Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The primate cortico-cerebellar system: anatomy and function

Key Points

  • The cerebellum is traditionally regarded as a structure involved in motor control, but it is becoming increasingly clear that it also has an important role in processing higher level 'cognitive' information.

  • This review first summarizes the anatomy of the cortico-cerebellar system, arguing that important clues about information processing can be derived from knowledge of its structural organization.

  • The microstructure of the cerebellar cortex is uniform, suggesting that it processes its diverse inputs using a common set of computational principles.

  • Control theory provides an excellent way to explain the involvement of the cerebellum in the control of movement.

  • The anatomical organization of the cortico-cerebellar system suggests that these control theoretic accounts can be extended to explain how cerebellar circuits process information from the prefrontal cortex

Abstract

Evidence has been accumulating that the primate cerebellum contributes not only to motor control, but also to higher 'cognitive' function. However, there is no consensus about how the cerebellum processes such information. The answer to this puzzle can be found in the nature of cerebellar connections to areas of the cerebral cortex (particularly the prefrontal cortex) and in the uniformity of its intrinsic cellular organization, which implies uniformity in information processing regardless of the area of origin in the cerebral cortex. With this in mind, the relatively well-developed models of how the cerebellum processes information from the motor cortex might be extended to explain how it could also process information from the prefrontal cortex.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Anatomical architecture of the cerebellum.
Figure 2: Prefrontal projections to the pontine nuclei.
Figure 3: Motor and prefrontal modules in the primate cerebellar cortex.
Figure 4: The organizational origins of cortico-cerebellar fibres in the cerebral peduncle.
Figure 5: Theoretical and neural organization of forward models.

References

  1. Stein, J. F. & Glickstein, M. Role of the cerebellum in visual guidance of movement. Physiol. Rev. 72, 967–1017 (1992).

    CAS  PubMed  Google Scholar 

  2. Brodal, P. & Bjaalie, J. G. Salient anatomic features of the cortico-ponto-cerebellar pathway. Prog. Brain Res. 114, 227–249 (1997).

    CAS  PubMed  Google Scholar 

  3. Glickstein, M. Motor skills but not cognitive tasks. Trends Neurosci. 16, 450–451 (1993).

    CAS  PubMed  Google Scholar 

  4. Glickstein, M. The cerebellum and motor learning. Curr. Opin. Neurobiol. 2, 802–806 (1992).

    CAS  PubMed  Google Scholar 

  5. Fine, E. J., Ionita, C. C. & Lohr, L. The history of the development of the cerebellar examination. Semin. Neurol. 22, 375–384 (2002).

    PubMed  Google Scholar 

  6. Holmes, G. The cerebellum of man. Brain 62, 1–30 (1939).

    Google Scholar 

  7. Ito, M. Historical review of the significance of the cerebellum and the role of Purkinje cells in motor learning. Ann. NY Acad. Sci. 978, 273–288 (2002).

    PubMed  Google Scholar 

  8. Fiez, J. A. et al. A positron emission tomography study of the short-term maintenance of verbal information. J. Neurosci. 16, 808–822 (1996).

    CAS  PubMed  Google Scholar 

  9. Allen, G., Buxton, R. B., Wong, E. C. & Courchesne, E. Attentional activation of the cerebellum independent of motor involvement. Science 275, 1940–1943 (1997).

    CAS  PubMed  Google Scholar 

  10. Ivry, R. B. & Baldo, J. V. Is the cerebellum involved in learning and cognition? Curr. Opin. Neurobiol. 2, 212–216 (1992).

    CAS  PubMed  Google Scholar 

  11. Kim, S. G., Ugurbil, K. & Strick, P. L. Activation of a cerebellar output nucleus during cognitive processing. Science 265, 949–951 (1994).

    CAS  PubMed  Google Scholar 

  12. Schmahmann, J. D. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J. Neuropsychiatry Clin. Neurosci. 16, 367–378 (2004). Discusses clinical evidence that cerebellar lesions in the human brain produce deficits in cognitive function.

    PubMed  Google Scholar 

  13. Desmond, J. E., Gabrieli, J. D. & Glover, G. H. Dissociation of frontal and cerebellar activity in a cognitive task: evidence for a distinction between selection and search. Neuroimage 7, 368–376 (1998).

    CAS  PubMed  Google Scholar 

  14. Chen, S. H. & Desmond, J. E. Cerebrocerebellar networks during articulatory rehearsal and verbal working memory tasks. Neuroimage 24, 332–338 (2005).

    PubMed  Google Scholar 

  15. Ito, M. Mechanisms of motor learning in the cerebellum. Brain Res. 886, 237–245 (2000).

    CAS  PubMed  Google Scholar 

  16. Albus, J. S. A theory of cerebellar function. Math. Biosci. 10, 25–61 (1971).

    Google Scholar 

  17. Blomfield, S. & Marr, D. How the cerebellum may be used. Nature 227, 1224–1228 (1970).

    CAS  PubMed  Google Scholar 

  18. Marr, D. A theory of cerebellar cortex. J. Physiol. 202, 437–470 (1969). Contains some of the most influential theoretical ideas related to cerebellar information processing.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Eccles, J. C., Ito, M. & Szentagothai, J. The Cerebellum as a Neuronal Machine (Springer, New York, 1967).

    Google Scholar 

  20. Bloedel, J. R. Functional heterogeneity with structural homogeneity: how does the cerebellum operate? Behav. Brain Sci. 15, 666–678 (1992).

    Google Scholar 

  21. Zagon, I. S., McLaughlin, P. J. & Smith, S. Neural populations in the human cerebellum: estimations from isolated cell nuclei. Brain Res. 127, 279–282 (1977).

    CAS  PubMed  Google Scholar 

  22. Apps, R. & Garwicz, M. Anatomical and physiological foundations of cerebellar information processing. Nature Rev. Neurosci. 6, 297–311 (2005).

    CAS  Google Scholar 

  23. Larsell, O. & Jansen, O. The Comparative Anatomy and Histology of the Cerebellum: the Human Cerebellum, Cerebellar Connections and Cerebellar Cortex (University of Minnesota Press, Minneapolis, 1972).

    Google Scholar 

  24. Larsell, O. Comparative Anatomy and Histology of the Cerebellum from Monotremes through Apes (University of Minnesota Press, Minneapolis, 1970).

    Google Scholar 

  25. Fox, C. A. & Barnard, J. W. A quantitative study of the Purkinje cell dendritic branchlets and their relationship to afferent fibres. J. Anat. 91, 299–313 (1957).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Fuster, J. M. Upper processing stages of the perception-action cycle. Trends Cogn. Sci. 8, 143–145 (2004).

    PubMed  Google Scholar 

  27. Shah, V. S., Schmahmann, J. D., Pandya, D. N. & Vaher, P. R. Associative projections to the Zona Incerta: possible anatomic substrate for extension of the Marr–Albus hypothesis to non-motor learning. Soc. Neurosci. 23, 1829 (1997).

    Google Scholar 

  28. Middleton, F. A. & Strick, P. L. Cerebellar output channels. Int. Rev. Neurobiol. 4161–4182 (1997).

  29. Thach, W. T. Cerebellar output: properties, synthesis and uses. Brain Res. 40, 89–102 (1972).

    CAS  PubMed  Google Scholar 

  30. Thach, W. T. & Jones, E. G. The cerebellar dentatothalamic connection: terminal field, lamellae, rods and somatotopy. Brain Res. 169, 168–172 (1979).

    CAS  PubMed  Google Scholar 

  31. Asanuma, C., Thach, W. T. & Jones, E. G. Distribution of cerebellar terminations and their relation to other afferent terminations in the ventral lateral thalamic region of the monkey. Brain Res. 286, 237–265 (1983).

    CAS  PubMed  Google Scholar 

  32. Brodal, P. Principles of organization of the monkey corticopontine projection. Brain Res. 148, 214–218 (1978).

    CAS  PubMed  Google Scholar 

  33. Schmahmann, J. D. & Pandya, D. N. Anatomic organization of the basilar pontine projections from prefrontal cortices in rhesus monkey. J. Neurosci. 17, 438–458 (1997). The authors have characterized patterns of projections from several prefrontal areas to the pontine nuclei.

    CAS  PubMed  Google Scholar 

  34. Schmahmann, J. D., Rosene, D. L. & Pandya, D. N. Motor projections to the basis pontis in rhesus monkey. J. Comp. Neurol. 478, 248–268 (2004).

    PubMed  Google Scholar 

  35. Glickstein, M., May, J. G. & Mercier, B. E. Corticopontine projection in the macaque: the distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. J. Comp. Neurol. 235, 343–359 (1985).

    CAS  PubMed  Google Scholar 

  36. Brodal, P. The corticopontine projection in the rhesus monkey. Origin and principles of organization. Brain 101, 251–283 (1978).

    CAS  PubMed  Google Scholar 

  37. Walker, A. E. A cytoarchitectural study of the prefrontal area of the macaque monkey. J. Comp. Neurol. 73, 59–86 (1940).

    Google Scholar 

  38. Kelly, R. M. & Strick, P. L. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J. Neurosci. 23, 8432–8444 (2003). The only study in the literature so far that has identified the trans-synaptic pathways from motor and prefrontal areas to distinct locations in the cerebellar cortex in the primate brain. The importance of this study lies in the fact that it allows researchers to generate anatomically specific hypotheses about the operations of specific modules in the cerebellar cortex.

    CAS  PubMed  Google Scholar 

  39. Middleton, F. A. & Strick, P. L. Cerebellar projections to the prefrontal cortex of the primate. J. Neurosci. 21, 700–712 (2001).

    CAS  PubMed  Google Scholar 

  40. Petrides, M. & Pandya, D. N. Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. Eur. J. Neurosci. 11, 1011–1036 (1999).

    CAS  PubMed  Google Scholar 

  41. Petrides, M. & Pandya, D. N. Comparative cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey. Eur. J. Neurosci. 16, 291–310 (2002).

    CAS  PubMed  Google Scholar 

  42. Fuster, J. M. Linkage at the top. Neuron 21, 1223–1224 (1998).

    CAS  PubMed  Google Scholar 

  43. Orioli, P. J. & Strick, P. L. Cerebellar connections with the motor cortex and the arcuate premotor area: an analysis employing retrograde transneuronal transport of WGA-HRP. J. Comp. Neurol. 288, 612–626 (1989).

    CAS  PubMed  Google Scholar 

  44. Lu, M. T., Preston, J. B. & Strick, P. L. Interconnections between the prefrontal cortex and the premotor areas in the frontal lobe. J. Comp. Neurol. 341, 375–392 (1994).

    CAS  PubMed  Google Scholar 

  45. Passingham, R. E. Attention to action. Phil. Trans. R. Soc. Lond. B Biol. Sci. 351, 1473–1479 (1996).

    CAS  Google Scholar 

  46. Rosa, M. G. & Tweedale, R. Brain maps, great and small: lessons from comparative studies of primate visual cortical organization. Phil. Trans. R. Soc. Lond. B Biol. Sci. 360, 665–691 (2005).

    Google Scholar 

  47. Barton, R. A. & Harvey, P. H. Mosaic evolution of brain structure in mammals. Nature 405, 1055–1058 (2000).

    CAS  PubMed  Google Scholar 

  48. Schoenemann, P. T., Sheehan, M. J. & Glotzer, L. D. Prefrontal white matter volume is disproportionately larger in humans than in other primates. Nature Neurosci. 8, 242–252 (2005).

    CAS  PubMed  Google Scholar 

  49. Matano, S. Brief communication: proportions of the ventral half of the cerebellar dentate nucleus in humans and great apes. Am. J. Phys. Anthropol. 114, 163–165 (2001).

    CAS  PubMed  Google Scholar 

  50. Beck, E. The origin, course and termination of the prefrontopontine tract in the human brain. Brain 7, 368–391 (1950).

    Google Scholar 

  51. Dejerine, J. Anatomie des Centres Nerveux (Rueff et Cie, Paris, 1895).

    Google Scholar 

  52. Marin, O. S. M., Angevine, J. B. & Locke, S. Topographical organisation of the lateral segment of the basis pedunculi in man. J. Comp. Neurol. 118, 165–175 (1962).

    CAS  PubMed  Google Scholar 

  53. Behrens, T. E. et al. Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn. Reson. Med. 50, 1077–1088 (2003).

    CAS  PubMed  Google Scholar 

  54. Le Bihan, D. Looking into the functional architecture of the brain with diffusion MRI. Nature Rev. Neurosci. 4, 469–480 (2003).

    CAS  Google Scholar 

  55. Ramnani, N., Behrens, T. E., Penny, W. & Matthews, P. M. New approaches for exploring anatomical and functional connectivity in the human brain. Biol. Psychiatry 56, 613–619 (2004).

    PubMed  Google Scholar 

  56. Behrens, T. E. et al. Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nature Neurosci. 6, 750–757 (2003).

    CAS  PubMed  Google Scholar 

  57. Ramnani, N. et al. The evolution of prefrontal inputs to the cortico-pontine system: diffusion imaging evidence from macaque monkeys and humans. Cereb. Cortex 16, 811–818 (2006). The same anatomical method was used to investigate cortico-pontine projections from various cortical areas in both humans and macaque monkeys. This study demonstrated a selective enlargement of prefrontal contributions to this system in the human brain.

    PubMed  Google Scholar 

  58. Kawato, M. & Wolpert, D. Internal models for motor control. Novartis Found. Symp. 218, 291–304, 304–307 (1998).

    CAS  PubMed  Google Scholar 

  59. Brindely, G. S. The use made by the cerebellum of the information that it receives from the sense organs. Int. Brain Res. Org. Bull. 3, 80 (1969).

    Google Scholar 

  60. Boyden, E. S., Katoh, A. & Raymond, J. L. Cerebellum-dependent learning: the role of multiple plasticity mechanisms. Annu. Rev. Neurosci. 27, 581–609 (2004).

    CAS  PubMed  Google Scholar 

  61. Ito, M. Synaptic plasticity in the cerebellar cortex and its role in motor learning. Can. J. Neurol. Sci. 20, S70–S74 (1993).

    PubMed  Google Scholar 

  62. Ito, M. Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol. Rev. 81, 1143–1195 (2001).

    CAS  PubMed  Google Scholar 

  63. De Zeeuw, C. I. & Yeo, C. H. Time and tide in cerebellar memory formation. Curr. Opin. Neurobiol. 15, 667–674 (2005).

    CAS  PubMed  Google Scholar 

  64. Horn, K. M., Pong, M. & Gibson, A. R. Discharge of inferior olive cells during reaching errors and perturbations. Brain Res. 996, 148–158 (2004).

    CAS  PubMed  Google Scholar 

  65. Garwicz, M. Spinal reflexes provide motor error signals to cerebellar modules — relevance for motor coordination. Brain Res. Brain Res. Rev. 40, 152–165 (2002).

    PubMed  Google Scholar 

  66. Krupa, D. J., Thompson, J. K. & Thompson, R. F. Localization of a memory trace in the mammalian brain. Science 260, 989–991 (1993).

    CAS  PubMed  Google Scholar 

  67. Ebner, T. J., Johnson, M. T., Roitman, A. & Fu, Q. What do complex spikes signal about limb movements? Ann. NY Acad. Sci. 978, 205–218 (2002).

    PubMed  Google Scholar 

  68. De Zeeuw, C. I. et al. Microcircuitry and function of the inferior olive. Trends Neurosci. 21, 391–400 (1998).

    CAS  PubMed  Google Scholar 

  69. Miall, R. C., Weir, D. J., Wolpert, D. M. & Stein, J. F. Is the cerebellum a smith predictor? J. Mot. Behav. 25, 203–216 (1993).

    CAS  PubMed  Google Scholar 

  70. Ohyama, T., Nores, W. L., Murphy, M. & Mauk, M. D. What the cerebellum computes. Trends Neurosci. 26, 222–227 (2003).

    CAS  PubMed  Google Scholar 

  71. Braitenberg, V., Heck, D. & Sultan, F. The detection and generation of sequences as a key to cerebellar function: experiments and theory. Behav. Brain Sci. 20, 229–277 (1997).

    CAS  PubMed  Google Scholar 

  72. Thach, W. T. Context-response linkage. Int. Rev. Neurobiol. 41, 599–611 (1997).

    CAS  PubMed  Google Scholar 

  73. Thach, W. T., Goodkin, H. P. & Keating, J. G. The cerebellum and the adaptive coordination of movement. Annu. Rev. Neurosci. 15, 403–442 (1992).

    CAS  PubMed  Google Scholar 

  74. Ito, M. Movement and thought: identical control mechanisms by the cerebellum. Trends Neurosci. 16, 448–450; 453–454 (1993).

    Google Scholar 

  75. Ito, M. Bases and implications of learning in the cerebellum — adaptive control and internal model mechanism. Prog. Brain Res. 148, 95–109 (2005). Highlights some recent control theoretic ideas on how prefrontal interactions with posterior association areas are modelled by prefrontal interactions with cerebellar cortical circuits.

    PubMed  Google Scholar 

  76. Barlow, J. S. The Cerebellum and Adaptive Control (Cambridge Univ. Press, Cambridge, UK, 2002).

    Google Scholar 

  77. Wolpert, D. M. & Miall, R. C. Forward models for physiological motor control. Neural Netw. 9, 1265–1279 (1996). A clear account of forward models, and of how these might be modelled in cerebellar circuitry.

    PubMed  Google Scholar 

  78. Allen, G. I. & Tsukahara, N. Cerebrocerebellar communication systems. Physiol. Rev. 54, 957–1006 (1974).

    CAS  PubMed  Google Scholar 

  79. Wolpert, D. M. & Kawato, M. Multiple paired forward and inverse models for motor control. Neural Netw. 11, 1317–1329 (1998).

    CAS  PubMed  Google Scholar 

  80. Jordan, M. I. in The Cognitive Neurosciences (ed. Gazzaniga, M.) 579–609 (MIT Press, Cambridge, Massachusetts, 1995).

    Google Scholar 

  81. Jordan, M. I. & Rumelhart, D. E. Forward models: supervised learning wih a distal teacher. Cogn Sci. 16, 307–354 (1992).

    Google Scholar 

  82. Kawato, M., Furukawa, K. & Suzuki, R. A hierarchical neural-network model for control and learning of voluntary movement. Biol. Cybern. 57, 169–185 (1987).

    CAS  PubMed  Google Scholar 

  83. Linden, D. J. Neuroscience. From molecules to memory in the cerebellum. Science 301, 1682–1685 (2003).

    CAS  PubMed  Google Scholar 

  84. Georgopoulos, A. P. Higher order motor control. Annu. Rev. Neurosci. 14, 361–377 (1991).

    CAS  PubMed  Google Scholar 

  85. He, S. Q., Dum, R. P. & Strick P. L. Topographic organization of corticospinal projections from the frontal lobe: motor areas on the lateral surface of the hemisphere. J. Neurosci. 13, 952–980 (1993).

    CAS  PubMed  Google Scholar 

  86. He, S. Q., Dum, R. P. & Strick, P. L. Topographic organization of corticospinal projections from the frontal lobe: motor areas on the medial surface of the hemisphere. J. Neurosci. 15, 3284–3306 (1995).

    CAS  PubMed  Google Scholar 

  87. Dum, R. P. & Strick, P. L. Spinal cord terminations of the medial wall motor areas in macaque monkeys. J. Neurosci. 16, 6513–6525 (1996).

    CAS  PubMed  Google Scholar 

  88. Ugolini, G. & Kuypers, H. G. Collaterals of corticospinal and pyramidal fibres to the pontine grey demonstrated by a new application of the fluorescent fibre labelling technique. Brain Res. 365, 211–227 (1986).

    CAS  PubMed  Google Scholar 

  89. Thach, W. T. Cerebellar inputs to motor cortex. Ciba Found. Symp. 132, 201–220 (1987).

    CAS  PubMed  Google Scholar 

  90. Dum, R. P., Li, C. & Strick, P. L. Motor and nonmotor domains in the monkey dentate. Ann. NY Acad. Sci. 978, 289–301 (2002).

    PubMed  Google Scholar 

  91. Dum, R. P. & Strick, P. L. An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J. Neurophysiol. 89, 634–639 (2003).

    PubMed  Google Scholar 

  92. Cheney, P. D., Fetz, E. E. & Mewes, K. Neural mechanisms underlying corticospinal and rubrospinal control of limb movements. Prog. Brain Res. 87, 213–252 (1991).

    CAS  PubMed  Google Scholar 

  93. Nathan, P. W. & Smith, M. C. The rubrospinal and central tegmental tracts in man. Brain 105, 223–269 (1982).

    CAS  PubMed  Google Scholar 

  94. Ralston, D. D. Cerebellar terminations in the red nucleus of Macaca fascicularis: an electron-microscopic study utilizing the anterograde transport of WGA:HRP. Somatosens. Mot. Res. 11, 101–107 (1994).

    CAS  PubMed  Google Scholar 

  95. Buisseret-Delmas, C. An HRP study of the afferents to the inferior olive in cat. I. — Cervical spinal and dorsal column nuclei projections. Arch. Ital. Biol. 118, 270–286 (1980).

    CAS  PubMed  Google Scholar 

  96. Armstrong, D. M. & Schild, R. F. Spino-olivary neurones in the lumbo-sacral cord of the cat demonstrated by retrograde transport of horseradish peroxidase. Brain Res. 168, 176–179 (1979).

    CAS  PubMed  Google Scholar 

  97. Oscarsson, O. & Sjolund, B. The ventral spino-olivocerebellar system in the cat. III. Functional characteristics of the five paths. Exp. Brain Res. 28, 505–520 (1977).

    CAS  PubMed  Google Scholar 

  98. Di Biagio, F. & Grundfest, H. Afferent relations of inferior olivary nucleus. II. Site of relay from hand limb afferents into dorsal spino-olivary tract in cat. J. Neurophysiol. 18, 299–304 (1955).

    CAS  PubMed  Google Scholar 

  99. Ruigrok, T. J. Cerebellar nuclei: the olivary connection. Prog. Brain Res. 114, 167–192 (1997).

    CAS  PubMed  Google Scholar 

  100. Courville, J. & Otabe, S. The rubro-olivary projection in the macaque: an experimental study with silver impregnation methods. J. Comp. Neurol. 158, 479–494 (1974).

    CAS  PubMed  Google Scholar 

  101. Gilbert, P. F. & Thach, W. T. Purkinje cell activity during motor learning. Brain Res. 128, 309–328 (1977).

    CAS  PubMed  Google Scholar 

  102. Frens, M. A., Mathoera, A. L. & van der Steen, J. Floccular complex spike response to transparent retinal slip. Neuron 30, 795–801 (2001).

    CAS  PubMed  Google Scholar 

  103. Kitazawa, S., Kimura, T. & Yin, P. B. Cerebellar complex spikes encode both destinations and errors in arm movements. Nature 392, 494–497 (1998).

    CAS  PubMed  Google Scholar 

  104. Bastian, A. J., Martin, T. A., Keating, J. G. & Thach, W. T. Cerebellar ataxia: abnormal control of interaction torques across multiple joints. J. Neurophysiol. 76, 492–509 (1996).

    CAS  PubMed  Google Scholar 

  105. Bastian, A. J. & Thach, W. T. Cerebellar outflow lesions: a comparison of movement deficits resulting from lesions at the levels of the cerebellum and thalamus. Ann. Neurol. 38, 881–892 (1995).

    CAS  PubMed  Google Scholar 

  106. Goodkin, H. P., Keating, J. G., Martin, T. A. & Thach, W. T. Preserved simple and impaired compound movement after infarction in the territory of the superior cerebellar artery. Can. J. Neurol. Sci. 20, S93–S104 (1993).

    PubMed  Google Scholar 

  107. Hardiman, M. J., Ramnani, N. & Yeo, C. H. Reversible inactivations of the cerebellum with muscimol prevent the acquisition and extinction of conditioned nictitating membrane responses in the rabbit. Exp. Brain Res. 110, 235–247 (1996).

    CAS  PubMed  Google Scholar 

  108. Ramnani, N. & Yeo, C. H. Reversible inactivations of the cerebellum prevent the extinction of conditioned nictitating membrane responses in rabbits. J. Physiol. 495, 159–168 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Lu, X., Hikosaka, O. & Miyachi, S. Role of monkey cerebellar nuclei in skill for sequential movement. J. Neurophysiol. 79, 2245–2254 (1998).

    CAS  PubMed  Google Scholar 

  110. Meyer, J. S., Obara, K. & Muramatsu, K. Diaschisis. Neurol. Res. 15, 362–366 (1993).

    CAS  PubMed  Google Scholar 

  111. Ramnani, N., Toni, I., Josephs, O., Ashburner, J. & Passingham, R. E. Learning- and expectation-related changes in the human brain during motor learning. J. Neurophysiol. 84, 3026–3035 (2000).

    CAS  PubMed  Google Scholar 

  112. Imamizu, H. et al. Human cerebellar activity reflecting an acquired internal model of a new tool. Nature 403, 192–195 (2000).

    CAS  PubMed  Google Scholar 

  113. Diedrichsen, J., Hashambhoy, Y., Rane, T. & Shadmehr, R. Neural correlates of reach errors. J. Neurosci. 25, 9919–9931 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Kawato, M. et al. Internal forward models in the cerebellum: fMRI study on grip force and load force coupling. Prog. Brain Res. 142, 171–188 (2003).

    PubMed  Google Scholar 

  115. Kawato, M. Internal models for motor control and trajectory planning. Curr. Opin. Neurobiol. 9, 718–727 (1999).

    CAS  PubMed  Google Scholar 

  116. Miall, R. C., Weir, D. J. & Stein, J. F. Manual tracking of visual targets by trained monkeys. Behav. Brain Res. 20, 185–201 (1986).

    CAS  PubMed  Google Scholar 

  117. Grafton, S. T. Woods, R. P. & Tyszka, M. Functional imaging of procedural motor learning: relating cerebral blood flow with individual subject performance. Hum. Brain Mapp. 1, 221–234 (1993).

    Google Scholar 

  118. Miall, R. C. & Jenkinson, E. W. Functional imaging of changes in cerebellar activity related to learning during a novel eye-hand tracking task. Exp. Brain Res. 166, 170–183 (2005).

    CAS  PubMed  Google Scholar 

  119. Ramnani, N., Toni, I., Passingham, R. E. & Haggard, P. The cerebellum and parietal cortex play a specific role in coordination: a PET study. Neuroimage 14, 899–911 (2001).

    CAS  PubMed  Google Scholar 

  120. Ramnani, N. & Passingham, R. E. Changes in the human brain during rhythm learning. J. Cogn. Neurosci. 13, 952–966 (2001).

    CAS  PubMed  Google Scholar 

  121. Friston, K. J., Frith, C. D., Passingham, R. E., Liddle, P. F. & Frackowiak, R. S. Motor practice and neurophysiological adaptation in the cerebellum: a positron tomography study. Proc. R. Soc. Lond. B Biol. Sci. 248, 223–228 (1992).

    CAS  Google Scholar 

  122. Jueptner, M., Frith, C. D., Brooks, D. J., Frackowiak, R. S. & Passingham, R. E. Anatomy of motor learning. II. Subcortical structures and learning by trial and error. J. Neurophysiol. 77, 1325–1337 (1997).

    CAS  PubMed  Google Scholar 

  123. Passingham, R. E., Stephan, K. E. & Kotter, R. The anatomical basis of functional localization in the cortex. Nature Rev. Neurosci. 3, 606–616 (2002).

    CAS  Google Scholar 

  124. Leiner, H. C., Leiner, A. L. & Dow, R. S. Cognitive and language functions of the human cerebellum. Trends Neurosci. 16, 444–447 (1993).

    CAS  PubMed  Google Scholar 

  125. Leiner, H. C., Leiner, A. L. & Dow, R. S. Does the cerebellum contribute to mental skills? Behav. Neurosci. 100, 443–454 (1986). These authors were among the first to propose a role for the cerebellum in functions that are unrelated to motor control.

    CAS  PubMed  Google Scholar 

  126. Schmahmann, J. D. & Pandya, D. N. The cerebrocerebellar system. Int. Rev. Neurobiol. 4131–4160 (1997).

  127. Wallis, J. D., Anderson, K. C. & Miller, E. K. Single neurons in prefrontal cortex encode abstract rules. Nature 411, 953–956 (2001).

    CAS  PubMed  Google Scholar 

  128. Miller, E. K. The prefrontal cortex and cognitive control. Nature Rev. Neurosci. 1, 59–65 (2000).

    CAS  Google Scholar 

  129. Leiner, H. C. & Leiner, A. L. How fibers subserve computing capabilities: similarities between brains and machines. Int. Rev. Neurobiol. 41, 535–553 (1997).

    CAS  PubMed  Google Scholar 

  130. Morissette, J. & Bower, J. M. Contribution of somatosensory cortex to responses in the rat cerebellar granule cell layer following peripheral tactile stimulation. Exp. Brain. Res. 109, 240–250 (1996).

    CAS  PubMed  Google Scholar 

  131. Lorenzo, D., Velluti, J. C., Crispino, L. & Velluti, R. Cerebellar sensory functions. Exp. Neurol. 55, 629–636 (1977).

    CAS  PubMed  Google Scholar 

  132. Schmahmann, J. D. & Sherman, J. C. The cerebellar cognitive affective syndrome. Brain 121, 561–579 (1998).

    PubMed  Google Scholar 

  133. Andreasen, N. C., Paradiso, S. & O'Leary, D. S. 'Cognitive dysmetria' as an integrative theory of schizophrenia: a dysfunction in cortical-subcortical-cerebellar circuitry? Schizophr. Bull. 24, 203–218 (1998).

    CAS  PubMed  Google Scholar 

  134. Greger, B., Norris, S. A. & Thach, W. T. Spike firing in the lateral cerebellar cortex correlated with movement and motor parameters irrespective of the effector limb. J. Neurophysiol. 91, 576–582 (2004).

    PubMed  Google Scholar 

  135. Parsons, L. M. & Fox, P. T. Sensory and cognitive functions. Int. Rev. Neurobiol. 41, 255–271 (1997).

    CAS  PubMed  Google Scholar 

  136. Fiez, J. A., Raichle, M. E., Balota, D. A., Tallal, P. & Petersen, S. E. PET activation of posterior temporal regions during auditory word presentation and verb generation. Cereb. Cortex 6, 1–10 (1996).

    CAS  PubMed  Google Scholar 

  137. Ramnani, N., Elliott, R., Athwal, B. S. & Passingham, R. E. Prediction error for free monetary reward in the human prefrontal cortex. Neuroimage 23, 777–786 (2004).

    CAS  PubMed  Google Scholar 

  138. Fiez, J. A. Cerebellar contributions to cognition. Neuron 16, 13–15 (1996).

    CAS  PubMed  Google Scholar 

  139. Awh, E. et al. DIssociation of storage and rehearsal in verbal working memory: evidence from positron emission tomography. Psychol. Sci. 255, 556–559 (1996).

    Google Scholar 

  140. Desmond, J. E., Gabrieli, J. D., Wagner, A. D., Ginier, B. L. & Glover, G. H. Lobular patterns of cerebellar activation in verbal working-memory and finger-tapping tasks as revealed by functional MRI. J. Neurosci. 17, 9675–9685 (1997).

    CAS  PubMed  Google Scholar 

  141. Chen, S. H. & Desmond, J. E. Temporal dynamics of cerebro-cerebellar network recruitment during a cognitive task. Neuropsychologia 43, 1227–1237 (2005).

    PubMed  Google Scholar 

  142. Jonides, J. et al. Verbal working memory load affects regional brain activation as measured by PET. J. Cogn. Neurosci. 9, 462–475 (1997).

    CAS  PubMed  Google Scholar 

  143. Grasby, P. M. et al. Functional mapping of brain areas implicated in auditory–verbal memory function. Brain 116, 1–20 (1993).

    PubMed  Google Scholar 

  144. Paulesu, E., Frith, C. D. & Frackowiak, R. S. The neural correlates of the verbal component of working memory. Nature 362, 342–345 (1993).

    CAS  PubMed  Google Scholar 

  145. Paulesu, E. et al. Functional MR imaging correlations with positron emission tomography. Initial experience using a cognitive activation paradigm on verbal working memory. Neuroimaging Clin. N. Am. 5, 207–225 (1995).

    CAS  PubMed  Google Scholar 

  146. Ravizza, S. M. et al. Cerebellar damage produces selective deficits in verbal working memory. Brain 129, 306–320 (2006).

    PubMed  Google Scholar 

  147. Justus, T., Ravizza, S. M., Fiez, J. A. & Ivry, R. B. Reduced phonological similarity effects in patients with damage to the cerebellum. Brain Lang. 95, 304–318 (2005).

    PubMed  PubMed Central  Google Scholar 

  148. Jueptner, M. et al. Anatomy of motor learning. I. Frontal cortex and attention to action. J. Neurophysiol. 77, 1313–1324 (1997).

    CAS  PubMed  Google Scholar 

  149. Kandel, E. R., Schwartz, J. H., Jessell, T. M. Principles of Neuroscience (Elsevier Science, 1991).

    Google Scholar 

  150. Dudai, Y. The Neurobiology of Memory (Oxford Univ. Press, Oxford, 1989).

    Google Scholar 

  151. Schmahmann, J. D. & Pandya, D. N. Prefrontal cortex projections to the basilar pons in rhesus monkey: implications for the cerebellar contribution to higher function. Neurosci. Lett. 199, 175–178 (1995).

    CAS  PubMed  Google Scholar 

  152. Duvernoy, H. M. & Bourgouin, P. The Human Brain: Surface, Three-Dimensional Sectional Anatomy and MRI (Springer, Wein, 1999).

    Google Scholar 

  153. Gray, H. Gray's Anatomy 16th edn (Elsevier, 1994).

    Google Scholar 

Download references

Acknowledgements

I would like to thank R. C. Miall and P. L. Strick for helpful discussions.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Ramnani's homepage

Glossary

Climbing fibres

Axons of inferior olive neurons that extend into the cerebellar cortex and exert a powerful influence on Purkinje cells. One of two main inputs into the cerebellum.

Crus II

This is the area of the macaque monkey cerebellar cortex that is most heavily interconnected with the area 46 of the prefrontal cortex.

Cerebral peduncle

All cortical projections that send fibres to the pontine nuclei converge into this white matter fibre bundle before synapsing with pontine neurons. This is a convenient location at which to study the organization of cortico-pontine projections using diffusion tensor imaging.

Efference copy

Information processing might require that information exchanged between two systems is monitored by a third system (as in the case of systems that incorporate control theoretic internal models). Therefore, whenever such information is exchanged, an exact copy (an efference copy) is additionally transmitted to the monitor.

Diaschesis

A condition in which lesions not only impair information processing at the site of the lesion, but also adversely affect the information processing in connected downstream pathways. Therefore, the behavioural effects of lesions might at least in part be due to the impaired physiology of such areas rather than the direct effects of the lesion.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ramnani, N. The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci 7, 511–522 (2006). https://doi.org/10.1038/nrn1953

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1953

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing