, J. & Funakoshi, M. A role of oral afferents in aversion to taste solutions. Physiol. Behav. 3, 537–542 (1968).
Erickson, R. P. Stimulus coding in topographic and non-topographic afferent modalities. Psychol. Rev. 75, 447–465 (1968).
Frank, M. An analysis of hamster afferent taste nerve response functions. J. Gen. Physiol. 61, 588–618 (1973).
Pfaffman, C. The afferent code for sensory quality. Am. Psychol. 14, 226–232 (1959).
Caicedo, A., Kim, K. N. & Roper, S. D. Individual mouse taste cells respond to multiple chemical stimuli. J. Physiol. 544, 501–509 (2002).
Gilbertson, T. A., Boughter, J. D., Zhang, H. & Smith, D. V. Distribution of gustatory sensitivities in rat taste cells: whole-cell responses to apical chemical stimulation. J. Neurosci. 27, 4931–4941 (2001).
Boudreau, J. C. et al. Neurophysiology of geniculate ganglion (facial nerve) taste systems: species comparisons. Chem. Senses 10, 89–127 (1985).
Frank, M. F. Taste responsive neurons of the glossopharnygeal nerve of the rat. J. Neurophysiol. 65, 1452–1462 (1991).
Frank, M. F., Bieber, S. L. & Smith, D. V. The organization of taste sensibilities in hamster chorda tympani nerve fibers. J. Gen. Physiol. 91, 861–896 (1988).
Danilova, V. & Hellekant, G. Sense of taste in a new world monkey, the common marmoset. II. Link between behavior and nerve activity. J. Neurophys. 92, 1067–1076 (2004).
Hellekant, G., Ninomiya, T. & Danilova, V. Taste in chimpanzees. III: Labeled-line coding in sweet taste. Physiol. Behav. 65, 191–200 (1998).
Grill, H. J. & Norgren, R. Chronically decerebrate rats demonstrate satiation but not bait shyness. Science 201, 267–269 (1978).
Jones, L. M., Fontanini, A. & Katz, D. B. Gustatory processing: a dynamic systems approach. Curr. Opin. Neurobiol. 16, 420–428 (2006).
Hamilton, R. B. & Norgren, R. Central projections of gustatory nerves in the rat. J. Comp. Neurol. 222, 560–577 (1984).
Boucher, Y., Simons, C. T., Faurion, A., Azerad, J. & Carstens, E. Trigeminal modulation of gustatory neurons in the nucleus of the solitary tract. Brain Res. 973, 265–274 (2003).
van Buskirk, R. L. & Erickson, R. P. Responses in the rostral medulla to electrical stimulation of an intranasal trigeminal nerve convergence of oral and nasal inputs. Neurosci. Lett. 5, 312–326 (2003).
Travagli, R. A., Hermann, G. E., Browning, K. N. & Rogers, R. C. Brainstem circuits regulating gastric function. Annu. Rev. Physiol. 68, 279–305 (2006).
Zhang, X., Fogel, R. & Renehan, W. E. Relationships between the morphology and function of gastric- and intestine-sensitive neurons in the nucleus of the solitary tract. J. Comp. Neurol. 363, 37–52 (1995).
Berthoud, H. R., Earle, T., Zheng, H., Patterson, L. M. & Phifer, C. Food-related gastrointestinal signals activate caudal brainstem neurons expressing both NMDA and AMPA receptors. Brain Res. 915, 143–154 (2001).
Glenn, J. F. & Erickson, R. P. Gastric modulation of gustatory afferent activity. Physiol. Behav. 16, 561–568 (1976).
Simons, C. T., Boucher, Y., Iodi-Carstens, M. & Carstens, E. Nicotine suppression of gustatory responses of neurons in the nucleus of the solitary tract. J. Neurophys. 96, 1877–1886 (2006).
Norgren, R. & Grill, H. J. in The Physiological Mechanisms of Motivation (ed. Pfaff, D. W.) 99–131 (Springer, New York, 1982).
Cunningham, E. T. Jr & Sawchenko, P. E. Dorsal medullary pathways subserving oromotor reflexes in the rat: implications for the central neural control of swallowing. J. Comp. Neurol. 417, 448–466 (2000).
Travers, J. B., Dinardo, L. A. & Karimnamazi, H. Motor and Premotor Mechanisms of Licking. Neurosci. Biobehav. Rev. 21, 631–647 (1997).
Travers, S. P. & Norgren, R. Organization of orosensory responses in the nucleus of the solitary tract of rat. J. Neurophysiol. 73, 2144–2162 (1995).
Sugita, M. & Shiba, Y. Genetic tracing shows segregation of taste circuitries for bitter and sweet. Science 309, 781–785 (2005).
Scott, T. R., Yaxley, S., Sienkiewicz, Z. J. & Rolls, E. T. Taste responses in the nucleus tractus solitarius of the behaving monkey. J. Neurophysiol. 55, 182–200 (1986).
Lemon, C. H. & Smith, D. V. Neural representation of bitter taste in the nucleus of the solitary tract. J. Neurophysiol. 94, 3719–3729 (2005).
Lemon, C. H. & Smith, D. V. Influence of response variability on the coding performance of central gustatory neurons. J. Neurosci. 26, 7433–7443 (2006).
Di Lorenzo, P. M., Halloak, R. M. & Kennedy, D. P. Temporal coding of sensation: mimicking taste quality with electrical stimulation of the brain. Behav. Neurosci. 117, 1423–1433 (2003).
van der Kooy, D., Koda, L. Y., McGinty, J. F., Gerfen, C. R. & Bloom, F. E. The organization of projections from the cortex, amygdala, and hypothalamus to the nucleus of the solitary tract in rat. J. Comp. Neurol. 224, 1–24 (1984).
Whitehead, M. C., Bergula, A. & Holliday, K. Forebrain projections to the rostral nucleus of the solitary tract in the hamster. J. Comp. Neurol. 422, 429–447 (2000).
Di Lorenzo, P. M. & Monroe, S. Corticofugal influence on taste responses in the nucleus of the solitary tract in the rat. J. Neurophysiol. 74, 258–272 (1995).
Smith, D. V., Li, C. S. & Cho, Y. K. Forebrain modulation of brainstem gustatory processing. Chem. Senses 30, i176–i177 (2005).
Tokita, K., Karadi, Z., Shimura, T. & Yamamoto, T. Centrifugal inputs modulate taste aversion learning associated parabrachial neuronal activities. J. Neurophysiol. 92, 265–279 (2004).
Li, C. S., Cho, Y. K. & Smith, D. V. Modulation of parabrachial taste neurons by electrical and chemical stimulation of the lateral hypothalamus and amygdala. J. Neurophysiol. 93, 1183–1196 (2005).
Lundy, R. F. Jr & Norgren, R. Activity in the hypothalamus, amygdala, and cortex generates bilateral and convergent modulation of pontine gustatory neurons. J. Neurophysiol. 91, 1143–1157 (2004).
Di Lorenzo, P. M. Corticofugal influence on taste responses in the parabrachial pons of the rat. Brain Res. 530, 73–84 (1990).
Erickson, R. P. A neural metric. Neurosci. Behav. Rev. 10, 377–386 (1986).
Katz, D. B., Nicolelis, M. A. & Simon, S. A. Gustatory processing is dynamic and distributed. Curr. Opin. Neurobiol. 12, 448–454 (2002).
Kadohisa, M., Rolls, E. T. & Verhagen, J. V. Neuronal representations of stimuli in the mouth: the primate insular taste cortex, orbitofrontal cortex and amygdala. Chem. Senses 30, 401–419 (2005).
Hanamori, T., Kunitake, T., Kato, K. & Kannan, H. Responses of neurons in the insular cortex to gustatory, visceral and nociceptive stimuli in rats. J. Neurophysiol. 79, 2535–2545 (1998).
Hanamori, T., Kunitake, T., Kato, K. & Kannan, H. Neurons in the posterior insular cortex are responsive to gustatory stimulation of the pharyngolarnyx, baroreceptors and chemoreceptor stimulation and tail pinch in rats. Brain Res. 785, 97–106 (1999).
Katz, D. B., Simon, S. A. & Nicolelis, M. A. Taste-specific neuronal ensembles in the gustatory cortex of awake rats. J. Neurosci. 22, 1850–1857 (2002).
Halpern, B. P. & Tapper, D. N. Taste stimuli: quality coding time. Science 171, 1256–1258 (1971).
Katz, D. B., Simon, S. A. & Nicolelis, M. A. Dynamic and multimodal responses of gustatory cortical neurons in awake rats. J. Neurosci. 21, 4478–4489 (2001).
Ogawa, H. & Wang, X. D. Neurons in the cortical taste area receive nociceptive inputs from the whole body as well as the oral cavity in the rat. Neurosci. Lett. 322, 87–90 (2002).
Yamamoto, T., Yuyama, N. & Kawamura, Y. Cortical neurons responding to tactile, thermal and taste stimulations of the rat tongue. Brain Res. 221, 411–415 (1981).
Dalton, P., Doolittle, N., Nagata, H. & Breslin, P. A. S. The merging of the senses: integration of subthreshold taste and smell. Nature Neurosci. 3, 431–432 (2000).
Todrank, J. & Bartoshuk, L. M. A taste illusion: taste sensation localized by touch. Physiol. Behav. 50, 1027–1031 (1991).
Ito, S. & Ogawa, H. Neural activity in fronto-opercular cortex of macaque monkeys during tasting and mastication. Jpn J. Physiol. 44, 141–156 (1994).
Scott, T. R., Yaxley, S., Sienkiewicz, Z. J. & Rolls, E. T. Gustatory responses in the frontal opercular cortex of the alert cynomolgus monkey. J. Neurophysiol. 56, 876–890 (1986).
de Araujo, I. E. & Rolls, E. T. Representation in the human brain of food texture and oral fat. J. Neurosci. 24, 3086–3093 (2004).
Zald, D. H. & Pardo, J. V. Cortical activation induced by intraoral stimulation with water in humans. Chem. Senses 25, 267–276 (2000).
Rolls, E. T., Critchley, H. D., Browning, A. S., Hernadi, A. & Lenard, L. Responses to the sensory properties of fat of neurons in the primate orbitofrontal cortex. J. Neurosci. 19, 1532–1540 (1999).
Verhagen, J. V., Rolls, E. T. & Kadohisa, M. Neurons in the primate orbitofrontal cortex respond to fat texture independently of viscosity. J. Neurophys. 90, 1514–1525 (2003).
Franks, K. M. & Isaacson, J. S. Strong single-fiber sensory inputs to olfactory cortex: implications for olfactory coding. Neuron 49, 357–363 (2006).
Sewards, T. V. & Sewards, M. A. Cortical association areas in the gustatory system. Neurosci. Biobehav. Rev. 25, 395–407 (2001).
Small, D. M., Jones-Gotman, M., Zatorre, R. J., Petrides, M. & Evans, A. C. Flavor processing: more than the sum of its parts. Neuroreport 8, 3913–3917 (1997).
de Araujo, I. E., Rolls, E. T., Kringelbach, M. L., McGlone, F. & Phillips, N. Taste-olfactory convergence, and the representation of the pleasantness of flavour, in the human brain. Eur. J. Neurosci. 18, 2059–2068 (2003).
Small, D. M. et al. Experience-dependent neural integration of taste and smell in the human brain. J. Neurophysiol. 92, 1892–1903 (2004).
Mickley, G. A. et al. Dynamic processing of taste aversion extinction in the brain. Brain Res. 1016, 79–89 (2004).
Garcia, J., Kimeldorf, D. J. & Koelling, R. A. Conditioned aversion to saccharin resulting from exposure to gamma radiation. Science 122, 157–158 (1955).
Sclafani, A. Post-ingestive positive controls of ingestive behavior. Appetite 36, 79–83 (2001).
Rolls, E. T., Murzi, E., Yaxley, S., Thorpe, S. J. & Simpson, S. J. Sensory-specific satiety: food-specific reduction in responsiveness of ventral forebrain neurons after feeding in the monkey. Brain Res. 368, 79–86 (1986).
Rolls, E. T., Sienkiewicz, Z. J. & Yaxley, S. Hunger modulates the responses to gustatory stimuli of single neurons in the caudolateral orbitofrontal cortex of the macaque monkey. Eur. J. Neurosci. 1, 53–60 (1989).
O'Doherty, J., Rolls, E. T., Francis, S., Bowtell, R. & McGlone, F. Representation of pleasant and aversive taste in the human brain. J. Neurophys. 85, 1315–1321 (2001).
Small, D. M., Zatorre, R. J., Dagher, A., Evans, A. C. & Jones-Gotman, M. Changes in brain activity related to eating chocolate: from pleasure to aversion. Brain 124 1720–1733 (2001).
Gottfried, J. A., O'Doherty, J. & Dolan, R. J. Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science 301, 1104–1107 (2004).
O'Doherty, J. et al. Sensory-specific satiety-related olfactory activation of the human orbitofrontal cortex. Neuroreport 11, 399–403 (2000).
de Araujo, I. E., Kringelbach, M. L., Rolls, E. T. & McGlone, F. Human cortical responses to water in the mouth, and the effects of thirst. J. Neurophysiol. 90, 1865–1876 (2003).
Bermudez-Rattoni, F. Molecular mechanisms of taste-recognition memory. Nature Rev. Neurosci. 5, 209–217 (2004).
Acknowledgements
This work was supported in part by grants from the National Institutes of Health, from Philip Morris Inc. USA and Philip Morris International.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Glossary
- Amiloride
-
A potassium-sparing diuretic that inhibits epithelial sodium channels (ENaCs) in the kidney and in taste receptor cells.
- Carbonic anhydrase
-
Family of zinc-containing enzymes that catalyse the rapid interconversion of carbon dioxide and water into protons and bicarbonate ions.
- Cholecystokinin
-
(CCK). A peptide hormone secreted from the mucosal epithelial cells in the small intestine (duodenum) that causes the release of digestive enzymes from the pancreas. Peripheral and central administration of CCK reduces appetite.
- Chorda tympani nerve
-
Branch of cranial nerve VII that innervates the front two-thirds of the tongue and carries taste information to the brain.
- Conditioned taste aversion
-
(CTA). This is a one-trial form of learning that occurs when a palatable tastant becomes aversive after pairing with gastric malaise.
- ENaC/Deg
-
Epithelial sodium channel (ENaC)/degenerin (Deg) is a superfamily of ion channels involved in epithelial Na+ transport, mechanotransduction and neurotransmission.
- Forebrain
-
The anterior portion of the brain that includes the telencephalon and the diencephalon. It contains the cerebral cortex, the thalamus and the hypothalamus.
- Gap junction
-
A junction between two cells consisting of pores that allow the passage of molecules (up to 1 kDa).
- Glossopharyngeal nerve
-
Cranial nerve IX, receiving sensory fibres from the posterior one-third of the tongue, the tonsils and the pharynx.
- Greater superior petrosal nerve
-
Branch of cranial nerve VII that innervates the back of the tongue and palate.
- Gustducin
-
A G protein that is almost exclusively expressed in taste cells.
- Neuropeptide Y
-
(NPY). A member of the pancreatic polypeptide hormone family, this peptide is produced and released by cell groups located in the hypothalamic arcuate nucleus. Central administration of NPY increases food intake and metabolism.
- Purinergic receptors
-
These receptors are ion channels that are activated by ATP.
- Sensory-specific satiety
-
Term referring to a specific reduction in the reward value of a particular food that has been eaten until satiety.
- Superior laryngeal branch
-
Nerve that arises from the inferior vagal ganglion inferior to the pharyngeal branch of the vagus nerve.
- Temporal coding models
-
These models propose that information on taste identity and quality is encoded in the temporal structure of spike trains.
- TRPM5
-
A cation channel member of the transient receptor potential superfamily (subfamily M, member 5). Regulation of TRPM5 by Ca2+ could mediate transduction in taste receptor cells. It is required for the normal transduction of sweet, bitter and umami tastes.
- Umami
-
A Japanese word used to describe the fifth primary taste. It corresponds to the savoury taste of food as produced, for example, by monosodium glutamate. Umami taste is found in vegetables, fish, meats and cheese.
Rights and permissions
About this article
Cite this article
Simon, S., de Araujo, I., Gutierrez, R. et al. The neural mechanisms of gustation: a distributed processing code. Nat Rev Neurosci 7, 890–901 (2006). https://doi.org/10.1038/nrn2006
Issue Date:
DOI: https://doi.org/10.1038/nrn2006
This article is cited by
-
A neuronal prospect theory model in the brain reward circuitry
Nature Communications (2022)
-
METTL3-mediated m6A RNA methylation regulates dorsal lingual epithelium homeostasis
International Journal of Oral Science (2022)
-
CB1 cannabinoid receptor-mediated plasticity of GABAergic synapses in the mouse insular cortex
Scientific Reports (2020)
-
The neuroscience of sugars in taste, gut-reward, feeding circuits, and obesity
Cellular and Molecular Life Sciences (2020)
-
Olfactory signals from the main olfactory bulb converge with taste information from the chorda tympani nerve in the agranular insular cortex of rats
Pflügers Archiv - European Journal of Physiology (2020)