Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Neuroscience and education: from research to practice?

Abstract

Cognitive neuroscience is making rapid strides in areas highly relevant to education. However, there is a gulf between current science and direct classroom applications. Most scientists would argue that filling the gulf is premature. Nevertheless, at present, teachers are at the receiving end of numerous 'brain-based learning' packages. Some of these contain alarming amounts of misinformation, yet such packages are being used in many schools. What, if anything, can neuroscientists do to help good neuroscience into education?

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Brain areas involved in typical reading development and dyslexia measured with functional MRI.
Figure 2: Electrophysiological recordings of activity during number processing tasks in children and adults.
Figure 3: Neural activity during imitation and observation of emotional expressions for typically developing children and children with autism spectrum disorders.

References

  1. 1

    Economic and Social Research Council Teaching and Learning Research Programme (ESRC TLRP) seminar series. Collaborative Frameworks for Neuroscience and Education. [online], Education and Brain Research: Neuroscience, Teaching and Learning conference. 25–27 July 2005, Faculty of Education, University of Cambridge, UK.

  2. 2

    Stern, E. Pedagogy meets neuroscience. Science 310, 745 (2005).

    CAS  Article  Google Scholar 

  3. 3

    Smith, A. Accelerated Learning in the Classroom (Network Educational Press Ltd, Bodmin, UK, 1996).

    Google Scholar 

  4. 4

    Cohen, I. & Goldsmith, M. Hands On: How to Use Brain GymR in the Classroom (Hands On Books, Sea Point, South Africa, 2000).

    Google Scholar 

  5. 5

    Hoffman, E. Introducing Children to their Amazing Brains (LTL Books Ltd, Middlewich, UK, 2002).

    Google Scholar 

  6. 6

    Organisation for Economic Co-operation and Development. Understanding the Brain: Towards a New Learning Science (2002).

  7. 7

    Bruer, J. T. Education and the brain: a bridge too far. Educ. Res. 26, 4–16 (1997).

    Article  Google Scholar 

  8. 8

    Blakemore, S. J. & Frith, U. The Learning Brain: Lessons for Education (Blackwell, Oxford, UK, 2005).

    Google Scholar 

  9. 9

    Byrnes, J. P. Minds, Brains and Learning (Guilford Press, New York, 2001).

    Google Scholar 

  10. 10

    Tallal, P. Improving language and literacy is a matter of time. Nature Rev. Neurosci. 5, 721–728 (2004).

    CAS  Article  Google Scholar 

  11. 11

    Fiez, J. A. & Petersen, S. E. Neuroimaging studies of word reading. Proc. Natl Acad. Sci. USA 95, 914–921 (1998).

    CAS  Article  Google Scholar 

  12. 12

    Paulesu, E. et al. Dyslexia: cultural diversity and biological unity. Science 291, 2165–2167 (2001).

    CAS  Article  Google Scholar 

  13. 13

    Siok, W. T., Perfetti, C. A., Jin, Z. & Tan, L. H. Biological abnormality of impaired reading is constrained by culture. Nature 431, 71–76 (2004).

    CAS  Article  Google Scholar 

  14. 14

    Cohen, L. & Dehaene, S. Specialisation within the ventral stream: the case for the visual word form area. Neuroimage 22, 466–476 (2004).

    Article  Google Scholar 

  15. 15

    Dehaene, S. et al. The neural code for written words: a proposal. Trends Cogn. Sci. 9, 335–341 (2005).

    Article  Google Scholar 

  16. 16

    Price, C. J. et al. Cortical localisation of the visual and auditory word form areas: a reconsideration of the evidence. Brain Lang. 86, 272–286 (2003).

    CAS  Article  Google Scholar 

  17. 17

    Goswami, U. & Ziegler, J. C. A developmental perspective on the neural code for written words. Trends Cogn. Sci. (in the press).

  18. 18

    Ziegler, J. & Goswami, U. Reading acquisition, developmental dyslexia, and skilled reading across languages: a psycholinguistic grain size theory. Psychol. Bull. 131, 3–29 (2005).

    Article  Google Scholar 

  19. 19

    Turkeltaub, P., Gareau, L., Flowers, D. L., Zeffiro, T. A. & Eden, G. F. Development of neural mechanisms for reading. Nature Neurosci. 6, 767–773 (2003).

    CAS  Article  Google Scholar 

  20. 20

    Pugh, K. R. et al. Neurobiological studies of reading and reading disability. J. Commun. Disord. 34, 479–492 (2001).

    CAS  Article  Google Scholar 

  21. 21

    Shaywitz, B. A. et al. Disruption of posterior brain systems for reading in children with developmental dyslexia. Biol. Psychiatry 52, 101–110 (2002).

    Article  Google Scholar 

  22. 22

    Temple, E. et al. Neural deficits in children with dyslexia ameliorated by behavioural remediation: evidence from functional fMRI. Proc. Natl Acad. Sci. USA 100, 2860–2865 (2003).

    CAS  Article  Google Scholar 

  23. 23

    Simos, P. G. et al. Dyslexia-specific brain activation profile becomes normal following successful remedial training. Neurology 58, 1203–1213 (2002).

    CAS  Article  Google Scholar 

  24. 24

    Ziegler, J. C. & Goswami, U. Becoming literate in different languages: similar problems, different solutions. Dev. Sci. (in the press).

  25. 25

    Goswami, U. in Mind, Brain and Education (eds Fischer, K. & Batro, A.) (Pontifical Academy of Sciences, Rome, in the press).

  26. 26

    Molfese, D. Predicting dyslexia at 8 years of age using neonatal brain responses. Brain Lang. 72, 238–245 (2000).

    CAS  Article  Google Scholar 

  27. 27

    Goswami, U. Neuroscience and Education. Brit. J. Educ. Psychol. 74, 1–14 (2004).

    Article  Google Scholar 

  28. 28

    Nicolson, R. I. & Fawcett, A. J. Developmental dyslexia: the role of the cerebellum. Dyslexia 5, 155–177 (1999).

    Article  Google Scholar 

  29. 29

    Reynolds, D., Nicolson, R. I. & Hambly, H. Evaluation of an exercise-based treatment for children with reading difficulties. Dyslexia 9, 48–71 (2003).

    Article  Google Scholar 

  30. 30

    Dehaene, S. The Number Sense (Oxford Univ. Press, New York, 1997).

    Google Scholar 

  31. 31

    Dehaene, S., Molko, N., Cohen, L. & Wilson, A. J. Arithmetic and the brain. Curr. Opin. Neurobiol. 14, 218–224 (2004).

    CAS  Article  Google Scholar 

  32. 32

    Pinel, P., Dehaene, S., Riviere, D. & LeBihan, D. Modulation of parietal activation by semantic distance in a number comparison task. Neuroimage 14, 1013–1026 (2001).

    CAS  Article  Google Scholar 

  33. 33

    Dehaene, S., Piazza, M., Pinel, P. & Cohen, L. Three parietal circuits for number processing. Cogn. Neuropsychol. 20, 487–506 (2003).

    Article  Google Scholar 

  34. 34

    Dehaene, S. & Cohen, L. Towards an anatomical and functional model of number processing. Math. Cogn. 1, 83–120 (1995).

    Google Scholar 

  35. 35

    Dehaene, S., Bossini, S. & Giraux, P. The mental representation of parity and numerical magnitude. J. Exp. Psychol. Gen. 122, 371–396 (1993).

    Article  Google Scholar 

  36. 36

    Hubbard, E. M., Piazza, M., Pinel, P. & Dehaene, S. Interactions between number and space in parietal cortex. Nature Rev. Neurosci. 6, 435–448 (2005).

    CAS  Article  Google Scholar 

  37. 37

    Zorzi, M., Priftis, K. & Umilta, C. Brain damage: neglect disrupts the mental number line. Nature 417, 138–139 (2002).

    CAS  Article  Google Scholar 

  38. 38

    Szucs, D. & Csépe, V. The parietal distance effect appears in both the congenitally blind and matched sighted controls in an acoustic number comparison task. Neurosci. Lett. 384, 11–16 (2005).

    CAS  Article  Google Scholar 

  39. 39

    Temple, E. & Posner, M. I. Brain mechanisms of quantity are similar in 5-year-old children and adults. Proc. Natl Acad. Sci. USA 95, 7836–7841 (1998).

    CAS  Article  Google Scholar 

  40. 40

    Bramald, R. Introducing the empty number line: the Dutch approach to teaching number skills. Education 3–13 28, 5–12 (2000).

    Google Scholar 

  41. 41

    Griffin, S. A., Case, R. & Siegler, R. S. in Classroom Lessons: Integrating Cognitive Theory (ed. McGilly, K.) 25–50 (MIT Press, Cambridge, Massachusetts, 1995).

    Google Scholar 

  42. 42

    Kosc, L. Developmental dyscalculia. J. Learn. Disabil. 7, 46–59 (1974).

    Article  Google Scholar 

  43. 43

    Molko, N. et al. Functional and structural alterations of the intraparietal sulcus in a developmental dyscalculia of genetic origin. Neuron 40, 847–858 (2003).

    CAS  Article  Google Scholar 

  44. 44

    Ross, J., Zinn, A. & McCauley, E. Neurodevelopmental and psychosocial aspects of Turner Syndrome. Ment. Retard. Dev. Disabil. Res. Rev. 6, 135–141 (2000).

    CAS  Article  Google Scholar 

  45. 45

    Riviere, D. et al. Automatic recognition of cortical sulci of the human brain using a congregation of neural networks. Med. Image Anal. 6, 77–92 (2002).

    Article  Google Scholar 

  46. 46

    Isaacs, E. B., Edmonds, C. J., Lucas, A. & Gadian, D. G. Calculation difficulties in children of very low birthweight: a neural correlate. Brain 124, 1701–1707 (2001).

    CAS  Article  Google Scholar 

  47. 47

    Posner, M. I. & Rothbart, M. K. Influencing brain networks: implications for education. Trends Cogn. Sci. 9, 99–103 (2005).

    Article  Google Scholar 

  48. 48

    Rueda, M. R., Rothbart, M. K., McCandliss, B. D., Saccomanno, L. & Posner, M. L. Training, maturation and genetic influences on the development of executive attention. Proc. Natl Acad. Sci. USA 102, 14931–14936 (2005).

    CAS  Article  Google Scholar 

  49. 49

    Morris, J. S. et al. A differential neural response in the human amygdala to fearful and happy facial expressions. Nature 383, 812–815 (1996).

    CAS  Article  Google Scholar 

  50. 50

    Schumann, C. M. et al. The amygdala is enlarged in children but not adolescents with autism; the hippocampus is enlarged at all ages. J. Neurosci. 24, 6392–6401 (2004).

    CAS  Article  Google Scholar 

  51. 51

    Dawson, G., Webb, S. J., Carver, L., Panagiotides, H. & McPartland, J. Young children with autism show atypical brain responses to fearful versus neutral facial expressions of emotion. Dev. Sci. 7, 340–359 (2004).

    Article  Google Scholar 

  52. 52

    Carr, L. et al. Neural mechanisms of empathy in humans: a relay from neural systems for imitation to limbic areas. Proc. Natl Acad. Sci. USA 100, 5497–5502 (2003).

    CAS  Article  Google Scholar 

  53. 53

    Dapretto, M. et al. Understanding emotions in others: mirror neuron dysfunction in children with autism spectrum disorders. Nature Neurosci. 9, 28–30 (2006).

    CAS  Article  Google Scholar 

  54. 54

    Schultz, D., Izard, C. E. & Bear, G. Children's emotion processing: relations to emotionality and aggression. Dev. Psychopathol. 16, 371–387 (2004).

    Article  Google Scholar 

  55. 55

    Scott, S., Knapp, M., Henderson, J. & Maughan, B. Financial cost of social exclusion: follow up study of antisocial children into adulthood. Brit. Med. J. 323, 1–5 (2001).

    Article  Google Scholar 

  56. 56

    Golan, O. & Baren-Cohen, S. Systemizing empathy: teaching adults with Asperger syndrome and high functioning autism to recognise complex emotions using interactive media. Dev. Psychopathol. 18, 589–615 (2006).

    Article  Google Scholar 

  57. 57

    Adolphs, R. Neural systems for recognising emotion. Curr. Opin. Neurobiol. 12, 169–177 (2002).

    CAS  Article  Google Scholar 

  58. 58

    Vasa, R. A. et al. Neuroimaging correlates of anxiety after pediatric traumatic brain injury. Biol. Psychiatry 55, 208–216 (2004).

    Article  Google Scholar 

  59. 59

    Rauch, S. L., Shin, L. M. & Wright, C. I. Neuroimaging studies of amygdala function in anxiety disorders. Ann. NY Acad. Sci. 985, 389–410 (2003).

    Article  Google Scholar 

  60. 60

    Muris, P., Merckelbach, H. & Damsma, E. Threat perception bias in nonreferred, socially anxious children. J. Clin. Child Psychol. 29, 348–359 (2000).

    CAS  Article  Google Scholar 

  61. 61

    International Mind, Brain and Education Society [online]

  62. 62

    Mind, Brain and Education Useable Knowledge Conference, 7–8 October 2004, Graduate School of Education, University of Harvard, [online]

  63. 63

    International Mind, Brain and Education Summer School, 16–20 July 2005, Erice, Sicily.

Download references

Author information

Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Learning Sciences and Brain Research

The Centre for Neuroscience in Education

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Goswami, U. Neuroscience and education: from research to practice?. Nat Rev Neurosci 7, 406–413 (2006). https://doi.org/10.1038/nrn1907

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing