Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Non-conducting functions of voltage-gated ion channels

Key Points

  • In addition to their well-understood role in determining the electrical activity of neurons, there exists evidence linking the expression of specific channels to cell proliferation. Such evidence has been obtained for several voltage-dependent K+ and Na+ channels and for several members of the non-selective TRP family of channels.

  • The pore-forming α-subunit of ether-à-go-go (EAG) channels has been found to activate Ca2+/calmodulin-dependent protein kinase II (CaMKII). The conformation of this channel has also been found to be coupled to the mitogen-activated protein kinase (MAPK) signalling pathway through a mechanism that is independent of ion flux through the channel.

  • Overexpression of the voltage-dependent Shal K+ channel in lobster neurons produces a compensatory increase in HCN channel activity. The increase in non-selective cation current opposes the increase in Shal K+ current, allowing the neurons to maintain their physiological pattern of bursting.

  • The β-subunits of K+ channels have been found to have various intrinsic enzyme activities. These include protein kinase and aldo reductase functions, and transcription factor activity.

  • The β-subunits of voltage-dependent Na+ channels have large extracellular domains that mediate cell–cell adhesion and repulsion, or promote neuriteoutgrowth through interactions with other cell adhesion molecules or through interactions with β-subunits on other cells.

  • Neuronal voltage-dependent Ca2+ channels can be linked directly to the synaptic release machinery at presynaptic endings. The conformation of these channels might also directly modulate the exocytosis of synaptic vesicles.

  • Transient activation of neuronal voltage-dependent Ca2+ channels activates the MAPK/ERK signalling pathway, resulting in activation of the transcription factor CREB. The activation of this pathway requires a local interaction between Ca2+ entering the channel and calmodulin, which is tightly bound to the C-terminus of the channel protein.

  • Non-selective cation channels of the TRP family have a variety of cellular actions that could be a result of their ability to interact with cytoplasmic elements. The α-subunits of some TRPM subfamily channels have intrinsic protein kinase activity, and subunits of the TRPP subfamily can regulate cell proliferation and morphogenesis by mechanisms partially independent of ion conduction.

Abstract

Various studies, mostly in the past 5 years, have demonstrated that, in addition to their well-described function in regulating electrical excitability, voltage-dependent ion channels participate in intracellular signalling pathways. Channels can directly activate enzymes linked to cellular signalling pathways, serve as cell adhesion molecules or components of the cytoskeleton, and their activity can alter the expression of specific genes. Here, I review these findings and discuss the extent to which the molecular mechanisms of such signalling are understood.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Actions of K+ channels that do not require the conduction of K+ ions.
Figure 2: Enzyme activities that are intrinsic to the α- and β-subunits of ion channels.
Figure 3: Na+ Channel β-subunits function in cell adhesion.

Similar content being viewed by others

References

  1. Levitan, I. B. Signaling protein complexes associated with neuronal ion channels. Nature Neurosci. 9, 305–310 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Pardo, L. A. Voltage-gated potassium channels in cell proliferation. Physiology 19, 285–292 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Pardo, L. A. et al. Oncogenic potential of EAG K+ channels. EMBO J. 18, 5540–5547 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pardo, L. A., Contreras-Jurado, C., Zientkowska, M., Alves, F. & Stuhmer, W. Role of voltage-gated potassium channels in cancer. J. Memb. Biol. 205, 115–124 (2005).

    Article  CAS  Google Scholar 

  5. Farias, L. M. et al. Ether a go-go potassium channels as human cervical cancer markers. Cancer Res. 64, 6996–7001 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Mu, D. et al. Genomic amplification and oncogenic properties of the KCNK9 potassium channel gene. Cancer Cell 3, 297–302 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Vautier, F., Belachew, S., Chittajallu, R. & Gallo, V. Shaker-type potassium channel subunits differentially control oligodendrocyte progenitor proliferation. GLIA 48, 337–345 (2004).

    Article  PubMed  Google Scholar 

  8. MacFarlane, S. N. & Sontheimer, H. Modulation of Kv1.5 currents by Src tyrosine phosphorylation: potential role in the differentiation of astrocytes. J. Neurosci. 20, 5245–5253 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. MacFarlane, S. N. & Sontheimer, H. Changes in ion channel expression accompany cell cycle progression of spinal cord astrocytes. GLIA 30, 39–48 (2000)

    Article  CAS  PubMed  Google Scholar 

  10. Preussat, K. et al. Expression of voltage-gated potassium channels Kv1.3 and Kv1.5 in human gliomas. Neurosci. Lett. 346, 33–36 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Wang, Z., Wilson, G. F. & Griffith, L. C. Calcium/calmodulin-dependent protein kinase II phosphorylates and regulates the Drosophila eag potassium channel. J. Biol. Chem. 277, 24022–24029 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Sun, X. X., Hodge, J. J., Zhou, Y., Nguyen, M. & Griffith, L. C. The Eag potassium channel binds and locally activates calcium/calmodulin-dependent protein kinase II. J. Biol. Chem. 279, 10206–10214 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Jeng, C. J., Chang, C. C. & Tang, C. Y. Differential localization of rat Eag1 and Eag2 K+ channels in hippocampal neurons. Neuroreport 16, 229–233 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Engel, J. E. & Wu, C. F. Genetic dissection of functional contributions of specific potassium channel subunits in habituation of an escape circuit in Drosophila. J. Neurosci. 18, 2254–2267 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Griffith, L. C., Wang, J., Zhong, Y., Wu, C. F. & Greenspan, R. J. Calcium/calmodulin-dependent protein kinase II and potassium channel subunit Eag similarly affect plasticity in Drosophila. Proc. Natl Acad. Sci. USA 91, 10044–10048 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Patt, S. et al. Expression of ether a go-go potassium channels in human gliomas. Neurosci. Lett. 368, 249–253 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Hegle, A. P, Marble, D. D. & Wilson, G. F. A voltage driven switch for ion-independent signaling by ether-à-go-go potassium channels. Proc. Natl Acad. Sci. USA 103, 2886–2891 (2006). Demonstrated that the voltage-dependent gating of the EAG channel controls the MAP kinase signalling pathway and cell proliferation by a mechanism that is independent of K+ flux through the channel.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Griffith, L. C. Regulation of calcium/calmodulin-dependent protein kinase II activation by intramolecular and intermolecular Interactions. J. Neurosci. 24, 8394–8398 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Morais-Cabral, J. H. et al. Crystal structure and functional analysis of the HERG potassium channel N terminus: a leukaryotic PAS domain. Cell 95, 649–655 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Stuhmer, W. et al. Molecular basis of functional diversity of voltage-gated potassium channels in mammalian brain. EMBO J. 8, 3235–3244 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Swanson, R. et al. Cloning and expression of cDNA and genomic clones encoding three delayed rectifier potassium channels in rat brain. Neuron 4, 929–939 (1990).

    Article  CAS  PubMed  Google Scholar 

  22. Veh, R. W. et al. Immunohistochemical localization of five members of the Kv1 channel subunits: contrasting subcellular locations and neuron-specific co-localizations in rat brain. Eur. J. Neurosci. 7, 2189–2205 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Marom, S. & Levitan, I. B. State-dependent inactivation of the Kv3 potassium channel. Biophys. J. 67, 579–589 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chandy, G. K. et al. K+ channels as targets for specific immunomodulation. Trends Pharmacol. Sci. 25, 280–289 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Holmes, T. C., Berman, K., Swartz, J. E., Dagan, D. & Levitan, I. B. Expression of voltage-gated potassium channels decreases cellular protein tyrosine phosphorylation. J. Neurosci. 17, 8964–8974 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fadool, D. A. et al. Kv1.3 channel gene-targeted deletion produces 'Super-Smeller Mice' with altered glomeruli, interacting scaffolding proteins, and biophysics. Neuron 41, 389–404 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Smart, S. L. et al. Deletion of the KV 1.1 potassium channel causes epilepsy in mice. Neuron 20, 809–819 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Ho, C. S., Grange, R. W. & Joho, R. H. Pleiotropic effects of a disrupted K+ channel gene: reduced body weight, impaired motor skill and muscle contraction, but no seizures. Proc. Natl Acad. Sci. USA 94, 1533–1538 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Artym, V. V. & Petty, H. R. Molecular proximity of Kv1.3 voltage gated potassium channels and β1-integrins on the plasma membrane of melanoma cells: effects of cell adherence and channel blockers. J. Gen. Physiol. 120, 29–37 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. MacLean, J. N., Zhang, Y., Johnson, B. R. & Harris-Warrick, R. M. Activity-independent homeostasis in rhythmically active neurons. Neuron 37, 109–120 (2003). Showed that the overexpression of Shal channels in bursting lobster neurons produces a compensatory increase in HCN channel activity, through a mechanism that might not require K+ flux through the Shal channels. This compensatory increase allows the neurons to maintain their typical electrical bursting pattern despite an increase in K+ current.

    Article  CAS  PubMed  Google Scholar 

  31. An, W. F. et al. Modulation of A-type potassium channels by a family of calcium sensors. Nature 403, 553–556 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Morohashi, Y. et al. Molecular cloning and characterization of CALP/KChIP4, a novel EF-hand protein interacting with presenilin 2 and voltage-gated potassium channel subunit Kv4. J. Biol. Chem. 277, 14965–14975 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Jerng, H. H., Kunjilwar, K. & Pfaffinger, P. J. Multiprotein assembly of Kv4.2, KChIP3 and DPP10 produces ternary channel complexes with ISA-like properties. J. Physiol. 568, 767–788 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. MacLean, J. N. et al. Activity-independent coregulation of IA and Ih in rhythmically active neurons. J. Neurophysiol. 94, 3601–3617 (2005).

    Article  PubMed  Google Scholar 

  35. Zhang, Y. et al. Overexpression of a hyperpolarization-activated cation current (Ih) channel gene modifies the firing activity of identified motor neurons in a small neural network. J. Neurosci. 23, 9059–9067 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cai, S. Q., Hernandez, L., Wang, Y., Park, K. H. & Sesti, F. MPS-1 is a K+ channel β-subunit and a serine/threonine kinase. Nature Neurosci. 8, 1503–1509 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Abbott, G. W. & Goldstein, S. A. A superfamily of small potassium channel subunits: form and function of the MinK-related peptides (MiRPs). Quart. Rev. Biophys. 31, 357–398 (1998).

    Article  CAS  Google Scholar 

  38. Zeng, H., Fei, H., Levitan, I. B. The slowpoke channel binding protein Slob from Drosophila melanogaster exhibits regulatable protein kinase activity. Neurosci. Lett. 65, 33–38 (2004).

    Article  CAS  Google Scholar 

  39. Trimmer, J. S. Regulation of ion channel expression by cytoplasmic subunits. Curr. Opin. Neurobiol. 8, 370–374 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Pongs, O. et al. Functional and molecular aspects of voltage-gated K+ channel β subunits. Ann. NY Acad. Sci. 868, 344–355 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Weng, J., Cao, Y. & Zhou, M. Modulation of voltage-dependent Shaker family potassium channels by an aldo-keto reductase. J. Biol. Chem. 281, 15194–15200 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Rhodes, K. J. et al. KChIPs and Kv4 α subunits as integral components of A-type potassium channels in mammalian brain. J. Neurosci. 24, 7903–7915 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Buxbaum, J. D. et al. Calsenilin: a calcium-binding protein that interacts with the presenilins and regulates the levels of a presenilin fragment. [see comment] Nature Med. 4, 1177–1181 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Carrion, A. M., Link, W. A., Ledo, F., Mellstrom, B. & Naranjo, J. R. DREAM is a Ca2+-regulated transcriptional repressor. Nature 398, 80–84 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Buxbaum, J. D. A role for calsenilin and related proteins in multiple aspects of neuronal function. Biochem. Biophys. Res. Comm. 322, 1140–1144 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Savignac, M. et al. Transcriptional repressor DREAM regulates T-lymphocyte proliferation and cytokine gene expression. EMBO J. 24, 3555–3564 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Brackenbury, W. J, Djamgoz, M. B. Activity-dependent regulation of voltage-gated Na+ channel expression in Mat-LyLu rat prostate cancer cell line. J. Physiol. 573, 343–356 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Onganer, P. U., Seckl, M. J. & Djamgoz, M. B. Neuronal characteristics of small-cell lung cancer. Br. J. Cancer 93, 1197–1201 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Onganer, P. U. & Djamgoz, M. B. Small-cell lung cancer (human): potentiation of endocytic membrane activity by voltage-gated Na+ channel expression in vitro. J. Membr. Biol. 204, 67–75 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Diss, J. K. et al. A potential novel marker for human prostate cancer: voltage-gated sodium channel expression in vivo. Prostate Cancer Prostatic Dis. 8, 266–273 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Fraser, S. P. et al. Voltage-gated sodium channel expression and potentiation of human breast cancer metastasis. Clin. Cancer Res. 11, 5381–5389 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Fraser, S. P. et al. T-lymphocyte invasiveness: control by voltage-gated Na+ channel activity. FEBS Lett. 569, 191–194 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Ding, Y. & Djamgoz, M. B. Serum concentration modifies amplitude and kinetics of voltage-gated Na+ current in the Mat-LyLu cell line of rat prostate cancer. Int. J. Biochem. Cell Biol. 36, 249–260 (2004).

    Article  CAS  Google Scholar 

  54. McEwen, D. P. & Isom, L. L. Heterophilic interactions of sodium channel β1 subunits with axonal and glial cell adhesion molecules. J. Biol. Chem. 279, 52744–52752 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Malhotra, J. D., Kazen-Gillespie, K., Hortsch, M. & Isom, L. L. Sodium channel β subunits mediate homophilic cell adhesion and recruit ankyrin to points of cell–cell contact. J. Biol. Chem. 275, 11383–11388 (2000). This work, together with reference 47, demonstrated that β1 and β2 subunits of Nav channels are cell adhesion molecules that mediate cell–cell adhesion through both homotypic interactions and interactions with other cell adhesion molecules.

    Article  CAS  PubMed  Google Scholar 

  56. Ratcliffe C. F., Westenbroek R. E., Curtis R. & Catterall W. A. Sodium channel β1 and β3 subunits associate with neurofascin through their extracellular immunoglobulin-like domain. J. Cell Biol. 154, 427–434 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Malhotra, J. D., Thyagarajan, V., Chen, C. & Isom, L. L. Tyrosine-phosphorylated and nonphosphorylated sodium channel β1 subunits are differentially localized in cardiac myocytes. J. Biol. Chem. 279, 40748–40754 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Srinivasan, J., Schachner, M. & Catterall, W. A. Interaction of voltage-gated sodium channels with the extracellular matrix molecules tenascin-C and tenascin-R. Proc. Natl Acad. Sci. USA 95, 15753–15757 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Xiao, Z. C. et al. Tenascin-R is a functional modulator of sodium channel β subunits. J. Biol. Chem. 274, 26511–26517 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. McEwen, D. P., Meadows, L. S., Chen, C., Thyagarajan, V. & Isom, L. L. Sodium channel β1 subunit-mediated modulation of Nav1. 2 currents and cell surface density is dependent on interactions with contactin and ankyrin. J. Biol. Chem. 279, 16044–16049 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Pan, Z. et al. A common ankyrin-G-based mechanism retains KCNQ and NaV channels at electrically active domains of the axon. J. Neurosci. 26, 2599–2613 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Malhotra, J. D. et al. Structural requirements for interaction of sodium channel β1 subunits with ankyrin. J. Biol. Chem. 277, 26681–26688 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Ratcliffe, C. F. et al. A sodium channel signaling complex: modulation by associated receptor protein tyrosine phosphatase b. Nature Neurosci. 3, 437–444 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Davis, T. H., Chen, C. & Isom, L. L. Sodium channel β1 subunits promote neurite outgrowth in cerebellar granule neurons. J. Biol. Chem. 279, 51424–51432 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Wong H. K. et al. β subunits of voltage-gated sodium channels are novel substrates of β-site amyloid precursor protein-cleaving enzyme (BACE1) and γ-secretase. J. Biol. Chem. 280, 23009–23017 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Kim, D. Y., MacKenzie Ingano, L. A, Carey, B. W., Pettingell, W. H & Kovacs, D. M. Presenilin/γ-secretase-mediated cleavage of the voltage-gated sodium channel β2–subunit regulates cell adhesion and migration. J. Biol. Chem. 280, 23251–23261 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Rios, E. & Pizzaro, G. Voltage-sensor of excitation–contraction coupling in skeletal muscle. Physiol. Rev. 71, 849–908 (1991).

    Article  CAS  PubMed  Google Scholar 

  68. Paolini, C., Fessenden, J. D., Pessah, I. N. & Franzini-Armstrong, C. Evidence for conformational coupling between two calcium channels. Proc. Natl Acad. Sci. USA 101, 12748–12752 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Catterall W. A. Structure and regulation of voltage-gated Ca2+ channels. Ann. Rev. Cell Dev. Biol. 16, 521–555 (2000).

    Article  CAS  Google Scholar 

  70. Vendel, A. C. et al. Alternative splicing of the voltage-gated Ca2+ channel β4 subunit creates a uniquely folded N-terminal protein binding domain with cell-specific expression in the cerebellar cortex. J. Neurosci. 26, 2635–2644 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mochida, S., Yokoyama, C. T., Kim, D. K., Itoh, K. & Catterall, W. A. Evidence for a voltage-dependent enhancement of neurotransmitter release mediated via the synaptic protein interaction site of N-type Ca2+ channels. Proc. Natl Acad. Sci. USA 95, 14523–14528 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang, C. et al. Calcium- and dynamin-independent endocytosis in dorsal root ganglion neurons. Neuron 42, 225–236 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Zhang, C. & Zhou, Z. Ca2+-independent but voltage-dependent secretion in mammalian dorsal root ganglion neurons. Nature Neurosci. 5, 425–430 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Carafoli, E., Santella, L., Branca, D. & Brini, M. Generation, control, and processing of cellular calcium signals. Crit. Rev. Biochem. Mol. Biol. 36, 107–260 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Dolmetsch, R. E., Pajvani, U., Fife, K., Spotts, J. M. & Greenberg, M. E. Signaling to the nucleus by an L-type calcium channel-calmodulin complex through the MAP kinase pathway. Science 294, 333–339 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Deisseroth, K., Heist, E. K. & Tsien, R. W. Translocation of calmodulin to the nucleus supports CREB phosphorylation in hippocampal neurons. Nature 392, 198–202 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. West A. E. et al. Calcium regulation of neuronal gene expression. Proc. Natl Acad. Sci. USA 98, 11024–11031 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pitt, G. S. et al. Molecular basis of calmodulin tethering and Ca2+-dependent inactivation of L-type Ca2+ channels. J. Biol. Chem. 276, 30794–30802 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Clapham, D. E., Runnels, L. W. & Strubing, C. The TRP ion channel family. Nature Rev. Neurosci. 2, 87–96 (2001).

    Article  CAS  Google Scholar 

  80. Moran, M. M., Xu, H. & Clapham, D. E. TRP ion channels in the nervous system. Curr. Opin. Neurobiol. 14, 362–369 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Schmitz, C. et al. Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7. Cell 114, 191–200 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Wissenbach, U. et al. TRPV6 and prostate cancer: cancer growth beyond the prostate correlates with increased TRPV6 Ca2+ channel expression. Biochem. Biophys. Res. Comm. 322, 1359–1363 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Tsavaler, L., Shapero, M. H., Morkowski, S. & Laus, R. Trp-p8, a novel prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins. Cancer Res. 61, 3760–3769 (2001).

    CAS  PubMed  Google Scholar 

  84. Huang, C.-L. The transient receptor potential superfamily of ion channels. J. Amer. Soc. Nephrol. 15, 1690–1699 (2004).

    Article  CAS  Google Scholar 

  85. Schmitz, C., Perraud, A. L., Fleig, A. & Scharenberg, A. M. Dual-function ion channel/protein kinases: novel components of vertebrate magnesium regulatory mechanisms. Pediatric Res. 55, 734–737 (2004).

    Article  CAS  Google Scholar 

  86. Perraud, A. L. et al. ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411, 595–599 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Sano, Y. et al. Immunocyte Ca2+ influx system mediated by LTRPC2. Science 293, 1327–1330 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Zhang, W. et al. TRPM2 is an ion channel that modulates hematopoietic cell death through activation of caspases and PARP cleavage. Am. J. Physiol. 290, C1146–C1159 (2006).

    Article  CAS  Google Scholar 

  89. Runnels, L. W., Yue, L. & Clapham, D. E. TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 291, 1043–1047 (2001). Demonstrated that the TRPM7 non-selective cation channel has intrinsic protein kinase activity that can phosphorylate itself and exogenous substrates, and that this kinase activity is essential for channel function.

    Article  CAS  PubMed  Google Scholar 

  90. Schlingmann, K. P. et al. Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nature Genet. 31, 166–170 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Walder, R. Y. et al. Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nature Genet. 31, 171–174 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Ryazanova, L. V., Dorovkov, M. V., Ansari, A. & Ryazanov, A. G. Characterization of the protein kinase activity of TRPM7/ChaK1, a protein kinase fused to the transient receptor potential ion channel. J. Biol. Chem. 279, 3708–3716 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Takezawa, R. et al. Receptor-mediated regulation of the TRPM7 channel through its endogenous protein kinase domain. Proc. Natl Acad. Sci. USA. 101, 6009–6014 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Schmitz, C. et al. The channel kinases TRPM6 and TRPM7 are functionally nonredundant. J. Biol. Chem. 280, 37763–37771 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Barr, M. M. et al. The Caenorhabditis elegans autosomal dominant polycystic kidney disease gene homologs lov-1 and pkd-2 act in the same pathway. Curr Biol. 11, 1341–1346 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Barr, M. M. & Sternberg, P. W. A polycystic kidney-disease gene homologue required for male mating behaviour in C. elegans. Nature 401, 386–389 (1999).

    CAS  PubMed  Google Scholar 

  97. Babich, V. et al. The N-terminal extracellular domain is required for polycystin-1-dependent channel activity. J. Biol. Chem. 279, 25582–25589 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Grimm, D. H. et al. Polycystin-2 regulates proliferation and branching morphogenesis in kidney epithelial cells. J. Biol. Chem. 281, 137–144 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Ludwig, A., Zong, X., Jeglitsch, M., Hoffmann, F. & Biel, M. A family of hyperpolarization-activated mammalian cation channels. Nature 393, 587–591 (1998).

    Article  CAS  PubMed  Google Scholar 

  100. Moosmang, S., Biel, M., Hofmann, F. & Ludwig A. Differential distribution of four hyperpolarization-activated cation channels in mouse brain. Biol. Chem. 380, 975–980 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Monteggia, L. M., Eisch, A. J., Tang, M., Kaczmarek, L. K. & Nestler, E. J. Cloning and localization of the hyperpolarization-activated cyclic nucleotide gated channel family in rat brain. Mol. Brain. Res. 81, 129–139 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Zhong, N., Beaumont, V. & Zucker, R. S. Calcium influx through HCN channels does not contribute to cAMP-enhanced transmission. J. Neurophysiol. 92, 644–647 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Zhong N. & Zucker, R. S. Roles of Ca2+, hyperpolarization and cyclic nucleotide-activated channel activation, and actin in temporal synaptic tagging. J. Neurosci. 24, 4205–4212 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Beaumont, V., Zhong, N., Froemke, R. C., Ball, R. W. & Zucker, R. S. Temporal synaptic tagging by Ih activation and actin: involvement in long-term facilitation and cAMP-induced synaptic enhancement. Neuron 33, 601–613 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Beaumont, V. & Zucker, RS. Enhancement of synaptic transmission by cyclic AMP modulation of presynaptic Ih channels. Nature Neurosci. 3, 133–141 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Hulme, J. T. et al. Sites of proteolytic processing and noncovalent association of the distal C-terminal domain of CaV1. 1 channels in skeletal muscle. Proc. Natl Acad. Sci. USA 102, 5274–5279 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hell, J. W. et al. N-methyl-D-aspartate receptor-induced proteolytic conversion of postsynaptic class C L-type calcium channels in hippocampal neurons. Proc. Natl Acad. Sci. USA 93, 3362–3367 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Heldin, C. H. & Ericsson, J. Signal transduction. RIPping tyrosine kinase receptors apart. Science 294, 2111–2113 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Chauvet, V. et al. Mechanical stimuli induce cleavage and nuclear translocation of the polycystin-1 C terminus. J. Clin. Invest. 114, 1433–1443 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Schultz, J. E., Klumpp, S., Benz, R., Schurhoff-Goeters, W. J. & Schmid, A. Regulation of adenylyl cyclase from Paramecium by an intrinsic potassium conductance. Science 255, 600–603 (1992).

    Article  CAS  PubMed  Google Scholar 

  111. Eckert, R. & Brehm, P. Ionic mechanisms of excitation in Paramecium. Ann. Rev. Biophys. Bioeng. 8, 353–383 (1979).

    Article  CAS  Google Scholar 

  112. Bernal, J. & Ehrlich, B. E. Guanine nucleotides modulate calcium currents in a marine Paramecium. J. Exp. Biol. 176, 117–133 (1993).

    Article  CAS  PubMed  Google Scholar 

  113. Bonini, N. M., Evans, T. C., Miglietta, L. A. & Nelson, D. L. The regulation of ciliary motility in Paramecium by Ca2+ and cyclic nucleotides. Adv. Second Mess. Phosphoprot. Res. 23, 227–272 (1991).

    CAS  Google Scholar 

  114. Murata, Y., Iwasaki, H., Sasaki, M., Inaba, K. & Okamura, Y. Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature 435, 1239–1243 (2005). Provides an example in which evolution has linked the voltage-sensing S1–S4 segments of voltage-gated channels to a phosphoinositide phosphatase, producing a voltage-sensitive enzyme with no apparent channel activity.

    Article  CAS  PubMed  Google Scholar 

  115. Sasaki, M., Takagi, M. & Okamura, Y. A voltage sensor-domain protein is a voltage-gated proton channel. Science 312, 589–592 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Ramsey, I. S., Moran, M. M., Chong, J. A. & Clapham, D. E. A voltage-gated proton-selective channel lacking the pore domain. Nature 440, 1213–1216 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yu, S. P. et al. Mediation of neuronal apoptosis by enhancement of outward potassium current. Science 278, 114–117 (1997).

    Article  CAS  PubMed  Google Scholar 

  118. Yu, S. P., Yeh, C., Strasser, U., Tian, M. & Choi, D. W. NMDA receptor-mediated K+ efflux and neuronal apoptosis. Science 284, 336–339 (1999).

    Article  CAS  PubMed  Google Scholar 

  119. Hughes, F. M. Jr & Cidlowski, J. A. Potassium is a critical regulator of apoptotic enzymes in vitro and in vivo. Adv. Enz. Regul. 39, 157–171 (1999).

    Article  CAS  Google Scholar 

  120. Pal, S., Hartnett, K. A., Nerbonne, J. M., Levitan, E. S. & Aizenman, E. Mediation of neuronal apoptosis by Kv2.1-encoded potassium channels. J. Neurosci. 23, 4798–4802 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Cheng, W.-C. et al. Mitochondrial factors with duals roles in death and survival. Oncogene 25, 4697–4705 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Misonou, H., Mohapatra, D. P. & Trimmer, J. S. Kv2.1: a voltage-gated K+ channel critical to dynamic control of neuronal excitability. Neurotoxicol. 26, 743–752 (2005).

    Article  CAS  Google Scholar 

  123. Trimarchi, J. R., Liu, L., Smith, P. J. & Keefe, D. L. Apoptosis recruits two-pore domain potassium channels used for homeostatic volume regulation. Am. J. Physiol. 282, C588–C594 (2002).

    Article  CAS  Google Scholar 

  124. Storey, N. M., Gomez-Angelats, M., Bortner, C. D., Armstrong, D. L. & Cidlowski, J. A. Stimulation of Kv1.3 potassium channels by death receptors during apoptosis in Jurkat T lymphocytes. J. Biol. Chem. 278, 33319–33326 (2003).

    Article  CAS  PubMed  Google Scholar 

  125. Ashcroft F. M. From molecule to malady. Nature 440, 440–447 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Waters, M. F. et al. Mutations in voltage-gated potassium channel KCNC3 cause degenerative and developmental central nervous system phenotypes. Nature Genet. 38, 447–451 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Wallace, R. H. et al. Febrile seizures and generalized epilepsy associated with a mutation in the Na+-channel β1 subunit gene SCN1B. Nature Genet. 19, 366–370 (1998).

    Article  CAS  PubMed  Google Scholar 

  128. Meadows, L. S. et al. Functional and biochemical analysis of a sodium channel β1 subunit mutation responsible for generalized epilepsy with febrile seizures plus type 1. J. Neurosci. 22, 10699–10709 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Oyama, F. et al. Sodium channel β4 subunit: down-regulation and possible involvement in neuritic degeneration in Huntington's disease transgenic mice. J. Neurochem. 98, 518–529 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Chandy, K. G. et al. Isolation of a novel potassium channel gene hSKCa3 containing a polymorphic CAG repeat: a candidate for schizophrenia and bipolar disorder? Mol. Psychiatry 3, 2–7 (1998).

    Article  Google Scholar 

  131. Miller, M. J. et al. Nuclear localization and dominant-negative suppression by a mutant SKCa3 N-terminal channel fragment identified in a patient with schizophrenia. J. Biol. Chem. 276, 27753–27756 (2001).

    Article  CAS  PubMed  Google Scholar 

  132. Wada, K. et al. Differential expression of two distinct forms of mRNA encoding members of a dipeptidyl aminopeptidase family. Proc. Natl Acad. Sci. USA 89, 197–201 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Nadal, M. S. et al. The CD26-related dipeptidyl aminopeptidase-like protein DPPX is a critical component of neuronal A-type K+ channels. Neuron 37, 449–461 (2003).

    Article  CAS  PubMed  Google Scholar 

  134. Qi, S. Y., Riviere, P. J. Trojnar, J., Junien, J. L. & Akinsanya, K. O. Cloning and characterization of dipeptidyl peptidase 10, a new member of an emerging subgroup of serine proteases. Biochem. J. 373, 179–189 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zagha, E. et al. DPP10 modulates Kv4-mediated A-type potassium channels. J. Biol. Chem. 280, 18853–18861 (2005).

    Article  CAS  PubMed  Google Scholar 

  136. Kin, Y., Misumi, Y. & Ikehara, Y. Biosynthesis and characterization of the brain-specific membrane protein DPPX, a dipeptidyl peptidase IV-related protein. J. Biochem. 129, 289–295 (2001).

    Article  CAS  PubMed  Google Scholar 

  137. Fordyce, C. B., Jagasia, R., Zhu, X. & Schlichter, L. C. Microglia Kv1. 3 channels contribute to their ability to kill neurons. J. Neurosci. 25, 7139–7149 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Duncan, L. M. et al. Down-regulation of the novel gene melastatin correlates with potential for melanoma metastasis. Cancer Res. 58, 1515–1520 (1998).

    CAS  PubMed  Google Scholar 

  139. Schwarz, E. C. et al. TRPV6 potentiates calcium-dependent cell proliferation. Cell Calcium 39, 163–173 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I am grateful to G. Wilson for very helpful discussions. The author's work is supported by grants from the National Institutes of Health (NIH).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Kaczmarek's homepage

Glossary

Integrins

Receptors on cells that interact with extracellular matrix proteins or other cell surface molecules, and that regulate important functions such as growth and survival.

A-type potassium currents

Also known as transient outward currents. A K+ current that undergoes inactivation over tens to hundreds of milliseconds during a maintained depolarization. Many A-type currents undergo steady-state inactivation at the resting potential. However, when the neuron fires repeatedly, this steady-state inactivation is removed during the afterhyperpolarization that follows each action potential. The subsequent transient activation of the A-type channel delays the next action potential and slows the firing rate.

Stomatogastric ganglion

A small and well-studied neural network in the stomach of crustaceans. This group of neurons generates a rhythmic input to stomach muscles, causing the physical disruption of food and its movement through the stomach.

Aldo reductases

Broad specificity enzymes that catalyse the conversion of aldehydes to alcohols while simultaneously oxidizing NADPH to NADP+.

Presenilins

The transmembrane proteins presenilin 1 and 2 are components of a large, multisubunit aspartyl protease complex termed γ-secretase. The presenilin/γ-secretase complex is required for the intramembranous cleavage of a variety of membrane proteins.

SNARE proteins

A family of membrane-tethered coiled–coil proteins that are required for membrane fusion in exocytosis (such as during neurotransmitter release) and other membrane transport events. When trans-SNARE complexes are formed between vesicle SNAREs and target-membrane SNAREs, they pull the two membranes together, presumably causing them to fuse.

Alternative splicing

A post-transcriptional process through which a pre-mRNA molecule, containing several introns and exons, can lead to different functional mRNA molecules, and consequently proteins, that originate from a single gene.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaczmarek, L. Non-conducting functions of voltage-gated ion channels. Nat Rev Neurosci 7, 761–771 (2006). https://doi.org/10.1038/nrn1988

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1988

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing