Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Histone deacetylase inhibitors as therapeutics for polyglutamine disorders

Key Points

  • Transcriptional dysregulation is part of the pathogenic mechanism that underlies neuronal dysfunction in polyglutamine repeat diseases such as Huntington's disease (HD). Microarray experiments show that the expression of a subset of genes is robustly altered in mouse models of HD and in the brains of patients with HD.

  • Histone acetyltransferases (HATs) and histone deacetylases (HDACs) are enzymes that control transcription by acetylating and deacetylating histones, thereby changing the conformation of chromatin structure.

  • Expanded polyglutamine repeat proteins adopt aberrant interactions with HATs and HDACs as well as other transcription factors, co-activators and co-repressors owing to conformational changes caused by the polyglutamine stretch within the mutant protein.

  • Of the four classes of HDAC enzyme, class I is ubiquitously expressed and class II is highly expressed in muscle, heart and brain.

  • In addition to deacetylating histones, HDACs also modify non-histone proteins such as the tumour suppressor p53 and heat shock protein 90 (HSP90), both of which are implicated in HD pathogenesis.

  • Compounds that inhibit these class I and II HDACs are in clinical trials for the treatment of many types of cancer. These drugs are currently being tested in preclinical trials using mouse models of polyglutamine repeat disease.

  • One HDAC inhibitor, phenylbutyrate, is in phase II clinical trials for HD, and alterations in blood biomarker expression after treatment look promising.

Abstract

During the past 5 years, gene expression studies in cell culture, animal models and in the brains of patients have shown that the perturbation of transcription frequently results in neuronal dysfunction in polyglutamine repeat diseases such as Huntington's disease. Histone deacetylases act as repressors of transcription through interactions with co-repressor complexes, which leads to chromatin remodelling. Aberrant interactions between polyglutamine proteins and regulators of transcription could be one mechanism by which transcriptional dysregulation occurs. Here, we discuss the potential therapeutic pathways through which histone deacetylase inhibitors might act to correct the aberrant transcription observed in Huntington's disease and other polyglutamine repeat diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Classes of histone deacetylase.
Figure 2: Potential mechanisms of transcriptional dysregulation in Huntington's disease.
Figure 3: Effects of HDAC inhibitors on non-histone acetylated proteins.

Similar content being viewed by others

References

  1. Bates, G. P., Harper, P. S. & Jones, A. L. (eds) Huntington's Disease (Oxford Univ. Press, Oxford, 2002).

    Google Scholar 

  2. Cummings, C. J. & Zoghbi, H. Y. Fourteen and counting: unraveling trinucleotide repeat diseases. Hum. Mol. Genet. 9, 909–916 (2000).

    CAS  PubMed  Google Scholar 

  3. Paulson, H. L. et al. Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron 19, 333–344 (1997).

    CAS  PubMed  Google Scholar 

  4. Davies, S. W. et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90, 537–548 (1997).

    CAS  PubMed  Google Scholar 

  5. DiFiglia, M. et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277, 1990–1993 (1997).

    CAS  PubMed  Google Scholar 

  6. Wacker, J. L., Zareie, M. H., Fong, H., Sarikaya, M. & Muchowski, P. J. Hsp70 and Hsp40 attenuate formation of spherical and annular polyglutamine oligomers by partitioning monomer. Nature Struct. Mol. Biol. 11, 1215–1222 (2004).

    CAS  Google Scholar 

  7. Arrasate, M., Mitra, S., Schweitzer, E. S., Segal, M. R. & Finkbeiner, S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431, 805–810 (2004).

    CAS  PubMed  Google Scholar 

  8. Kazantsev, A., Preisinger, E., Dranovsky, A., Goldgaber, D. & Housman, D. Insoluble detergent-resistant aggregates form between pathological and nonpathological lengths of polyglutamine in mammalian cells. Proc. Natl Acad. Sci. USA 96, 11404–11409 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Perez, M. K. et al. Recruitment and the role of nuclear localization in polyglutamine-mediated aggregation. J. Cell Biol. 143, 1457–1470 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Cha, J. -H. J. et al. Altered brain neurotransmitter receptors in transgenic mice expressing a portion of an abnormal human Huntington disease gene. Proc. Natl Acad. Sci. USA 95, 6480–6485 (1998). The first study to show abnormal transcriptional regulation in HD.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kouzarides, T. Acetylation: a regulatory modification to rival phosphorylation? EMBO J. 19, 1176–1179 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Glozak, M. A., Sengupta, N., Zhang, X. & Seto, E. Acetylation and deacetylation of non-histone proteins. Gene 363, 15–23 (2005).

    CAS  PubMed  Google Scholar 

  13. Norton, V., Marvin, K., Yau, P. & Bradbury, E. Nucleosome linking number change controlled by acetylation of histones H3 and H4. J. Biol. Chem. 265, 19848–19852 (1990).

    CAS  PubMed  Google Scholar 

  14. Lee, D. Y., Hayes, J. J., Pruss, D. & Wolffe, A. P. A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 72, 73–84 (1993).

    CAS  PubMed  Google Scholar 

  15. Hebbes, T. R., Thorne, A. W., Crane-Robinson C. A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J. 7, 1395–1402 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Rundlett, S. E. et al. HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription. Proc. Natl Acad. Sci. USA 93, 14503–14508 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhu, W. G., Lakshmanan, R. R., Beal, M. D. & Otterson, G. A. DNA methyltransferase inhibition enhances apoptosis induced by histone deacetylase inhibitors. Cancer Res. 61, 1327–1333 (2001).

    CAS  PubMed  Google Scholar 

  18. Marks, P. A., Richon, V. M. & Rifkind, R. A. Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J. Natl Cancer Inst. 92, 1210–1216 (2000).

    CAS  PubMed  Google Scholar 

  19. Glaser, K. B. et al. Gene expression profiling of multiple histone deacetylase (HDAC) inhibitors: defining a common gene set produced by HDAC inhibition in T24 and MDA carcinoma cell lines. Mol. Cancer Ther. 2, 151–163 (2003).

    CAS  PubMed  Google Scholar 

  20. Mariadason, J. M., Corner, G. A. & Augenlicht, L. H. Genetic reprogramming in pathways of colonic cell maturation induced by short chain fatty acids: comparison with trichostatin A, sulindac, and curcumin and implications for chemoprevention of colon cancer. Cancer Res. 60, 4561–4572 (2000).

    CAS  PubMed  Google Scholar 

  21. Chambers, A. E. et al. Histone acetylation-mediated regulation of genes in leukaemic cells. Eur. J. Cancer 39, 1165–1175 (2003).

    CAS  PubMed  Google Scholar 

  22. Cress, W. D. & Seto, E. Histone deacetylases, transcriptional control, and cancer. J. Cell. Physiol. 184, 1–16 (2000).

    CAS  PubMed  Google Scholar 

  23. Timmermann, S., Lehrmann, H., Polesskaya, A. & Harel-Bellan, A. Histone acetylation and disease. Cell. Mol. Life. Sci. 58, 728–736 (2001).

    CAS  PubMed  Google Scholar 

  24. Hughes, R. E. Polyglutamine disease: acetyltransferases awry. Curr. Biol. 12, R141–R143 (2002).

    CAS  PubMed  Google Scholar 

  25. Yang, X. -J. & Gregoire, S. Class II histone deacetylases: from sequence to function, regulation, and clinical implication. Mol. Cell. Biol. 25, 2873–2884 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. de Ruijter, A. J., van Gennip, A. H., Caron, H. N., Kemp, S. & van Kuilenburg, A. B. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem. J. 370, 737–749 (2003). A comprehensive review of the different classes of HDAC.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Taunton, J., Hassig, C. A. & Schreiber, S. L. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272, 408–411 (1996).

    CAS  PubMed  Google Scholar 

  28. Finnin, M. S. et al. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401, 188–193 (1999).

    CAS  PubMed  Google Scholar 

  29. Longworth, M. S. & Laimins, L. A. Histone deacetylase 3 localizes to the plasma membrane and is a substrate of Src. Oncogene 25, 4495–4500 (2006).

    CAS  PubMed  Google Scholar 

  30. Ayer, D. E. Histone deacetylases: transcriptional repression with SINers and NuRDs. Trends Cell Biol. 9, 193–198 (1999).

    CAS  PubMed  Google Scholar 

  31. Carmen, A. A., Rundlett, S. E. & Grunstein, M. HDA1 and HDA3 are components of a yeast histone deacetylase (HDA) complex. J. Biol. Chem. 271, 15837–15844 (1996).

    CAS  PubMed  Google Scholar 

  32. Huang, E. Y. et al. Nuclear receptor corepressors partner with class II histone deacetylases in a Sin3-independent repression pathway. Genes Dev. 14, 45–54 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kao, H. Y., Downes, M., Ordentlich, P. & Evans, R. M. Isolation of a novel histone deacetylase reveals that class I and class II deacetylases promote SMRT-mediated repression. Genes Dev 14, 55–66 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Fischle, W. et al. Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol. Cell 9, 45–57 (2002). An important study showing HDAC3-dependent activity of class II HDACs.

    CAS  PubMed  Google Scholar 

  35. Seigneurin-Berny, D. et al. Identification of components of the murine histone deacetylase 6 complex: link between acetylation and ubiquitination signaling pathways. Mol. Cell. Biol. 21, 8035–8044 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang, Y. et al. HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. EMBO J. 22, 1168–1179 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Fischer, D. D. et al. Isolation and characterization of a novel class II histone deacetylase, HDAC10. J. Biol. Chem. 277, 6656–6666 (2002).

    CAS  PubMed  Google Scholar 

  38. Guardiola, A. R. & Yao, T. P. Molecular cloning and characterization of a novel histone deacetylase HDAC10. J. Biol. Chem. 277, 3350–3356 (2002).

    CAS  PubMed  Google Scholar 

  39. Kao, H. Y., Lee, C. H., Komarov, A., Han, C. C. & Evans, R. M. Isolation and characterization of mammalian HDAC10, a novel histone deacetylase. J. Biol. Chem. 277, 187–193 (2002).

    CAS  PubMed  Google Scholar 

  40. Tong, J. J., Liu, J., Bertos, N. R. & Yang, X. J. Identification of HDAC10, a novel class II human histone deacetylase containing a leucine-rich domain. Nucleic Acids Res. 30, 1114–1123 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Frye, R. A. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem. Biophys. Res. Commun. 273, 793–798 (2000).

    CAS  PubMed  Google Scholar 

  42. Kaeberlein, M., McVey, M. & Guarente, L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 13, 2570–2580 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Denu, J. M. Linking chromatin function with metabolic networks: Sir2 family of NAD+-dependent deacetylases. Trends Biochem. Sci. 28, 41–48 (2003).

    CAS  PubMed  Google Scholar 

  44. Sauve, A. A. et al. Chemistry of gene silencing: the mechanism of NAD+-dependent deacetylation reactions. Biochemistry 40, 15456–15463 (2001).

    CAS  PubMed  Google Scholar 

  45. Sauve, A. A. & Schramm, V. L. SIR2: the biochemical mechanism of NAD+-dependent protein deacetylation and ADP-ribosyl enzyme intermediates. Curr. Med. Chem. 11, 807–826 (2004).

    CAS  PubMed  Google Scholar 

  46. Bitterman, K. J., Anderson, R. M., Cohen, H. Y., Latorre-Esteves, M. & Sinclair, D. A. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J. Biol. Chem. 277, 45099–45107 (2002).

    CAS  PubMed  Google Scholar 

  47. Anekonda, T. S. & Reddy, P. H. Neuronal protection by sirtuins in Alzheimer's disease. J. Neurochem. 96, 305–313 (2006).

    CAS  PubMed  Google Scholar 

  48. Gao, L., Cueto, M. A., Asselbergs, F. & Atadja, P. Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J. Biol. Chem. 277, 25748–25755 (2002).

    CAS  PubMed  Google Scholar 

  49. Bertos, N. R., Wang, A. H. & Yang, X. J. Class II histone deacetylases: structure, function, and regulation. Biochem. Cell Biol. 79, 243–252 (2001).

    CAS  PubMed  Google Scholar 

  50. Sengupta, N. & Seto, E. Regulation of histone deacetylase activities. J. Cell. Biochem. 93, 57–67 (2004).

    CAS  PubMed  Google Scholar 

  51. McKinsey, T. A., Zhang, C. L. & Olson, E. N. Identification of a signal-responsive nuclear export sequence in class II histone deacetylases. Mol. Cell. Biol. 21, 6312–6321 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang, W. M., Tsai, S. C., Wen, Y. D., Fejer, G. & Seto, E. Functional domains of histone deacetylase-3. J. Biol. Chem. 277, 9447–9454 (2002).

    CAS  PubMed  Google Scholar 

  53. Lu, J., McKinsey, T. A., Nicol, R. L. & Olson, E. N. Signal-dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases. Proc. Natl Acad. Sci. USA 97, 4070–4075 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Miska, E. A. et al. HDAC4 deacetylase associates with and represses the MEF2 transcription factor. EMBO J. 18, 5099–5107 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Mao, Z., Bonni, A., Xia, F., Nadal-Vicens, M. & Greenberg, M. E. Neuronal activity-dependent cell survival mediated by transcription factor MEF2. Science 286, 785–790 (1999).

    CAS  PubMed  Google Scholar 

  56. Gaudilliere, B., Shi, Y. & Bonni, A. RNA Interference reveals a requirement for myocyte enhancer factor 2A in activity-dependent neuronal survival. J. Biol. Chem. 277, 46442–46446 (2002).

    CAS  PubMed  Google Scholar 

  57. Miska, E. A. et al. Differential localization of HDAC4 orchestrates muscle differentiation. Nucleic Acids Res. 29, 3439–3447 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kao, H. Y. et al. Mechanism for nucleocytoplasmic shuttling of histone deacetylase 7. J. Biol. Chem. 276, 47496–47507 (2001).

    CAS  PubMed  Google Scholar 

  59. Grozinger, C. M. & Schreiber, S. L. Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization. Proc. Natl Acad. Sci. USA 97, 7835–7840 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Bolger, T. A. & Yao, T. P. Intracellular trafficking of histone deacetylase 4 regulates neuronal cell death. J. Neurosci. 25, 9544–9553 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Chawla, S., Vanhoutte, P., Arnold, F. J., Huang, C. L. & Bading, H. Neuronal activity-dependent nucleocytoplasmic shuttling of HDAC4 and HDAC5. J. Neurochem. 85, 151–159 (2003).

    CAS  PubMed  Google Scholar 

  62. Deckel, A. W., Elder, R. & Fuhrer, G. Biphasic developmental changes in Ca2+/calmodulin-dependent proteins in R6/2 Huntington's disease mice. Neuroreport 13, 707–711 (2002).

    CAS  PubMed  Google Scholar 

  63. Hoshino, M. et al. Histone deacetylase activity is retained in primary neurons expressing mutant huntingtin protein. J. Neurochem. 87, 257–267 (2003).

    CAS  PubMed  Google Scholar 

  64. Sakamoto, J., Miura, T., Shimamoto, K. & Horio, Y. Predominant expression of Sir2α, an NAD-dependent histone deacetylase, in the embryonic mouse heart and brain. FEBS Lett. 556, 281–286 (2004).

    CAS  PubMed  Google Scholar 

  65. Hisahara, S., Chiba, S., Matsumoto, H. & Horio, Y. Transcriptional regulation of neuronal genes and its effect on neural functions: NAD-dependent histone deacetylase SIRT1 (Sir2α). J. Pharmacol. Sci. 98, 200–204 (2005).

    CAS  PubMed  Google Scholar 

  66. Cha, J. -H. J. Transcriptional dysregulation in Huntington's disease. Trends Neurosci. 23, 387–392 (2000).

    CAS  PubMed  Google Scholar 

  67. Luthi-Carter, R. et al. Dysregulation of gene expression in the R6/2 model of polyglutamine disease: parallel changes in muscle and brain. Hum. Mol. Genet. 11, 1911–1926 (2002).

    CAS  PubMed  Google Scholar 

  68. Luthi-Carter, R. et al. Polyglutamine and transcription: gene expression changes shared by DRPLA and Huntington's disease mouse models reveal context-independent effects. Hum. Mol. Genet. 11, 1927–1937 (2002).

    CAS  PubMed  Google Scholar 

  69. Hodges, A. et al. Regional and cellular gene expression changes in human Huntington's disease brain. Hum. Mol. Genet. 15, 965–977 (2006). The above three papers contain important microarray expression profile information about HD and DRPLA.

    CAS  PubMed  Google Scholar 

  70. Steffan, J. S. et al. The Huntington's disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc. Natl Acad. Sci. USA 97, 6763–6768 (2000). The first paper to implicate aberrant interactions between CBP and HTT in transcriptional repression in HD.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Nucifora, F. C. Jr et al. Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science 291, 2423–2428 (2001). Highlights the implications of CBP in the pathogenic mechanism of polyglutamine repeat disease.

    CAS  PubMed  Google Scholar 

  72. McCampbell, A. et al. CREB-binding protein sequestration by expanded polyglutamine. Hum. Mol. Genet. 9, 2197–2202 (2000).

    CAS  PubMed  Google Scholar 

  73. McCampbell, A. & Fischbeck, K. H. Polyglutamine and CBP: fatal attraction? Nature Med. 7, 528–530 (2001).

    CAS  PubMed  Google Scholar 

  74. Dunah, A. W. et al. Sp1 and TAFII130 transcriptional activity disrupted in early Huntington's disease. Science 296, 2238–2243 (2002).

    CAS  PubMed  Google Scholar 

  75. van Roon-Mom, W. M. et al. Insoluble TATA-binding protein accumulation in Huntington's disease cortex. Brain Res. Mol. Brain Res. 109, 1–10 (2002).

    CAS  PubMed  Google Scholar 

  76. Igarashi, S. et al. Inducible PC12 cell model of Huntington's disease shows toxicity and decreased histone acetylation. Neuroreport 14, 565–568 (2003).

    CAS  PubMed  Google Scholar 

  77. Hazeki, N. et al. Ultrastructure of nuclear aggregates formed by expressing an expanded polyglutamine. Biochem. Biophys. Res. Commun. 294, 429–440 (2002).

    CAS  PubMed  Google Scholar 

  78. Mori, N., Schoenherr, C., Vandenbergh, D. J. & Anderson, D. J. A common silencer element in the SCG10 and type II Na+ channel genes binds a factor present in nonneuronal cells but not in neuronal cells. Neuron 9, 45–54 (1992).

    CAS  PubMed  Google Scholar 

  79. Schoenherr, C. J., Paquette, A. J. & Anderson, D. J. Identification of potential target genes for the neuron-restrictive silencer factor. Proc. Natl Acad. Sci. USA 93, 9881–9886 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Chen, Z. -F., Paquette, A. J. & Anderson, D. J. NRSF/REST is required in vivo for repression of multiple neuronal target genes during embryogenesis. Nature Genet. 20, 136–142 (1998).

    CAS  PubMed  Google Scholar 

  81. Zuccato, C. et al. Loss of huntingtin-mediated BDNF gene transcription in huntington's disease. Science 293, 493–498 (2001).

    CAS  PubMed  Google Scholar 

  82. Zuccato, C. et al. Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. 35, 76–83 (2003).

  83. Bates, E. A., Victor, M., Jones, A. K., Shi, Y. & Hart, A. C. Differential contributions of Caenorhabditis elegans histone deacetylases to huntingtin polyglutamine toxicity. J. Neurosci. 26, 2830–2838 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Hubbert, C. et al. HDAC6 is a microtubule-associated deacetylase. Nature 417, 455–458 (2002).

    CAS  PubMed  Google Scholar 

  85. Bali, P. et al. Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. J. Biol. Chem. 280, 26729–26734 (2005).

    CAS  PubMed  Google Scholar 

  86. Kovacs, J. J. et al. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol. Cell 18, 601–607 (2005).

    CAS  PubMed  Google Scholar 

  87. Hook, S. S., Orian, A., Cowley, S. M. & Eisenman, R. N. Histone deacetylase 6 binds polyubiquitin through its zinc finger (PAZ domain) and copurifies with deubiquitinating enzymes. Proc. Natl Acad. Sci. USA 99, 13425–13430 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Hideshima, T. et al. Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma. Proc. Natl Acad. Sci. USA 102, 8567–8572 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Iwata, A., Riley, B. E., Johnston, J. A. & Kopito, R. R. HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J. Biol. Chem. 280, 40282–40292 (2005).

    CAS  PubMed  Google Scholar 

  90. Kawaguchi, Y. et al. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115, 727–738 (2003).

    CAS  PubMed  Google Scholar 

  91. Grubisha, O., Smith, B. C. & Denu, J. M. Small molecule regulation of Sir2 protein deacetylases. FEBS J. 272, 4607–4616 (2005).

    CAS  PubMed  Google Scholar 

  92. Ghosh, S. & Feany, M. B. Comparison of pathways controlling toxicity in the eye and brain in Drosophila models of human neurodegenerative diseases. Hum. Mol. Genet. 13, 2011–2018 (2004).

    CAS  PubMed  Google Scholar 

  93. Parker, J. A. et al. Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nature Genet. 37, 349–350 (2005).

    CAS  PubMed  Google Scholar 

  94. Sinclair, D. Sirtuins for healthy neurons. Nature Genet. 37, 339–340 (2005).

    CAS  PubMed  Google Scholar 

  95. Levine, A. J. p53, the cellular gatekeeper for growth and division. Cell 88, 323–331 (1997).

    CAS  PubMed  Google Scholar 

  96. Hughes, P. E., Alexi, T. & Schreiber, S. S. A role for the tumour suppressor gene p53 in regulating neuronal apoptosis. Neuroreport 8, v–xii (1997).

    CAS  PubMed  Google Scholar 

  97. Gu, W. & Roeder, R. G. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90, 595–606 (1997).

    CAS  PubMed  Google Scholar 

  98. Ito, A. et al. MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation. EMBO J. 21, 6236–6245 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Gang Liu, X. C. Regulation of the p53 transcriptional activity. J. Cell. Biochem. 97, 448–458 (2006).

    PubMed  Google Scholar 

  100. Luo, J. et al. Acetylation of p53 augments its site-specific DNA binding both in vitro and in vivo. Proc. Natl Acad. Sci. USA 101, 2259–2264 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Bae, B. I. et al. p53 mediates cellular dysfunction and behavioral abnormalities in Huntington's disease. Neuron 47, 29–41 (2005).

    CAS  PubMed  Google Scholar 

  102. Feng, D. & Kan, Y. W. The binding of the ubiquitous transcription factor Sp1 at the locus control region represses the expression of β-like globin genes. Proc. Natl Acad. Sci. USA 102, 9896–9900 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Murphy, M. et al. Transcriptional repression by wild-type p53 utilizes histone deacetylases, mediated by interaction with mSin3a. Genes Dev. 13, 2490–2501 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Luo, J., Su, F., Chen, D., Shiloh, A. & Gu, W. Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature 408, 377–381 (2000).

    CAS  PubMed  Google Scholar 

  105. Juan, L. J. et al. Histone deacetylases specifically down-regulate p53-dependent gene activation. J. Biol. Chem. 275, 20436–20443 (2000).

    CAS  PubMed  Google Scholar 

  106. Pratt, W. B. & Toft, D. O. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp. Biol. Med. (Maywood) 228, 111–133 (2003).

    CAS  Google Scholar 

  107. Bagatell, R. et al. Destabilization of steroid receptors by heat shock protein 90-binding drugs: a ligand-independent approach to hormonal therapy of breast cancer. Clin. Cancer Res. 7, 2076–2084 (2001).

    CAS  PubMed  Google Scholar 

  108. Neckers, L. Heat shock protein 90 inhibition by 17-allylamino-17- demethoxygeldanamycin: a novel therapeutic approach for treating hormone-refractory prostate cancer. Clin. Cancer Res. 8, 962–966 (2002).

    CAS  PubMed  Google Scholar 

  109. Waza, M. et al. 17-AAG, an Hsp90 inhibitor, ameliorates polyglutamine-mediated motor neuron degeneration. Nature Med. 11, 1088–1095 (2005).

    CAS  PubMed  Google Scholar 

  110. Aoyagi, S. & Archer, T. K. Modulating molecular chaperone Hsp90 functions through reversible acetylation. Trends Cell Biol. 15, 565–567 (2005).

    CAS  PubMed  Google Scholar 

  111. Chen, L. et al. Chemical ablation of androgen receptor in prostate cancer cells by the histone deacetylase inhibitor LAQ824. Mol. Cancer Ther. 4, 1311–1319 (2005).

    CAS  PubMed  Google Scholar 

  112. Ren, M., Leng, Y., Jeong, M., Leeds, P. R. & Chuang, D. M. Valproic acid reduces brain damage induced by transient focal cerebral ischemia in rats: potential roles of histone deacetylase inhibition and heat shock protein induction. J. Neurochem. 89, 1358–1367 (2004).

    CAS  PubMed  Google Scholar 

  113. Zhao, Y. et al. Lifespan extension and elevated hsp gene expression in Drosophila caused by histone deacetylase inhibitors. J. Exp. Biol. 208, 697–705 (2005).

    CAS  PubMed  Google Scholar 

  114. Hay, D. G. et al. Progressive decrease in chaperone protein levels in a mouse model of Huntington's disease and induction of stress proteins as a therapeutic approach. Hum. Mol. Genet. 13, 1389–1405 (2004).

    CAS  PubMed  Google Scholar 

  115. Woodman, B. et al. The HdhQ150/Q150 knock-in mouse model of HD and the R6/2 exon 1 model develop comparable and widespread molecular phenotypes. Brain Res. Bull. (in the press).

  116. Li, F., Macfarlan, T., Pittman, R. N. & Chakravarti, D. Ataxin-3 is a histone-binding protein with two independent transcriptional corepressor activities. J. Biol. Chem. 277, 45004–45012 (2002).

    CAS  PubMed  Google Scholar 

  117. Gatchel, J. R. & Zoghbi, H. Y. Diseases of unstable repeat expansion: mechanisms and common principles. Nature Rev. Genet. 6, 743–755 (2005).

    CAS  PubMed  Google Scholar 

  118. Tsai, C. C. et al. Ataxin 1, a SCA1 neurodegenerative disorder protein, is functionally linked to the silencing mediator of retinoid and thyroid hormone receptors. Proc. Natl Acad. Sci. USA 101, 4047–4052 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Matilla, A. et al. The cerebellar leucine-rich acidic nuclear protein interacts with ataxin-1. Nature 389, 974–978 (1997).

    CAS  PubMed  Google Scholar 

  120. Seo, S. et al. Regulation of histone acetylation and transcription by INHAT, a human cellular complex containing the set oncoprotein. Cell 104, 119–130 (2001).

    CAS  PubMed  Google Scholar 

  121. Chen, H. K. et al. Interaction of Akt-phosphorylated ataxin-1 with 14-3-3 mediates neurodegeneration in spinocerebellar ataxia type 1. Cell 113, 457–468 (2003).

    CAS  PubMed  Google Scholar 

  122. Burnett, B., Li, F. & Pittman, R. N. The polyglutamine neurodegenerative protein ataxin-3 binds polyubiquitylated proteins and has ubiquitin protease activity. Hum. Mol. Genet. 12, 3195–3205 (2003).

    CAS  PubMed  Google Scholar 

  123. Burnett, B. G. & Pittman, R. N. The polyglutamine neurodegenerative protein ataxin 3 regulates aggresome formation. Proc. Natl Acad. Sci. USA 102, 4330–4335 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Palhan, V. B. et al. Polyglutamine-expanded ataxin-7 inhibits STAGA histone acetyltransferase activity to produce retinal degeneration. Proc. Natl Acad. Sci. USA 102, 8472–8477 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. McMahon, S. J., Pray-Grant, M. G., Schieltz, D., Yates, J. R. & Grant, P. A. Polyglutamine-expanded spinocerebellar ataxia-7 protein disrupts normal SAGA and SLIK histone acetyltransferase activity. Proc. Natl Acad. Sci. USA 102, 8478–8482 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Sterner, D. E., Belotserkovskaya, R. & Berger, S. L. SALSA, a variant of yeast SAGA, contains truncated Spt7, which correlates with activated transcription. Proc. Natl Acad. Sci. USA 99, 11622–11627 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Pray-Grant, M. G. et al. The novel SLIK histone acetyltransferase complex functions in the yeast retrograde response pathway. Mol. Cell. Biol. 22, 8774–8786 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Helmlinger, D. et al. Glutamine-expanded ataxin-7 alters TFTC/STAGA recruitment and chromatin structure leading to photoreceptor dysfunction. PLoS Biol. 4, e67 (2006).

    PubMed  PubMed Central  Google Scholar 

  129. Schilling, G. et al. Nuclear accumulation of truncated atrophin-1 fragments in a transgenic mouse model of DRPLA. Neuron 24, 275–286 (1999).

    CAS  PubMed  Google Scholar 

  130. Wood, J. D. et al. Atrophin-1, the dentato-rubral and pallido-luysian atrophy gene product, interacts with ETO/MTG8 in the nuclear matrix and represses transcription. J. Cell Biol. 150, 939–948 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Gelmetti, V. et al. Aberrant recruitment of the nuclear receptor corepressor-histone deacetylase complex by the acute myeloid leukemia fusion partner ETO. Mol. Cell. Biol. 18, 7185–7191 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Lutterbach, B. et al. ETO, a target of t(8;21) in acute leukemia, interacts with the N-CoR and mSin3 corepressors. Mol. Cell. Biol. 18, 7176–7184 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Wang, J., Hoshino, T., Redner, R. L., Kajigaya, S. & Liu, J. M. ETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDAC1 complex. Proc. Natl Acad. Sci. USA 95, 10860–10865 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Ying, M. et al. Sodium butyrate ameliorates histone hypoacetylation and neurodegenerative phenotypes in a mouse model for DRPLA. J. Biol. Chem. 281, 12580–12586 (2006).

    CAS  PubMed  Google Scholar 

  135. Wang, L., Rajan, H., Pitman, J. L., McKeown, M. & Tsai, C. -C. Histone deacetylase-associating Atrophin proteins are nuclear receptor corepressors. Genes Dev. 20, 525–530 (2006).

    PubMed  PubMed Central  Google Scholar 

  136. McCampbell, A. et al. Histone deacetylase inhibitors reduce polyglutamine toxicity. Proc. Natl Acad. Sci. USA 98, 15179–15184 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Steffan, J. S. et al. Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 413, 739–743 (2001). The first study in Drosophila to show HDAC inhibitors as a beneficial therapy for polyglutamine repeat disease.

    CAS  PubMed  Google Scholar 

  138. Hockly, E. et al. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease. Proc. Natl Acad. Sci. USA 100, 2041–2046 (2003). The first published study of the use of an HDAC inhibitor as a therapeutic agent in a mouse model of HD.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Ferrante, R. J. et al. Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington's disease mice. J. Neurosci. 23, 9418–9427 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Gardian, G. et al. Neuroprotective effects of phenylbutyrate in the N171–82Q transgenic mouse model of Huntington's disease. J. Biol. Chem. 280, 556–563 (2005).

    CAS  PubMed  Google Scholar 

  141. Drummond, D. C. et al. Clinical development of histone deacetylase inhibitors as anticancer agents. Annu. Rev. Pharmacol. Toxicol. 45, 495–528 (2005).

    CAS  PubMed  Google Scholar 

  142. Miller, T. A., Witter, D. J. & Belvedere, S. Histone deacetylase inhibitors. J. Med. Chem. 46, 5097–5116 (2003).

    CAS  PubMed  Google Scholar 

  143. Grozinger, C. M. & Schreiber, S. L. Deacetylase enzymes: biological functions and the use of small-molecule inhibitors. Chem. Biol. 9, 3–16 (2002).

    CAS  PubMed  Google Scholar 

  144. Vannini, A. et al. Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor. Proc. Natl Acad. Sci. USA 101, 15064–15069 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Minamiyama, M. et al. Sodium butyrate ameliorates phenotypic expression in a transgenic mouse model of spinal and bulbar muscular atrophy. Hum. Mol. Genet. 13, 1183–1192 (2004).

    CAS  PubMed  Google Scholar 

  146. Borovecki, F. et al. Genome-wide expression profiling of human blood reveals biomarkers for Huntington's disease. Proc. Natl Acad. Sci. USA 102, 11023–11028 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Agrawal, N. et al. Identification of combinatorial drug regimens for treatment of Huntington's disease using Drosophila. Proc. Natl Acad. Sci. USA 102, 3777–3781 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Byers, R. K. & Banker, B. Q. Infantile muscular atrophy. Arch. Neurol. 5, 140–164 (1961).

    CAS  PubMed  Google Scholar 

  149. Brzustowicz, L. M. et al. Genetic mapping of chronic childhood-onset spinal muscular atrophy to chromosome 5q11.2–13.3. Nature 344, 540–541 (1990).

    CAS  PubMed  Google Scholar 

  150. Melki, J. et al. Gene for chronic proximal spinal muscular atrophies maps to chromosome 5q. Nature 344, 767–768 (1990).

    CAS  PubMed  Google Scholar 

  151. Gilliam, T. C. et al. Genetic homogeneity between acute and chronic forms of spinal muscular atrophy. Nature 345, 823–825 (1990).

    CAS  PubMed  Google Scholar 

  152. Lefebvre, S. et al. Correlation between severity and SMN protein level in spinal muscular atrophy. Nature Genet. 16, 265–269 (1997).

    CAS  PubMed  Google Scholar 

  153. Iannaccone, S. T., Smith, S. A. & Simard, L. R. Spinal muscular atrophy. Curr. Neurol. Neurosci. Rep. 4, 74–80 (2004).

    PubMed  Google Scholar 

  154. Chang, J. G. et al. Treatment of spinal muscular atrophy by sodium butyrate. Proc. Natl Acad. Sci. USA 98, 9808–9813 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Sumner, C. J. et al. Valproic acid increases SMN levels in spinal muscular atrophy patient cells. Ann. Neurol. 54, 647–654 (2003).

    CAS  PubMed  Google Scholar 

  156. Brichta, L. et al. Valproic acid increases the SMN2 protein level: a well-known drug as a potential therapy for spinal muscular atrophy. Hum. Mol. Genet. 12, 2481–2489 (2003).

    CAS  PubMed  Google Scholar 

  157. Andreassi, C. et al. Phenylbutyrate increases SMN expression in vitro: relevance for treatment of spinal muscular atrophy. Eur. J. Hum. Genet. 12, 59–65 (2004).

    CAS  PubMed  Google Scholar 

  158. Riessland, M. Brichta, L., Hahnen, E. & Wirth, B. The benzamide M344, a novel histone deacetylase inhibitor, significantly increases SMN2 RNA/protein levels in spinal muscular atrophy cells. Hum. Genet. 1–10 (2006).

  159. Kernochan, L. E. et al. The role of histone acetylation in SMN gene expression. Hum. Mol. Genet. 14, 1171–1182 (2005).

    CAS  PubMed  Google Scholar 

  160. Jung, M. et al. Amide analogues of trichostatin A as inhibitors of histone deacetylase and inducers of terminal cell differentiation. J. Med. Chem. 42, 4669–4679 (1999).

    CAS  PubMed  Google Scholar 

  161. Furumai, R. et al. Potent histone deacetylase inhibitors built from trichostatin A and cyclic tetrapeptide antibiotics including trapoxin. Proc. Natl Acad. Sci. USA 98, 87–92 (2001).

    CAS  PubMed  Google Scholar 

  162. Roopra, A. et al. Transcriptional repression by neuron-restrictive silencer factor is mediated via the Sin3-histone deacetylase complex. Mol. Cell. Biol. 20, 2147–2157 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Kao, H. Y. et al. A histone deacetylase corepressor complex regulates the Notch signal transduction pathway. Genes Dev. 12, 2269–2277 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Zhang, Y. et al. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev. 13, 1924–1935 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Amann, J. M. et al. ETO, a target of t(8;21) in acute leukemia, makes distinct contacts with multiple histone deacetylases and binds mSin3A through its oligomerization domain. Mol. Cell. Biol. 21, 6470–6483 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Wen, Y. D. et al. The histone deacetylase-3 complex contains nuclear receptor corepressors. Proc. Natl Acad. Sci. USA 97, 7202–7207 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Li, J. et al. Both corepressor proteins SMRT and N-CoR exist in large protein complexes containing HDAC3. EMBO J. 19, 4342–4350 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Grozinger, C. M., Hassig, C. A. & Schreiber, S. L. Three proteins define a class of human histone deacetylases related to yeast Hda1p. PNAS 96, 4868–4873 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Waltregny, D. et al. Histone deacetylase HDAC8 associates with smooth muscle alpha-actin and is essential for smooth muscle cell contractility. FASEB J. 19, 966–998 (2005).

    CAS  PubMed  Google Scholar 

  170. Lemercier, C. et al. mHDA1/HDAC5 histone deacetylase interacts with and represses MEF2A transcriptional activity. J. Biol. Chem. 275, 15594–15599 (2000).

    CAS  PubMed  Google Scholar 

  171. Huntington's Disease Collaborative Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72, 971–983 (1993).

  172. Spada, A. R. L., Wilson, E. M., Lubahn, D. B., Harding, A. E. & Fischbeck, K. H. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352, 77–79 (1991).

    PubMed  Google Scholar 

  173. Koide, R. et al. Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nature Genet. 6, 9–13 (1994).

    CAS  PubMed  Google Scholar 

  174. Nagafuchi, S. et al. Dentatorubral and pallidoluysian atrophy expansion of an unstable CAG trinucleotide on chromosome 12p. Nature Genet. 6, 14–18 (1994).

    CAS  PubMed  Google Scholar 

  175. Orr, H. T. et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nature Genet. 4, 221–226 (1993).

    CAS  PubMed  Google Scholar 

  176. Matilla, T. et al. Presymptomatic analysis of spinocerebellar ataxia type 1 (SCA1) via the expansion of the SCA1 CAG-repeat in a large pedigree displaying anticipation and parental male bias. Hum. Mol. Genet. 2, 2123–2128 (1993).

    CAS  PubMed  Google Scholar 

  177. Imbert, G. et al. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nature Genet. 14, 285–291 (1996).

    CAS  PubMed  Google Scholar 

  178. Sanpei, K. et al. Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nature Genet. 14, 277–284 (1996).

    CAS  PubMed  Google Scholar 

  179. Pulst, S. -M. et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nature Genet. 14, 269–276 (1996).

    CAS  PubMed  Google Scholar 

  180. Kawaguchi, Y. et al. CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. 8, Nature Genet. 221–228 (1994).

    CAS  PubMed  Google Scholar 

  181. Zhuchenko, O. et al. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the α1A-voltage-dependent calcium channel. Nature Genet. 15, 62–69 (1997).

    CAS  PubMed  Google Scholar 

  182. David, G. et al. Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nature Genet. 17, 65–70 (1997).

    CAS  PubMed  Google Scholar 

  183. Lindblad, K. et al. An expanded CAG repeat sequence in spinocerebellar ataxia type 7. Genome Res. 6, 965–971 (1996).

    CAS  PubMed  Google Scholar 

  184. Koide, R. et al. A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease? Hum. Mol. Genet. 8, 2047–2053 (1999).

    CAS  PubMed  Google Scholar 

  185. Schaffar, G. et al. Cellular toxicity of polyglutamine expansion proteins: mechanism of transcription factor deactivation. Mol. Cell 15, 95–105 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the author's laboratory is funded by the Wellcome Trust, Hereditary Disease Foundation, Huntington's Disease Society of America Coalition for the Cure and the HighQ Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gillian P. Bates.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

Alzheimer's disease

DRPLA

Huntington's disease

Parkinson's disease

spinal and bulbar muscular atrophy

spinocerebellar ataxia type 3

FURTHER INFORMATION

Bates's laboratory

Huntington Project

Glossary

Histidine-aspartate charge-relay system

Histidine and aspartate residues coordinate the zinc cation and water molecule within the active site of the histone deacetylase enzyme that is required for the cleavage of an acetyl group from the substrate.

Nuclear co-repressor/silencing mediator of retinoid and thyroid hormone receptors

(N-CoR/SMRT). Co-repressors that interact with unliganded nuclear receptors and form repressor complexes that recruit histone deacetylases and other proteins to actively repress transcription.

Repressor element 1 transcription factor/neuron restrictive silencer factor

(REST/NSRF). REST/NRSF is a negative regulator of neuronal genes that contains a specific DNA response element in the promoter, the neuron restrictive silencing element (NRSE). REST/NRSF ensures the correct patterning of neuronal gene expression and the silencing of these genes in non-neuronal tissues.

Neuron restrictive silencing element

(NRSE). An NRSE is a 21 bp silencer element found in the promoters of neuronal genes to which REST/NRSF binds. It is also known as repressor element 1 (RE1).

RNA interference

(RNAi). A method by which double-stranded RNA that is encoded on an exogenous vector can be used to interfere with normal RNA processing, causing rapid degradation of the endogenous RNA and thereby precluding translation. This provides a simple way of studying the effects of the absence of a gene product in simple organisms and cells.

Dynein

A microtubule minus-end-directed motor protein that carries out retrograde transport from the cell surface to the centre of the cell. Dynein is a large molecule that complexes with dynactin to form direct and indirect associations with various cargoes.

Aggresome

An inclusion body of aggregated material, usually perinuclear, formed through dynein-dependent retrograde transport on microtubules.

Co-chaperones

Proteins associated with molecular chaperones that are necessary for full functional activity of the chaperone.

Small-molecule hydroxamates

Inhibitors containing hydroxamic acid residues are potent but reversible inhibitors of class I/II histone deacetylases (HDACs). They bind with high affinity and chelate the zinc cation at the bottom of the HDAC catalytic pocket.

Cyclic peptides

Histone deacetylase inhibitors that have epoxyketone (epoxide) moieties that could act by chemically binding to either the zinc cation or an amino acid in the active site.

Benzamides

A structurally diverse group of compounds that have an unknown mechanism of action. The diaminophenyl group present in these compounds is thought to be important for their inhibitory behaviour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butler, R., Bates, G. Histone deacetylase inhibitors as therapeutics for polyglutamine disorders. Nat Rev Neurosci 7, 784–796 (2006). https://doi.org/10.1038/nrn1989

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1989

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing