The therapeutic potential of neural stem cells

Abstract

Recent evidence shows that transplantation of neural stem/precursor cells may protect the central nervous system from inflammatory damage through a 'bystander' mechanism that is alternative to cell replacement. This novel mechanism, which might improve the success of transplantation procedures, is exerted by undifferentiated neural stem cells, the functional characteristics of which are regulated by important stem cell regulators released by CNS-resident and blood-borne inflammatory cells. Here, we discuss this alternative bystander mechanism in the context of the atypical ectopic perivascular niche. We propose that it is the most challenging example of reciprocal therapeutic crosstalk between the inflamed CNS and systemically transplanted neural stem cells.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Cytoarchitecture of the niche(s) in the subventricular zone of the healthy and chronically inflamed adult brain.
Figure 2: Adult neural stem/precursor cells recapitulate lymphocyte-like pathways for selective homing into inflamed areas of the CNS after intravenous injection.
Figure 3: Reconstitution of the endogenous stem cell compartment via the atypical ectopic (perivascular) niche.

References

  1. 1

    Temple, S. The development of neural stem cells. Nature 414, 112–117 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. 2

    Gage, F. H. Mammalian neural stem cells. Science 287, 1433–1438 (2000).

    Article  CAS  Google Scholar 

  3. 3

    Ivanova, N. B. et al. A stem cell molecular signature. Science 298, 601–604 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Altman, J. & Das, G. D. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J. Comp. Neurol. 124, 319–335 (1965).

    Article  CAS  Google Scholar 

  5. 5

    Altman, J. Autoradiographic and histological studies of postnatal neurogenesis. 3. Dating the time of production and onset of differentiation of cerebellar microneurons in rats. J. Comp. Neurol. 136, 269–293 (1969).

    Article  CAS  PubMed  Google Scholar 

  6. 6

    Doetsch, F. A niche for adult neural stem cells. Curr. Opin. Genet. Dev. 13, 543–550 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. 7

    Alvarez-Buylla, A. & Lim, D. A. For the long run: maintaining germinal niches in the adult brain. Neuron 41, 683–686 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Garcia, A. D., Doan, N. B., Imura, T., Bush, T. G. & Sofroniew, M. V. GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nature Neurosci. 7, 1233–1241 (2004).

    Article  CAS  Google Scholar 

  9. 9

    Merkle, F. T., Tramontin, A. D., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Radial glia give rise to adult neural stem cells in the subventricular zone. Proc. Natl Acad. Sci. USA 101, 17528–17532 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. 10

    Doetsch, F., Caille, I., Lim, D. A., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. 11

    Gage, F. H., Kempermann, G., Palmer, T. D., Peterson, D. A. & Ray, J. Multipotent progenitor cells in the adult dentate gyrus. J. Neurobiol. 36, 249–266 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. 12

    Pluchino, S., Zanotti, L., Deleidi, M. & Martino, G. Neural stem cells and their use as therapeutic tool in neurological disorders. Brain Res. Brain Res. Rev. 48, 211–219 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. 13

    Vescovi, A. L. & Snyder, E. Y. Establishment and properties of neural stem cell clones: plasticity in vitro and in vivo. Brain Pathol. 9, 569–598 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. 14

    Ming, G. L. & Song, H. Adult neurogenesis in the mammalian central nervous system. Annu. Rev. Neurosci. 28, 223–250 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. 15

    Zhang, R. L., Zhang, Z. G. & Chopp, M. Neurogenesis in the adult ischemic brain: generation, migration, survival, and restorative therapy. Neuroscientist 11, 408–416 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. 16

    Brundin, L., Brismar, H., Danilov, A. I., Olsson, T. & Johansson, C. B. Neural stem cells: a potential source for remyelination in neuroinflammatory disease. Brain Pathol. 13, 322–328 (2003).

    Article  PubMed  Google Scholar 

  17. 17

    Picard-Riera, N. et al. Experimental autoimmune encephalomyelitis mobilizes neural progenitors from the subventricular zone to undergo oligodendrogenesis in adult mice. Proc. Natl Acad. Sci. USA 99, 13211–13216 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Yagita, Y. et al. Neurogenesis by progenitor cells in the ischemic adult rat hippocampus. Stroke 32, 1890–1896 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. 19

    Tureyen, K., Vemuganti, R., Sailor, K. A., Bowen, K. K. & Dempsey, R. J. Transient focal cerebral ischemia-induced neurogenesis in the dentate gyrus of the adult mouse. J. Neurosurg. 101, 799–805 (2004).

    Article  PubMed  Google Scholar 

  20. 20

    Zhang, R. et al. Stroke transiently increases subventricular zone cell division from asymmetric to symmetric and increases neuronal differentiation in the adult rat. J. Neurosci. 24, 5810–5815 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. 21

    Carmichael, S. T. Gene expression changes after focal stroke, traumatic brain and spinal cord injuries. Curr. Opin. Neurol. 16, 699–704 (2003).

    Article  PubMed  Google Scholar 

  22. 22

    Haas, S., Weidner, N. & Winkler, J. Adult stem cell therapy in stroke. Curr. Opin. Neurol. 18, 59–64 (2005).

    Article  PubMed  Google Scholar 

  23. 23

    Lim, D. A. et al. Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 28, 713–726 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. 24

    Butovsky, O. et al. Microglia activated by IL-4 or IFN-γ differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol. Cell. Neurosci. 31, 149–160 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. 25

    Monje, M. L., Toda, H. & Palmer, T. D. Inflammatory blockade restores adult hippocampal neurogenesis. Science 302, 1760–1765 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Vallieres, L., Campbell, I. L., Gage, F. H. & Sawchenko, P. E. Reduced hippocampal neurogenesis in adult transgenic mice with chronic astrocytic production of interleukin-6. J. Neurosci. 22, 486–492 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. 27

    Pluchino, S. et al. Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature 436, 266–271 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Jessell, T. M. & Dodd, J. Floor plate-derived signals and the control of neural cell pattern in vertebrates. Harvey Lect. 86, 87–128 (1990).

    PubMed  Google Scholar 

  29. 29

    Seifert, T., Bauer, J., Weissert, R., Fazekas, F. & Storch, M. K. Differential expression of sonic hedgehog immunoreactivity during lesion evolution in autoimmune encephalomyelitis. J. Neuropathol. Exp. Neurol. 64, 404–411 (2005).

    Article  PubMed  Google Scholar 

  30. 30

    Irvin, D. K., Nakano, I., Paucar, A. & Kornblum, H. I. Patterns of Jagged1, Jagged2, Delta-like 1 and Delta-like 3 expression during late embryonic and postnatal brain development suggest multiple functional roles in progenitors and differentiated cells. J. Neurosci. Res. 75, 330–343 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. 31

    John, G. R. et al. Multiple sclerosis: re-expression of a developmental pathway that restricts oligodendrocyte maturation. Nature Med. 8, 1115–1121 (2002).

    Article  CAS  Google Scholar 

  32. 32

    Stidworthy, M. F. et al. Notch1 and Jagged1 are expressed after CNS demyelination, but are not a major rate-determining factor during remyelination. Brain 127, 1928–1941 (2004).

    Article  PubMed  Google Scholar 

  33. 33

    Ziv, Y. et al. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nature Neurosci. 9, 268–275 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. 34

    Goldman, S. Stem and progenitor cell-based therapy of the human central nervous system. Nature Biotechnol. 23, 862–871 (2005).

    Article  CAS  Google Scholar 

  35. 35

    Goldman, S. A. Directed mobilization of endogenous neural progenitor cells: the intersection of stem cell biology and gene therapy. Curr. Opin. Mol. Ther. 6, 466–472 (2004).

    PubMed  Google Scholar 

  36. 36

    Arlotta, P., Magavi, S. S. & Macklis, J. D. Induction of adult neurogenesis: molecular manipulation of neural precursors in situ. Ann. NY Acad. Sci. 991, 229–236 (2003).

    Article  PubMed  Google Scholar 

  37. 37

    Emsley, J. G., Mitchell, B. D., Kempermann, G. & Macklis, J. D. Adult neurogenesis and repair of the adult CNS with neural progenitors, precursors, and stem cells. Prog. Neurobiol. 75, 321–341 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Vogel, G. Cell biology. Ready or not? Human ES cells head toward the clinic. Science 308, 1534–1538 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. 39

    Levenstein, M. E. et al. Basic fibroblast growth factor support of human embryonic stem cell self-renewal. Stem Cells 24, 568–574 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. 40

    Ludwig, T. E. et al. Derivation of human embryonic stem cells in defined conditions. Nature Biotechnol. 185–187 (2006).

  41. 41

    Galli, R., Gritti, A., Bonfanti, L. & Vescovi, A. L. Neural stem cells: an overview. Circ. Res. 92, 598–608 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. 42

    Aboody, K. S. et al. Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc. Natl Acad. Sci. USA 97, 12846–12851 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Müller, F. J., Snyder, E. Y. & Loring, J. F. Gene therapy: can neural stem cells deliver? Nature Rev. Neurosci. 7, 75–84 (2006).

    Article  CAS  Google Scholar 

  44. 44

    Pluchino, S. et al. Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature 422, 688–694 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Einstein, O. et al. Intraventricular transplantation of neural precursor cell spheres attenuates acute experimental allergic encephalomyelitis. Mol. Cell. Neurosci. 24, 1074–1082 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. 46

    Jeong, S. W. et al. Human neural stem cell transplantation promotes functional recovery in rats with experimental intracerebral hemorrhage. Stroke 34, 2258–2263 (2003).

    Article  PubMed  Google Scholar 

  47. 47

    Chu, K., Kim, M., Jeong, S. W., Kim, S. U. & Yoon, B. W. Human neural stem cells can migrate, differentiate, and integrate after intravenous transplantation in adult rats with transient forebrain ischemia. Neurosci. Lett. 343, 129–133 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. 48

    Fujiwara, Y. et al. Intravenously injected neural progenitor cells of transgenic rats can migrate to the injured spinal cord and differentiate into neurons, astrocytes and oligodendrocytes. Neurosci. Lett. 366, 287–291 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. 49

    Chu, K. et al. Human neural stem cell transplantation reduces spontaneous recurrent seizures following pilocarpine-induced status epilepticus in adult rats. Brain Res. 1023, 213–221 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. 50

    Ransohoff, R. M. The chemokine system in neuroinflammation: an update. J. Infect. Dis. 186 (Suppl. 2), S152–S156 (2002).

    Article  CAS  Google Scholar 

  51. 51

    Ben-Hur, T. et al. Transplanted multipotential neural precursor cells migrate into the inflamed white matter in response to experimental autoimmune encephalomyelitis. Glia 41, 73–80 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  52. 52

    Campos, L. S., Decker, L., Taylor, V. & Skarnes, W. Notch, epidermal growth factor receptor, and β1-integrin pathways are coordinated in neural stem cells. J. Biol. Chem. 281, 5300–5309 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. 53

    Campos, L. S. et al. β1 integrins activate a MAPK signalling pathway in neural stem cells that contributes to their maintenance. Development 131, 3433–3444 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. 54

    Leone, D. P. et al. Regulation of neural progenitor proliferation and survival by β1 integrins. J. Cell Sci. 118, 2589–2599 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. 55

    Imitola, J. et al. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1α/CXC chemokine receptor 4 pathway. Proc. Natl Acad. Sci. USA 101, 18117–18122 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Ji, J. F., He, B. P., Dheen, S. T. & Tay, S. S. Expression of chemokine receptors CXCR4, CCR2, CCR5 and CX3CR1 in neural progenitor cells isolated from the subventricular zone of the adult rat brain. Neurosci. Lett. 355, 236–240 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Pluchino, S., Furlan, R. & Martino, G. Cell-based remyelinating therapies in multiple sclerosis: evidence from experimental studies. Curr. Opin. Neurol. 17, 247–255 (2004).

    Article  PubMed  Google Scholar 

  58. 58

    Rafuse, V. F., Soundararajan, P., Leopold, C. & Robertson, H. A. Neuroprotective properties of cultured neural progenitor cells are associated with the production of sonic hedgehog. Neuroscience 131, 899–916 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. 59

    Richardson, R. M., Broaddus, W. C., Holloway, K. L. & Fillmore, H. L. Grafts of adult subependymal zone neuronal progenitor cells rescue hemiparkinsonian behavioral decline. Brain Res. 1032, 11–22 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. 60

    Ourednik, J., Ourednik, V., Lynch, W. P., Schachner, M. & Snyder, E. Y. Neural stem cells display an inherent mechanism for rescuing dysfunctional neurons. Nature Biotechnol. 20, 1103–1110 (2002).

    Article  CAS  Google Scholar 

  61. 61

    Ryu, J. K. et al. Proactive transplantation of human neural stem cells prevents degeneration of striatal neurons in a rat model of Huntington disease. Neurobiol. Dis. 16, 68–77 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. 62

    McBride, J. L. et al. Human neural stem cell transplants improve motor function in a rat model of Huntington's disease. J. Comp. Neurol. 475, 211–219 (2004).

    Article  PubMed  Google Scholar 

  63. 63

    Tang, Z., Yu, Y., Guo, H. & Zhou, J. Induction of tyrosine hydroxylase expression in rat fetal striatal precursor cells following transplantation. Neurosci. Lett. 324, 13–16 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. 64

    Hofstetter, C. P. et al. Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome. Nature Neurosci. 8, 346–353 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Chu, K. et al. Human neural stem cells improve sensorimotor deficits in the adult rat brain with experimental focal ischemia. Brain Res. 1016, 145–153 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. 66

    Cummings, B. J. et al. Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proc. Natl Acad. Sci. USA 102, 14069–14074 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. 67

    Lu, P., Jones, L. L., Snyder, E. Y. & Tuszynski, M. H. Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp. Neurol. 181, 115–129 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. 68

    Teng, Y. D. et al. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc. Natl Acad. Sci. USA 99, 3024–3029 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. 69

    Heine, W., Conant, K., Griffin, J. W. & Hoke, A. Transplanted neural stem cells promote axonal regeneration through chronically denervated peripheral nerves. Exp. Neurol. 189, 231–240 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. 70

    Kelly, S. et al. Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex. Proc. Natl Acad. Sci. USA 101, 11839–11844 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Park, K. I., Teng, Y. D. & Snyder, E. Y. The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue. Nature Biotechnol. 20, 1111–1117 (2002).

    Article  CAS  Google Scholar 

  72. 72

    Hakuba, N. et al. Neural stem cells suppress the hearing threshold shift caused by cochlear ischemia. Neuroreport 16, 1545–1549 (2005).

    PubMed  Google Scholar 

  73. 73

    Mellough, C. B. et al. Fate of multipotent neural precursor cells transplanted into mouse retina selectively depleted of retinal ganglion cells. Exp. Neurol. 186, 6–19 (2004).

    Article  PubMed  Google Scholar 

  74. 74

    Micci, M. A. et al. Neural stem cell transplantation in the stomach rescues gastric function in neuronal nitric oxide synthase-deficient mice. Gastroenterology 129, 1817–1824 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. 75

    Li, L. & Xie, T. Stem cell niche: structure and function. Annu. Rev. Cell Dev. Biol. 21, 605–631 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. 76

    Zappia, E. et al. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T cell anergy. Blood 106, 1755–1761 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. 77

    Corcione, A. et al. Human mesenchymal stem cells modulate B-cell functions. Blood 107, 367–372 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. 78

    Weiss, S. et al. Is there a neural stem cell in the mammalian forebrain? Trends. Neurosci. 19, 387–393 (1996).

    Article  CAS  PubMed  Google Scholar 

  79. 79

    Laywell, E. D., Rakic, P., Kukekov, V. G., Holland, E. C. & Steindler, D. A. Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc. Natl Acad. Sci. USA 97, 13883–13888 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. 80

    Palmer, T. D., Willhoite, A. R. & Gage, F. H. Vascular niche for adult hippocampal neurogenesis. J. Comp. Neurol. 425, 479–494 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Seri, B., Garcia-Verdugo, J. M., McEwen, B. S. & Alvarez-Buylla, A. Astrocytes give rise to new neurons in the adult mammalian hippocampus. J. Neurosci. 21, 7153–7160 (2001).

    Article  CAS  Google Scholar 

  82. 82

    Mercier, F., Kitasako, J. T. & Hatton, G. I. Anatomy of the brain neurogenic zones revisited: fractones and the fibroblast/macrophage network. J. Comp. Neurol. 451, 170–188 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  83. 83

    Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Martin, G. R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl Acad. Sci. USA 78, 7634–7638 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Thomson, J. A. et al. Isolation of a primate embryonic stem cell line. Proc. Natl Acad. Sci. USA 92, 7844–7848 (1995).

    Article  CAS  PubMed  Google Scholar 

  86. 86

    Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  CAS  Google Scholar 

  87. 87

    Suda, Y., Suzuki, M., Ikawa, Y. & Aizawa, S. Mouse embryonic stem cells exhibit indefinite proliferative potential. J. Cell Physiol. 133, 197–201 (1987).

    Article  CAS  PubMed  Google Scholar 

  88. 88

    Conti, L. et al. Niche-independent symmetrical self-renewal of a mammalian tissue stem cell. PLoS Biol. 3, e283 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. 89

    Zhang, S. C., Wernig, M., Duncan, I. D., Brustle, O. & Thomson, J. A. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nature Biotechnol. 19, 1129–1133 (2001).

    Article  CAS  Google Scholar 

  90. 90

    Reubinoff, B. E. et al. Neural progenitors from human embryonic stem cells. Nature Biotechnol. 19, 1134–1140 (2001).

    Article  CAS  Google Scholar 

  91. 91

    Hayashi, J. et al. Primate embryonic stem cell-derived neuronal progenitors transplanted into ischemic brain. J. Cereb. Blood Flow Metab. 4 Jan 2006 (doi: 10.1038/sj.jcbfm.9600247).

  92. 92

    Brustle, O. et al. Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 285, 754–756 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. 93

    Keirstead, H. S. et al. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J. Neurosci. 25, 4694–4705 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. 94

    McDonald, J. W. et al. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nature Med. 5, 1410–1412 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. 95

    Bjorklund, L. M. et al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc. Natl Acad. Sci. USA 99, 2344–2349 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. 96

    Sanchez-Pernaute, R. et al. Long-term survival of dopamine neurons derived from parthenogenetic primate embryonic stem cells (cyno-1) after transplantation. Stem Cells 23, 914–922 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  97. 97

    Ostenfeld, T. et al. Human neural precursor cells express low levels of telomerase in vitro and show diminishing cell proliferation with extensive axonal outgrowth following transplantation. Exp. Neurol. 164, 215–226 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. 98

    Riess, P. et al. Transplanted neural stem cells survive, differentiate, and improve neurological motor function after experimental traumatic brain injury. Neurosurgery 51, 1043–1052 (2002).

    PubMed  Google Scholar 

  99. 99

    Jiang, Y. et al. Neuroectodermal differentiation from mouse multipotent adult progenitor cells. Proc. Natl Acad. Sci. USA 100 (Suppl. 1), 11854–11860 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. 100

    Suzuki, H. et al. Neurospheres induced from bone marrow stromal cells are multipotent for differentiation into neuron, astrocyte, and oligodendrocyte phenotypes. Biochem. Biophys. Res. Commun. 322, 918–922 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. 101

    Kogler, G. et al. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J. Exp. Med. 200, 123–135 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  102. 102

    Joannides, A. et al. Efficient generation of neural precursors from adult human skin: astrocytes promote neurogenesis from skin-derived stem cells. Lancet 364, 172–178 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. 103

    Safford, K. M., Safford, S. D., Gimble, J. M., Shetty, A. K. & Rice, H. E. Characterization of neuronal/glial differentiation of murine adipose-derived adult stromal cells. Exp. Neurol. 187, 319–328 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. 104

    Safford, K. M. et al. Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem. Biophys. Res. Commun. 294, 371–379 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. 105

    Doetsch, F., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J. Neurosci. 17, 5046–5061 (1997).

    Article  CAS  PubMed  Google Scholar 

  106. 106

    Sanai, N. et al. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427, 740–744 (2004).

    Article  CAS  Google Scholar 

  107. 107

    Quinones-Hinojosa, A. et al. Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells. J. Comp. Neurol. 494, 415–434 (2006).

    Article  PubMed  Google Scholar 

  108. 108

    Adams, C. W., Abdulla, Y. H., Torres, E. M. & Poston, R. N. Periventricular lesions in multiple sclerosis: their perivenous origin and relationship to granular ependymitis. Neuropathol. Appl. Neurobiol. 13, 141–152 (1987).

    Article  CAS  PubMed  Google Scholar 

  109. 109

    Butcher, E. C. Leukocyte–endothelial cell recognition: three (or more) steps to specificity and diversity. Cell 67, 1033–1036 (1991).

    Article  CAS  PubMed  Google Scholar 

  110. 110

    Finley, M. F., Devata, S. & Huettner, J. E. BMP-4 inhibits neural differentiation of murine embryonic stem cells. J. Neurobiol. 40, 271–287 (1999).

    Article  CAS  PubMed  Google Scholar 

  111. 111

    Tanigaki, K. et al. Notch1 and Notch3 instructively restrict bFGF-responsive multipotent neural progenitor cells to an astroglial fate. Neuron 29, 45–55 (2001).

    Article  CAS  Google Scholar 

  112. 112

    Liem, K. F. Jr, Jessell, T. M. & Briscoe, J. Regulation of the neural patterning activity of sonic hedgehog by secreted BMP inhibitors expressed by notochord and somites. Development 127, 4855–4866 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113

    Rowitch, D. H. et al. Sonic hedgehog regulates proliferation and inhibits differentiation of CNS precursor cells. J. Neurosci. 19, 8954–8965 (1999).

    Article  CAS  PubMed  Google Scholar 

  114. 114

    Lai, K., Kaspar, B. K., Gage, F. H. & Schaffer, D. V. Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nature Neurosci. 6, 21–27 (2003).

    Article  CAS  Google Scholar 

  115. 115

    Machold, R. et al. Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron 39, 937–950 (2003).

    Article  CAS  Google Scholar 

  116. 116

    Chen, J., Leong, S. Y. & Schachner, M. Differential expression of cell fate determinants in neurons and glial cells of adult mouse spinal cord after compression injury. Eur. J. Neurosci. 22, 1895–1906 (2005).

    Article  PubMed  Google Scholar 

  117. 117

    Garcion, E., Halilagic, A., Faissner, A. & ffrench-Constant, C. Generation of an environmental niche for neural stem cell development by the extracellular matrix molecule tenascin C. Development 131, 3423–3432 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. 118

    Jacques, T. S. et al. Neural precursor cell chain migration and division are regulated through different β1 integrins. Development 125, 3167–3177 (1998).

    CAS  PubMed  Google Scholar 

  119. 119

    Pesheva, P., Gloor, S., Schachner, M. & Probstmeier, R. Tenascin-R is an intrinsic autocrine factor for oligodendrocyte differentiation and promotes cell adhesion by a sulfatide-mediated mechanism. J. Neurosci. 17, 4642–4651 (1997).

    Article  CAS  PubMed  Google Scholar 

  120. 120

    Gutowski, N. J., Newcombe, J. & Cuzner, M. L. Tenascin-R and C in multiple sclerosis lesions: relevance to extracellular matrix remodelling. Neuropathol. Appl. Neurobiol. 25, 207–214 (1999).

    Article  CAS  PubMed  Google Scholar 

  121. 121

    Zhang, Y., Winterbottom, J. K., Schachner, M., Lieberman, A. R. & Anderson, P. N. Tenascin-C expression and axonal sprouting following injury to the spinal dorsal columns in the adult rat. J. Neurosci. Res. 49, 433–450 (1997).

    Article  CAS  PubMed  Google Scholar 

  122. 122

    Babcock, A. A., Kuziel, W. A., Rivest, S. & Owens, T. Chemokine expression by glial cells directs leukocytes to sites of axonal injury in the CNS. J. Neurosci. 23, 7922–7930 (2003).

    Article  CAS  Google Scholar 

  123. 123

    Owens, T., Babcock, A. A., Millward, J. M. & Toft-Hansen, H. Cytokine and chemokine inter-regulation in the inflamed or injured CNS. Brain Res. Brain Res. Rev. 48, 178–184 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. 124

    Krathwohl, M. D. & Kaiser, J. L. Chemokines promote quiescence and survival of human neural progenitor cells. Stem Cells 22, 109–118 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. 125

    Reiss, K., Mentlein, R., Sievers, J. & Hartmann, D. Stromal cell-derived factor 1 is secreted by meningeal cells and acts as chemotactic factor on neuronal stem cells of the cerebellar external granular layer. Neuroscience 115, 295–305 (2002).

    Article  CAS  Google Scholar 

  126. 126

    Krumbholz, M. et al. Chemokines in multiple sclerosis: CXCL12 and CXCL13 up-regulation is differentially linked to CNS immune cell recruitment. Brain 129, 200–211 (2006).

    Article  PubMed  Google Scholar 

  127. 127

    Hill, W. D. et al. SDF-1 (CXCL12) is upregulated in the ischemic penumbra following stroke: association with bone marrow cell homing to injury. J. Neuropathol. Exp. Neurol. 63, 84–96 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. 128

    Aloisi, F., Ria, F. & Adorini, L. Regulation of T-cell responses by CNS antigen-presenting cells: different roles for microglia and astrocytes. Immunol. Today 21, 141–147 (2000).

    Article  CAS  PubMed  Google Scholar 

  129. 129

    Storch, A. et al. Long-term proliferation and dopaminergic differentiation of human mesencephalic neural precursor cells. Exp. Neurol. 170, 317–325 (2001).

    Article  CAS  PubMed  Google Scholar 

  130. 130

    Riaz, S. S., Theofilopoulos, S., Jauniaux, E., Stern, G. M. & Bradford, H. F. The differentiation potential of human foetal neuronal progenitor cells in vitro. Brain Res. Dev. Brain Res. 153, 39–51 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. 131

    Barnabe-Heider, F. et al. Evidence that embryonic neurons regulate the onset of cortical gliogenesis via cardiotrophin-1. Neuron 48, 253–265 (2005).

    Article  CAS  PubMed  Google Scholar 

  132. 132

    Ahmed, S., Reynolds, B. A. & Weiss, S. BDNF enhances the differentiation but not the survival of CNS stem cell-derived neuronal precursors. J. Neurosci. 15, 5765–5778 (1995).

    Article  CAS  PubMed  Google Scholar 

  133. 133

    Kerschensteiner, M. et al. Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? J. Exp. Med. 189, 865–870 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. 134

    Schulte-Herbruggen, O. et al. Tumor necrosis factor-α and interleukin-6 regulate secretion of brain-derived neurotrophic factor in human monocytes. J. Neuroimmunol. 160, 204–209 (2005).

    Article  CAS  PubMed  Google Scholar 

  135. 135

    Batchelor, P. E. et al. Activated macrophages and microglia induce dopaminergic sprouting in the injured striatum and express brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. J. Neurosci. 19, 1708–1716 (1999).

    Article  CAS  PubMed  Google Scholar 

  136. 136

    Stadelmann, C. et al. BDNF and gp145trkB in multiple sclerosis brain lesions: neuroprotective interactions between immune and neuronal cells? Brain 125, 75–85 (2002).

    Article  PubMed  Google Scholar 

  137. 137

    Emsley, J. G. & Hagg, T. Endogenous and exogenous ciliary neurotrophic factor enhances forebrain neurogenesis in adult mice. Exp. Neurol. 183, 298–310 (2003).

    Article  CAS  PubMed  Google Scholar 

  138. 138

    Albrecht, P. J. et al. Astrocytes produce CNTF during the remyelination phase of viral-induced spinal cord demyelination to stimulate FGF-2 production. Neurobiol. Dis. 13, 89–101 (2003).

    Article  CAS  PubMed  Google Scholar 

  139. 139

    Shingo, T., Sorokan, S. T., Shimazaki, T. & Weiss, S. Erythropoietin regulates the in vitro and in vivo production of neuronal progenitors by mammalian forebrain neural stem cells. J. Neurosci. 21, 9733–9743 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. 140

    Wang, L. et al. Erythropoietin up-regulates SOCS2 in neuronal progenitor cells derived from SVZ of adult rat. Neuroreport 15, 1225–1229 (2004).

    Article  CAS  PubMed  Google Scholar 

  141. 141

    Bernaudin, M. et al. A potential role for erythropoietin in focal permanent cerebral ischemia in mice. J. Cereb. Blood Flow Metab. 19, 643–651 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. 142

    Roussa, E. & Krieglstein, K. GDNF promotes neuronal differentiation and dopaminergic development of mouse mesencephalic neurospheres. Neurosci. Lett. 361, 52–55 (2004).

    Article  CAS  PubMed  Google Scholar 

  143. 143

    Caggiula, M. et al. Neurotrophic factors in relapsing remitting and secondary progressive multiple sclerosis patients during interferon β therapy. Clin. Immunol. 118, 77–82 (2006).

    Article  CAS  PubMed  Google Scholar 

  144. 144

    Vargas-Leal, V. et al. Expression and function of glial cell line-derived neurotrophic factor family ligands and their receptors on human immune cells. J. Immunol. 175, 2301–2308 (2005).

    Article  CAS  PubMed  Google Scholar 

  145. 145

    Forsberg-Nilsson, K., Behar, T. N., Afrakhte, M., Barker, J. L. & McKay, R. D. Platelet-derived growth factor induces chemotaxis of neuroepithelial stem cells. J. Neurosci. Res. 53, 521–530 (1998).

    Article  CAS  PubMed  Google Scholar 

  146. 146

    Kondo, T. & Raff, M. Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 289, 1754–1757 (2000).

    Article  CAS  PubMed  Google Scholar 

  147. 147

    Erlandsson, A., Enarsson, M. & Forsberg-Nilsson, K. Immature neurons from CNS stem cells proliferate in response to platelet-derived growth factor. J. Neurosci. 21, 3483–3491 (2001).

    Article  CAS  PubMed  Google Scholar 

  148. 148

    Hermanson, M., Olsson, T., Westermark, B. & Funa, K. PDGF and its receptors following facial nerve axotomy in rats: expression in neurons and surrounding glia. Exp. Brain Res. 102, 415–422 (1995).

    Article  CAS  PubMed  Google Scholar 

  149. 149

    Maeda, Y. et al. Platelet-derived growth factor-α receptor-positive oligodendroglia are frequent in multiple sclerosis lesions. Ann. Neurol. 49, 776–785 (2001).

    Article  CAS  PubMed  Google Scholar 

  150. 150

    Galter, D., Bottner, M. & Unsicker, K. Developmental regulation of the serotonergic transmitter phenotype in rostral and caudal raphe neurons by transforming growth factor-βs. J. Neurosci. Res. 56, 531–538 (1999).

    Article  CAS  PubMed  Google Scholar 

  151. 151

    Kiefer, R. et al. Transforming growth factor-β1 in experimental autoimmune neuritis. Cellular localization and time course. Am. J. Pathol. 148, 211–223 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. 152

    Kiefer, R., Schweitzer, T., Jung, S., Toyka, K. V. & Hartung, H. P. Sequential expression of transforming growth factor-β1 by T-cells, macrophages, and microglia in rat spinal cord during autoimmune inflammation. J. Neuropathol. Exp. Neurol. 57, 385–395 (1998).

    Article  CAS  PubMed  Google Scholar 

  153. 153

    Schanzer, A. et al. Direct stimulation of adult neural stem cells in vitro and neurogenesis in vivo by vascular endothelial growth factor. Brain Pathol. 14, 237–248 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  154. 154

    Zhang, H., Vutskits, L., Pepper, M. S. & Kiss, J. Z. VEGF is a chemoattractant for FGF-2-stimulated neural progenitors. J. Cell. Biol. 163, 1375–1384 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. 155

    Schmidt, N. O. et al. Brain tumor tropism of transplanted human neural stem cells is induced by vascular endothelial growth factor. Neoplasia 7, 623–629 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. 156

    Proescholdt, M. A., Jacobson, S., Tresser, N., Oldfield, E. H. & Merrill, M. J. Vascular endothelial growth factor is expressed in multiple sclerosis plaques and can induce inflammatory lesions in experimental allergic encephalomyelitis rats. J. Neuropathol. Exp. Neurol. 61, 914–925 (2002).

    Article  CAS  PubMed  Google Scholar 

  157. 157

    Akiyama, Y. et al. Transplantation of clonal neural precursor cells derived from adult human brain establishes functional peripheral myelin in the rat spinal cord. Exp. Neurol. 167, 27–39 (2001).

    Article  CAS  PubMed  Google Scholar 

  158. 158

    Shear, D. A. et al. Neural progenitor cell transplants promote long-term functional recovery after traumatic brain injury. Brain Res. 1026, 11–22 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. 159

    Wong, A. M., Hodges, H. & Horsburgh, K. Neural stem cell grafts reduce the extent of neuronal damage in a mouse model of global ischaemia. Brain Res. 1063, 140–150 (2005).

    Article  CAS  PubMed  Google Scholar 

  160. 160

    Bjugstad, K. B. et al. Neural stem cells implanted into MPTP-treated monkeys increase the size of endogenous tyrosine hydroxylase-positive cells found in the striatum: a return to control measures. Cell Transplant. 14, 183–192 (2005).

    Article  PubMed  Google Scholar 

  161. 161

    Liker, M. A., Petzinger, G. M., Nixon, K., McNeill, T. & Jakowec, M. W. Human neural stem cell transplantation in the MPTP-lesioned mouse. Brain Res. 971, 168–177 (2003).

    Article  CAS  PubMed  Google Scholar 

  162. 162

    Svendsen, C. N. et al. Long-term survival of human central nervous system progenitor cells transplanted into a rat model of Parkinson's disease. Exp. Neurol. 148, 135–146 (1997).

    Article  CAS  PubMed  Google Scholar 

  163. 163

    Nishino, H. et al. Mesencephalic neural stem (progenitor) cells develop to dopaminergic neurons more strongly in dopamine-depleted striatum than in intact striatum. Exp. Neurol. 164, 209–214 (2000).

    Article  CAS  PubMed  Google Scholar 

  164. 164

    Yoshida, N. et al. Decrease in expression of α5β1 integrin during neuronal differentiation of cortical progenitor cells. Exp. Cell Res. 287, 262–271 (2003).

    Article  CAS  PubMed  Google Scholar 

  165. 165

    Widera, D. et al. MCP-1 induces migration of adult neural stem cells. Eur. J. Cell Biol. 83, 381–387 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. 166

    Liu, Y. et al. CD44 expression identifies astrocyte-restricted precursor cells. Dev. Biol. 276, 31–46 (2004).

    Article  CAS  PubMed  Google Scholar 

  167. 167

    Barral-Moran, M. J. et al. Oligodendrocyte progenitor migration in response to injury of glial monolayers requires the polysialic neural cell-adhesion molecule. J. Neurosci. Res. 72, 679–690 (2003).

    Article  CAS  PubMed  Google Scholar 

  168. 168

    Franceschini, I. et al. Migrating and myelinating potential of neural precursors engineered to overexpress PSA-NCAM. Mol. Cell. Neurosci. 27, 151–162 (2004).

    Article  CAS  PubMed  Google Scholar 

  169. 169

    Spassky, N. et al. Directional guidance of oligodendroglial migration by class 3 semaphorins and netrin-1. J. Neurosci. 22, 5992–6004 (2002).

    Article  CAS  PubMed  Google Scholar 

  170. 170

    Sheppard, A. M., McQuillan, J. J., Iademarco, M. F. & Dean, D. C. Control of vascular cell adhesion molecule-1 gene promoter activity during neural differentiation. J. Biol. Chem. 270, 3710–3719 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank L. Politi for providing human and mouse MRI images. We are grateful to F. Mavilio for critical discussions about the manuscript. This work was supported in part by the Italian Ministry of Health, the Italian Multiple Sclerosis Foundation (FISM), the National Multiple Sclerosis Society (NMSS) and The Myelin Project.

Author information

Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

OMIM

Hungtington's disease

Multiple sclerosis

Parkinson's disease

FURTHER INFORMATION

Martino's homepage

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Martino, G., Pluchino, S. The therapeutic potential of neural stem cells. Nat Rev Neurosci 7, 395–406 (2006). https://doi.org/10.1038/nrn1908

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing