The sympathetic control of blood pressure

Key Points

  • There is growing evidence that the CNS contributes to the development and maintenance of many forms of human hypertension. The disease is typically associated with an elevated sympathetic nerve activity (SNA) and is often satisfactorily controlled by sympatholytic drugs.

  • The mechanism by which SNA elevates resting blood pressure (BP) is not completely understood, but is thought to involve a resetting of the renal barostat (relationship between BP and sodium excretion).

  • Several subsets of sympathetic efferent regulate the circulation. The efferents that are most crucial to BP control are tonically active at rest, and their defining property is a powerful feedback inhibition of arterial baroreceptor origin (barosensitive efferents). These sympathetic efferents respond in parallel fashion to many stimuli but can also be differentially regulated according to their visceral target (for example, the heart versus the kidney).

  • Barosensitive efferents are recruited to raise BP and cardiac output in keeping with behaviour, but their mean level of activity at rest probably has the greatest influence on the 24-h average BP level. This basal activity is generated by a network of brainstem and hypothalamic neurons that converge at several crucial nodal points — the nucleus of the solitary tract (NTS), the rostral ventrolateral medulla (RVLM) and the paraventricular nucleus of the hypothalamus (PVH).

  • This network is regulated by somatic and visceral sensory afferents and by blood-borne factors (for example, sodium, oxygen, hormones and cytokines), osmolality and pH. These influence selected populations of neurons via circumventricular organs, transendothelial coupling or by simple diffusion.

  • The RVLM contains adrenergic and other neurons that are the principle source of excitatory drive to the barosensitive sympathetic preganglionic neurons. These neurons have a key role in short-term BP stabilization via the baroreflex, and in coordinating the circulation with respiration.

  • The PVH also regulates the basal activity of barosensitive sympathetic efferents via parvocellular neurons that project to the RVLM, the NTS and the spinal cord. These neurons are especially important in the context of blood volume and regulation of sodium concentrations.

  • Sympathetic nerve hyperactivity is commonly mediated by an elevated discharge of the sympathoexcitatory neurons located in the RVLM and PVH, but the root cause of these changes can be remote. For example, increased SNA and neurogenic hypertension can be caused by dysfunction of sensory afferents, such as chemoreceptors, baroreceptors and renal afferents, inappropriately high concentrations of hormones that regulate blood volume and sodium concentration via the hypothalamus–sympathetic nervous system axis, brainstem hypoxaemia or oxidative stress due to hyperactivity of the brain renin–angiotensin system.

Abstract

Hypertension — the chronic elevation of blood pressure — is a major human health problem. In most cases, the root cause of the disease remains unknown, but there is mounting evidence that many forms of hypertension are initiated and maintained by an elevated sympathetic tone. This review examines how the sympathetic tone to cardiovascular organs is generated, and discusses how elevated sympathetic tone can contribute to hypertension.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: CNS network that regulates the basal sympathetic tone.
Figure 2: Sympathetic tone and hypertension.
Figure 3: The rostral ventrolateral medulla and barosensitive sympathetic efferents.
Figure 4: Organization of the barosensitive rostral ventrolateral medulla projection.
Figure 5: Neuronal and humoral control of the baroreflex.
Figure 6: Sodium, renal sympathetic tone and blood pressure control.

References

  1. 1

    Blessing, W. W. in The Lower Brainstem and Bodily Homeostasis 165–268 (Oxford Univ. Press, New York, 1997). Provides a rare comprehensive and insightful overview of the neural control of circulation with emphasis on the brainstem.

    Google Scholar 

  2. 2

    Loewy, A. D. & Spyer, K. M. Central Regulation of Autonomic Functions (Oxford Univ. Press, New York, 1990).

    Google Scholar 

  3. 3

    Saper, C. B. The central autonomic nervous system: conscious visceral perception and autonomic pattern generation. Annu. Rev. Neurosci. 25, 433–469 (2002). Examines the control of BP in the more general context of the generation of autonomic patterns.

    CAS  PubMed  Google Scholar 

  4. 4

    Morrison, S. F. Central pathways controlling brown adipose tissue thermogenesis. News Physiol. Sci. 19, 67–74 (2004).

    PubMed  Google Scholar 

  5. 5

    Westerhaus, M. J. & Loewy, A. D. Central representation of the sympathetic nervous system in the cerebral cortex. Brain Res. 903, 117–127 (2001).

    CAS  PubMed  Google Scholar 

  6. 6

    Madden, C. J. & Sved, A. F. Cardiovascular regulation after destruction of the C1 cell group of the rostral ventrolateral medulla in rats. Am. J. Physiol. Heart Circ. Physiol. 285, H2734–H2748 (2003).

    CAS  PubMed  Google Scholar 

  7. 7

    Kishi, T. et al. Overexpression of eNOS in the RVLM causes hypotension and bradycardia via GABA release. Hypertension 38, 896–901 (2001). This important paper demonstrates that sustained changes in BP can be produced by altering the activity of relatively few neurons in the RVLM, which is strong evidence that the brain controls the 24-h average BP, presumably through the sympathetic nerves.

    CAS  PubMed  Google Scholar 

  8. 8

    Morimoto, S. et al. Elevated blood pressure in transgenic mice with brain-specific expression of human angiotensinogen driven by the glial fibrillary acidic protein promoter. Circ. Res. 89, 365–372 (2001). Suggests that hypertension can be produced by upregulation of the renin–angiotensin system. This shows that the kidneys and vasculature cannot compensate for a brain defect and, therefore, that these organs cannot be the sole regulators of long-term BP, as is often stated.

    CAS  PubMed  Google Scholar 

  9. 9

    DiBona, G. F. & Kopp, U. C. Neural control of renal function. Physiol. Rev. 77, 75–197 (1997). Comprehensive, analytical review of the neural control of the kidney in health and disease, notably hypertension. The review argues strongly in favour of the role of renal sympathetic nerves in regulating the BP set-point.

    CAS  PubMed  Google Scholar 

  10. 10

    Jacob, F., Clark, L. A., Guzman, P. A. & Osborn, J. W. Role of renal nerves in development of hypertension in DOCA-salt model in rats: a telemetric approach. Am. J. Physiol. Heart Circ. Physiol. 289, H1519–H1529 (2005).

    CAS  PubMed  Google Scholar 

  11. 11

    Cowley, A. W. Jr Long-term control of arterial blood pressure. Physiol. Rev. 72, 231–300 (1992).

    PubMed  Google Scholar 

  12. 12

    Osborn, J. W. Hypothesis: set-points and long-term control of arterial pressure. A theoretical argument for a long-term arterial pressure control system in the brain rather than the kidney. Clin. Exp. Pharmacol. Physiol. 32, 384–393 (2005).

    CAS  PubMed  Google Scholar 

  13. 13

    Guyton, A. C. Blood pressure control — special role of the kidneys and body fluids. Science 252, 1813–1816 (1991). Essential reading to understand how the kidneys contribute to the long-term regulation of BP by adjusting sodium excretion.

    CAS  PubMed  Google Scholar 

  14. 14

    Schlaich, M. P. et al. Sympathetic augmentation in hypertension: role of nerve firing, norepinephrine reuptake, and angiotensin neuromodulation. Hypertension 43, 169–175 (2004).

    CAS  PubMed  Google Scholar 

  15. 15

    Hoffman, B. B. in Goodman and Gilman's The Pharmacological Basis of Therapeutics (eds Brunton, L. L., Lazo, J. S. & Parker, K. L.) 845–868 (McGraw-Hill, New York, 2006).

    Google Scholar 

  16. 16

    Barrett, C. J., Navakatikyan, M. A. & Malpas, S. C. Long-term control of renal blood flow: what is the role of the renal nerves? Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, R1534–R1545 (2001).

    CAS  PubMed  Google Scholar 

  17. 17

    Dampney, R. A. et al. Long-term regulation of arterial blood pressure by hypothalamic nuclei: some critical questions. Clin. Exp. Pharmacol. Physiol. 32, 419–425 (2005).

    CAS  PubMed  Google Scholar 

  18. 18

    Lohmeier, T. E. The sympathetic nervous system and long-term blood pressure regulation. Am. J. Hypertens. 14, S147–S154 (2001).

    Google Scholar 

  19. 19

    Janig, W. & Habler, H. J. Neurophysiological analysis of target-related sympathetic pathways — from animal to human: similarities and differences. Acta Physiol. Scand. 177, 255–274 (2003).

    CAS  PubMed  Google Scholar 

  20. 20

    Blessing, W. W. & Nalivaiko, E. Regional blood flow and nociceptive stimuli in rabbits: patterning by medullary raphe, not ventrolateral medulla. J. Physiol. (Lond.) 524, 279–292 (2000). Indicates that the RVLM is involved to only a slight extent in regulating blood flow to the skin, shaping the current belief that the RVLM selectively regulates the sympathetic efferents that are under arterial baroreceptor control and that the RVLM is important for cardiorespiratory integration and BP control.

    CAS  Google Scholar 

  21. 21

    Vallbo, A. B., Hagbarth, K. E. & Wallin, B. G. Microneurography: how the technique developed and its role in the investigation of the sympathetic nervous system. J. Appl. Physiol. 96, 1262–1269 (2004).

    PubMed  Google Scholar 

  22. 22

    Cao, W. H. & Morrison, S. F. Differential chemoreceptor reflex responses of adrenal preganglionic neurons. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281, R1825–R1832 (2001).

    CAS  PubMed  Google Scholar 

  23. 23

    Dempsey, J. A., Sheel, A. W., St Croix, C. M. & Morgan, B. J. Respiratory influences on sympathetic vasomotor outflow in humans. Respir. Physiol. Neurobiol. 130, 3–20 (2002).

    PubMed  Google Scholar 

  24. 24

    Dampney, R. A. L. et al. Central mechanisms underlying short- and long-term regulation of the cardiovascular system. Clin. Exp. Pharmacol. Physiol. 29, 261–268 (2002).

    CAS  PubMed  Google Scholar 

  25. 25

    Sinoway, L. I. & Li, J. A perspective on the muscle reflex: implications for congestive heart failure. J. Appl. Physiol. 99, 5–22 (2005).

    CAS  PubMed  Google Scholar 

  26. 26

    Guo, Z. L., Lai, H. C. & Longhurst, J. C. Medullary pathways involved in cardiac sympathoexcitatory reflexes in the cat. Brain Res. 925, 55–66 (2002).

    CAS  PubMed  Google Scholar 

  27. 27

    Coote, J. H. A role for the paraventricular nucleus of the hypothalamus in the autonomic control of heart and kidney. Exp. Physiol. 90, 169–173 (2005).

    CAS  PubMed  Google Scholar 

  28. 28

    Ramchandra, R., Barrett, C. J., Guild, S. J. & Malpas, S. C. Evidence of differential control of renal and lumbar sympathetic nerve activity in conscious rabbits. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290, R701–R708 (2006).

    CAS  PubMed  Google Scholar 

  29. 29

    Sved, A. F., Cano, G. & Card, J. P. Neuroanatomical specificity of the circuits controlling sympathetic outflow to different targets. Clin. Exp. Pharmacol. Physiol. 28, 115–119 (2001).

    CAS  PubMed  Google Scholar 

  30. 30

    Guyenet, P. G., Stornetta, R. L., Weston, M. C., McQuiston, T. & Simmons, J. R. Detection of amino acid and peptide transmitters in physiologically identified brainstem cardiorespiratory neurons. Auton. Neurosci. 114, 1–10 (2004).

    CAS  PubMed  Google Scholar 

  31. 31

    Jansen, A. S. P., Nguyen, X. V., Karpitskiy, V., Mettenleiter, T. C. & Loewy, A. D. Central command neurons of the sympathetic nervous system: basis of the fight or flight response. Science 270, 644–646 (1995). Illustrates the use of the pseudorabies virus in tracking the CNS networks that regulate the sympathetic nervous system. This particular paper argues that the RVLM contains neurons that innervate many types of sympathetic efferent, which is a conclusion that goes against a strict organotopic arrangement of RVLM barosensitive neurons.

    CAS  PubMed  Google Scholar 

  32. 32

    Ritter, S., Bugarith, K. & Dinh, T. T. Immunotoxic destruction of distinct catecholamine subgroups produces selective impairment of glucoregulatory responses and neuronal activation. J. Comp. Neurol. 432, 197–216 (2001).

    CAS  PubMed  Google Scholar 

  33. 33

    Hokfelt, T., Fuxe, K., Goldstein, M. & Johansson, O. Immunohistochemical evidence for the existence of adrenaline neurons in the rat brain. Brain Res. 66, 235–251 (1974).

    CAS  Google Scholar 

  34. 34

    Ross, C. A. et al. Tonic vasomotor control by the rostral ventrolateral medulla: effect of electrical or chemical stimulation of the area containing C1 adrenaline neurons on arterial pressure, heart rate, and plasma catecholamines and vasopressin. J. Neurosci. 4, 474–494 (1984). An influential paper that definitively established the pivotal role of the RVLM in controlling BP and gave strong support to the idea that the C1 cells are a crucial component of the network that regulates BP.

    CAS  PubMed  Google Scholar 

  35. 35

    Brown, D. L. & Guyenet, P. G. Electrophysiological study of cardiovascular neurons in the rostral ventrolateral medulla in rats. Circ. Res. 56, 359–369 (1985).

    CAS  PubMed  Google Scholar 

  36. 36

    Guyenet, P. G. & Stornetta, R. L. in Neural Mechanisms of Cardiovascular Regulation (eds Dun, N. J., Machado, B. H. & Pilowsky, P. M.) 187–218 (Kluwer, Boston, Massachusetts, 2004).

    Google Scholar 

  37. 37

    Sun, M. K. Pharmacology of reticulospinal vasomotor neurons in cardiovascular regulation. Pharmacol. Rev. 48, 465–494 (1996).

    CAS  PubMed  Google Scholar 

  38. 38

    Schreihofer, A. M. & Guyenet, P. G. Identification of C1 presympathetic neurons in rat rostral ventrolateral medulla by juxtacellular labeling in vivo. J. Comp. Neurol. 387, 524–536 (1997).

    CAS  PubMed  Google Scholar 

  39. 39

    Schreihofer, A. M., Stornetta, R. L. & Guyenet, P. G. Regulation of sympathetic tone and arterial pressure by rostral ventrolateral medulla after depletion of C1 cells in rat. J. Physiol. (Lond.) 529, 221–236 (2000).

    CAS  Google Scholar 

  40. 40

    Verberne, A. J. M., Stornetta, R. L. & Guyenet, P. G. Properties of C1 and other ventrolateral medullary neurones with hypothalamic projections in the rat. J. Physiol. (Lond.) 517, 477–494 (1999).

    CAS  Google Scholar 

  41. 41

    Ericsson, A., Arias, C. & Sawchenko, P. E. Evidence for an intramedullary prostaglandin-dependent mechanism in the activation of stress-related neuroendocrine circuitry by intravenous interleukin-1. J. Neurosci. 17, 7166–7179 (1997).

    CAS  PubMed  Google Scholar 

  42. 42

    Dampney, R. A. et al. Medullary and supramedullary mechanisms regulating sympathetic vasomotor tone. Acta Physiol. Scand. 177, 209–218 (2003).

    CAS  PubMed  Google Scholar 

  43. 43

    Brooks, V. L., Freeman, K. L. & Clow, K. A. Excitatory amino acids in rostral ventrolateral medulla support blood pressure during water deprivation in rats. Am. J. Physiol. Heart Circ. Physiol. 286, H1642–H1648 (2004).

    CAS  PubMed  Google Scholar 

  44. 44

    Guyenet, P. G. Neural structures that mediate sympathoexcitation during hypoxia. Respir. Physiol. 121, 147–162 (2000).

    CAS  PubMed  Google Scholar 

  45. 45

    Kangrga, I. M. & Loewy, A. D. Whole-cell recordings from visualized C1 adrenergic bulbospinal neurons: ionic mechanisms underlying vasomotor tone. Brain Res. 670, 215–232 (1995). Suggests that the C1 neurons have intrinsic beating properties that are driven, in part, by a persistent sodium current in brain slices. The observation is consistent with the possibility that a portion of the vasomotor tone derives from these intrinsic properties.

    CAS  PubMed  Google Scholar 

  46. 46

    Lipski, J., Kawai, Y., Qi, J., Comer, A. & Win, J. Whole cell patch-clamp study of putative vasomotor neurons isolated from the rostral ventrolateral medulla. Am. J. Physiol. Regul. Integr. Comp. Physiol. 274, R1099–R1110 (1998).

    CAS  Google Scholar 

  47. 47

    Li, Y. W. & Guyenet, P. G. Neuronal excitation by angiotensin II in the rostral ventrolateral medulla of the rat in vitro. Am. J. Physiol. Regul. Integr. Comp. Physiol. 268, R272–R277 (1995).

    CAS  Google Scholar 

  48. 48

    Gomez, R. E. et al. Vasopressinergic mechanisms in the nucleus reticularis lateralis in blood pressure control. Brain Res. 604, 90–105 (1993).

    CAS  PubMed  Google Scholar 

  49. 49

    Milner, T. A., Reis, D. J., Pickel, V. M., Aicher, S. A. & Giuliano, R. Ultrastructural localization and afferent sources of corticotropin-releasing factor in the rat rostral ventrolateral medulla: implications for central cardiovascular regulation. J. Comp. Neurol. 333, 151–167 (1993).

    CAS  PubMed  Google Scholar 

  50. 50

    Allen, A. M. Inhibition of the hypothalamic paraventricular nucleus in spontaneously hypertensive rats dramatically reduces sympathetic vasomotor tone. Hypertension 39, 275–280 (2002).

    CAS  PubMed  Google Scholar 

  51. 51

    Schreihofer, A. M. & Guyenet, P. G. Baroactivated neurons with pulse-modulated activity in the rat caudal ventrolateral medulla express GAD67 mRNA. J. Neurophysiol. 89, 1265–1277 (2003).

    CAS  PubMed  Google Scholar 

  52. 52

    Horiuchi, J. & Dampney, R. A. Evidence for tonic disinhibition of RVLM sympathoexcitatory neurons from the caudal pressor area. Auton. Neurosci. 99, 102–110 (2002).

    CAS  PubMed  Google Scholar 

  53. 53

    Verberne, A. J. M., Sartor, D. M. & Berke, A. Midline medullary depressor responses are mediated by inhibition of RVLM sympathoexcitatory neurons in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 276, R1054–R1062 (1999).

    CAS  Google Scholar 

  54. 54

    Barman, S. M., Gebber, G. L. & Orer, H. S. Medullary lateral tegmental field: an important source of basal sympathetic nerve discharge in the cat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 278, R995–R1004 (2000).

    CAS  PubMed  Google Scholar 

  55. 55

    Makeham, J. M., Goodchild, A. K. & Pilowsky, P. M. NK1 receptor activation in rat rostral ventrolateral medulla selectively attenuates somato-sympathetic reflex while antagonism attenuates sympathetic chemoreflex. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288, R1707–R1715 (2005).

    CAS  PubMed  Google Scholar 

  56. 56

    Campos, R. R. & McAllen, R. M. Cardiac sympathetic premotor neurons. Am. J. Physiol. Regul. Integr. Comp. Physiol. 272, R615–R620 (1997).

    CAS  Google Scholar 

  57. 57

    McAllen, R. M., May, C. N. & Shafton, A. D. Functional anatomy of sympathetic premotor cell groups in the medulla. Clin. Exp. Hypertens. 17, 209–221 (1995).

    CAS  PubMed  Google Scholar 

  58. 58

    McAllen, R. M. & Dampney, R. A. Vasomotor neurons in the rostral ventrolateral medulla are organized topographically with respect to type of vascular bed but not body region. Neurosci. Lett. 110, 91–96 (1990).

    CAS  PubMed  Google Scholar 

  59. 59

    Stornetta, R. L., McQuiston, T. J. & Guyenet, P. G. GABAergic and glycinergic presympathetic neurons of rat medulla oblongata identified by retrograde transport of pseudorabies virus and in situ hybridization. J. Comp. Neurol. 479, 257–270 (2004).

    CAS  PubMed  Google Scholar 

  60. 60

    Kerman, I. A., Enquist, L. W., Watson, S. J. & Yates, B. J. Brainstem substrates of sympatho-motor circuitry identified using trans-synaptic tracing with pseudorabies virus recombinants. J. Neurosci. 23, 4657–4666 (2003).

    CAS  PubMed  Google Scholar 

  61. 61

    Sartor, D. M. & Verberne, A. J. Cholecystokinin selectively affects presympathetic vasomotor neurons and sympathetic vasomotor outflow. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282, R1174–R1184 (2002).

    CAS  PubMed  Google Scholar 

  62. 62

    Haselton, J. R. & Guyenet, P. G. Central respiratory modulation of medullary sympathoexcitatory neurons in rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 256, R739–R750 (1989).

    CAS  Google Scholar 

  63. 63

    Kishi, T. et al. Cardiovascular effects of overexpression of endothelial nitric oxide synthase in the rostral ventrolateral medulla in stroke-prone spontaneously hypertensive rats. Hypertension 39, 264–268 (2002).

    CAS  PubMed  Google Scholar 

  64. 64

    Sved, A. F., Ito, S. & Sved, J. C. Brainstem mechanisms of hypertension: role of the rostral ventrolateral medulla. Curr. Hypertens. Rep. 5, 262–268 (2003).

    PubMed  Google Scholar 

  65. 65

    Ding, Z. Q., Li, Y. W., Wesselingh, S. L. & Blessing, W. W. Transneuronal labelling of neurons in rabbit brain after injection of Herpes simplex virus type-1 into the renal nerve. J. Auton. Nerv. Syst. 42, 23–32 (1993).

    CAS  PubMed  Google Scholar 

  66. 66

    Dean, C., Seagard, J. L., Hopp, F. A. & Kampine, J. P. Differential control of sympathetic activity to kidney and skeletal muscle by ventral medullary neurons. J. Auton. Nerv. Syst. 37, 1–10 (1992).

    CAS  PubMed  Google Scholar 

  67. 67

    Akine, A., Montanaro, M. & Allen, A. M. Hypothalamic paraventricular nucleus inhibition decreases renal sympathetic nerve activity in hypertensive and normotensive rats. Auton. Neurosci. 108, 17–21 (2003).

    CAS  PubMed  Google Scholar 

  68. 68

    Ito, S. et al. Ventrolateral medulla AT1 receptors support arterial pressure in Dahl salt-sensitive rats. Hypertension 41, 744–750 (2003).

    CAS  PubMed  Google Scholar 

  69. 69

    Reja, V., Goodchild, A. K. & Pilowsky, P. M. Catecholamine-related gene expression correlates with blood pressures in SHR. Hypertension 40, 342–347 (2002).

    CAS  PubMed  Google Scholar 

  70. 70

    Reja, V., Goodchild, A. K., Phillips, J. K. & Pilowsky, P. M. Tyrosine hydroxylase gene expression in ventrolateral medulla oblongata of WKY and SHR: a quantitative real-time polymerase chain reaction study. Auton. Neurosci. 98, 79–84 (2002).

    CAS  PubMed  Google Scholar 

  71. 71

    Potts, J. T. et al. Contraction-sensitive skeletal muscle afferents inhibit arterial baroreceptor signalling in the nucleus of the solitary tract: role of intrinsic GABA interneurons. Neuroscience 119, 201–214 (2003).

    CAS  PubMed  Google Scholar 

  72. 72

    Schreihofer, A. M. & Guyenet, P. G. The baroreflex and beyond: control of sympathetic vasomotor tone by GABAergic neurons in the ventrolateral medulla. Clin. Exp. Pharmacol. Physiol. 29, 514–521 (2002).

    CAS  PubMed  Google Scholar 

  73. 73

    Pilowsky, P. M. & Goodchild, A. K. Baroreceptor reflex pathways and neurotransmitters: 10 years on. J. Hypertens. 20, 1675–1688 (2002).

    CAS  PubMed  Google Scholar 

  74. 74

    Andresen, M. C., Doyle, M. W., Jin, Y. H. & Bailey, T. W. Cellular mechanisms of baroreceptor integration at the nucleus tractus solitarius. Ann. NY Acad. Sci. 940, 132–141 (2001).

    CAS  PubMed  Google Scholar 

  75. 75

    Paton, J. F. et al. Adenoviral vector demonstrates that angiotensin II-induced depression of the cardiac baroreflex is mediated by endothelial nitric oxide synthase in the nucleus tractus solitarii of the rat. J. Physiol. (Lond.) 531, 2–58 (2001).

    Google Scholar 

  76. 76

    Paton, J. F., Boscan, P., Murphy, D. & Kasparov, S. Unravelling mechanisms of action of angiotensin II on cardiorespiratory function using in vivo gene transfer. Acta Physiol. Scand. 173, 127–137 (2001).

    CAS  PubMed  Google Scholar 

  77. 77

    Osborn, J. W., Jacob, F. & Guzman, P. A neural set point for the long-term control of arterial pressure: beyond the arterial baroreceptor reflex. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288, R846–R855 (2005).

    CAS  PubMed  Google Scholar 

  78. 78

    Thrasher, T. N. Baroreceptors, baroreceptor unloading, and the long-term control of blood pressure. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288, R819–R827 (2005).

    CAS  PubMed  Google Scholar 

  79. 79

    Schreihofer, A. M., Ito, S. & Sved, A. F. Brain stem control of arterial pressure in chronic arterial baroreceptor denervated rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R1746–R1755 (2005).

    CAS  PubMed  Google Scholar 

  80. 80

    Brooks, V. L., Haywood, J. R. & Johnson, A. K. Translation of salt retention to central activation of the sympathetic nervous system in hypertension. Clin. Exp. Pharmacol. Physiol. 32, 426–432 (2005). Interesting paper that describes potential CNS mechanisms of salt-dependent hypertension.

    CAS  PubMed  Google Scholar 

  81. 81

    Kawano, H. & Masuko, S. Synaptic contacts between nerve terminals originating from the ventrolateral medullary catecholaminergic area and median preoptic neurons projecting to the paraventricular hypothalamic nucleus. Brain Res. 817, 110–116 (1999).

    CAS  PubMed  Google Scholar 

  82. 82

    McKinley, M. J. et al. Neural pathways from the lamina terminalis influencing cardiovascular and body fluid homeostasis. Clin. Exp. Pharmacol. Physiol. 28, 990–992 (2001).

    CAS  PubMed  Google Scholar 

  83. 83

    Babic, T., Roder, S. & Ciriello, J. Direct projections from caudal ventrolateral medullary depressor sites to the subfornical organ. Brain Res. 1003, 113–121 (2004).

    CAS  PubMed  Google Scholar 

  84. 84

    Wolk, R., Shamsuzzaman, A. S. M. & Somers, V. K. Obesity, sleep apnea, and hypertension. Hypertension 42, 1067–1074 (2003).

    CAS  PubMed  Google Scholar 

  85. 85

    Blessing, W. W., Yu, Y. H. & Nalivaiko, E. Medullary projections of rabbit carotid sinus nerve. Brain Res. 816, 405–410 (1999).

    CAS  PubMed  Google Scholar 

  86. 86

    Paton, J. F. R., Deuchars, J., Li, Y. W. & Kasparov, S. Properties of solitary tract neurones responding to peripheral arterial chemoreceptors. Neuroscience 105, 231–248 (2001).

    CAS  PubMed  Google Scholar 

  87. 87

    Prabhakar, N. R., Peng, Y. J., Jacono, F. J., Kumar, G. K. & Dick, T. E. Cardiovascular alterations by chronic intermittent hypoxia: importance of carotid body chemoreflexes. Clin. Exp. Pharmacol. Physiol. 32, 447–449 (2005). The authors suggest that changes in the discharge characteristics of peripheral chemoreceptors at rest and in response to hypoxia could contribute to the development of hypertension associated with increased sympathetic tone caused by obstructive sleep apnoea.

    CAS  PubMed  Google Scholar 

  88. 88

    Roux, J. C. et al. O2-sensing after carotid chemodenervation: hypoxic ventilatory responsiveness and upregulation of tyrosine hydroxylase mRNA in brainstem catecholaminergic cells. Eur. J. Neurosci. 12, 3181–3190 (2000).

    CAS  PubMed  Google Scholar 

  89. 89

    Pascual, O. et al. Selective cardiorespiratory and catecholaminergic areas express the hypoxia-inducible factor-1α (HIF-1α) under in vivo hypoxia in rat brainstem. Eur. J. Neurosci. 14, 1981–1991 (2001).

    CAS  PubMed  Google Scholar 

  90. 90

    Reis, D. J., Golanov, E. V., Galea, E. & Feinstein, D. L. Central neurogenic neuroprotection: central neural systems that protect the brain from hypoxia and ischemia. Ann. NY Acad. Sci. 835, 168–186 (1997). The authors postulate that the brain could protect itself from hypoxia by elevating BP via increases in SNA. They also propose that the C1 neurons potentially have a central role in this process.

    CAS  PubMed  Google Scholar 

  91. 91

    Levy, E. I., Scarrow, A. M. & Jannetta, P. J. Microvascular decompression in the treatment of hypertension: review and update. Surg. Neurol. 55, 2–10 (2001).

    CAS  PubMed  Google Scholar 

  92. 92

    Dimicco, J. A., Samuels, B. C., Zaretskaia, M. V. & Zaretsky, D. V. The dorsomedial hypothalamus and the response to stress: part renaissance, part revolution. Pharmacol. Biochem. Behav. 71, 469–480 (2002).

    CAS  PubMed  Google Scholar 

  93. 93

    Benarroch, E. E. Paraventricular nucleus, stress response, and cardiovascular disease. Clin. Auton. Res. 15, 254–263 (2005).

    PubMed  Google Scholar 

  94. 94

    Stocker, S. D., Simmons, J. R., Stornetta, R. L., Toney, G. M. & Guyenet, P. G. Water deprivation activates a glutamatergic projection from the hypothalamic paraventricular nucleus to the rostral ventrolateral medulla. J. Comp. Neurol. 494, 673–685 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Shafton, A. D., Ryan, A., McGrath, B. & Badoer, E. Volume expansion does not activate neuronal projections from the NTS or depressor VLM to the RVLM. Am. J. Physiol. Regul. Integr. Comp. Physiol. 277, R39–R46 (1999).

    CAS  Google Scholar 

  96. 96

    Haselton, J. R., Goering, J. & Patel, K. P. Parvocellular neurons of the paraventricular nucleus are involved in the reduction in renal nerve discharge during isotonic volume expansion. J. Auton. Nerv. Syst. 50, 1–12 (1994).

    CAS  PubMed  Google Scholar 

  97. 97

    Weiss, M. L., Claassen, D. E., Hirai, T. & Kenney, M. J. Nonuniform sympathetic nerve responses to intravenous hypertonic saline infusion. J. Auton. Nerv. Syst. 57, 109–115 (1996).

    CAS  PubMed  Google Scholar 

  98. 98

    Morita, H., Nishida, Y. & Hosomi, H. Neural control of urinary sodium excretion during hypertonic NaCl load in conscious rabbits: role of renal and hepatic nerves and baroreceptors. J. Auton. Nerv. Syst. 34, 157–169 (1991).

    CAS  PubMed  Google Scholar 

  99. 99

    Badoer, E., Ng, C. W. & De, M. R. Glutamatergic input in the PVN is important in renal nerve response to elevations in osmolality. Am. J. Physiol. Renal Physiol. 285, F640–F650 (2003).

    CAS  PubMed  Google Scholar 

  100. 100

    Stocker, S. D., Hunwick, K. J. & Toney, G. M. Hypothalamic paraventricular nucleus differentially supports lumbar and renal sympathetic outflow in water-deprived rats. J. Physiol. (Lond.) 563, 249–263 (2005).

    CAS  Google Scholar 

  101. 101

    Brooks, V. L., Freeman, K. L. & O'Donaughy, T. L. Acute and chronic increases in osmolality increase excitatory amino acid drive of the rostral ventrolateral medulla in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, R1359–R1368 (2004).

    CAS  PubMed  Google Scholar 

  102. 102

    Grob, M., Drolet, G. & Mouginot, D. Specific Na+ sensors are functionally expressed in a neuronal population of the median preoptic nucleus of the rat. J. Neurosci. 24, 3974–3984 (2004).

    CAS  PubMed  Google Scholar 

  103. 103

    O'Donaughy, T. L. & Brooks, V. L. Deoxycorticosterone acetate-salt rats. Hypertension and sympathoexcitation driven by increased NaCl levels. Hypertension 47, 680–685 (2006).

    CAS  PubMed  Google Scholar 

  104. 104

    Geerling, J. C., Engeland, W. C., Kawata, M. & Loewy, A. D. Aldosterone target neurons in the nucleus tractus solitarius drive sodium appetite. J. Neurosci. 26, 411–417 (2006). Provides the first definitive identification of brain neurons that are capable of detecting the circulating level of mineralocorticoid selectively. The study shows that the activity of these neurons correlates with sodium appetite.

    CAS  PubMed  Google Scholar 

  105. 105

    Zimmerman, M. C., Lazartigues, E., Sharma, R. V. & Davisson, R. L. Hypertension caused by angiotensin II infusion involves increased superoxide production in the central nervous system. Circ. Res. 95, 210–216 (2004).

    CAS  PubMed  Google Scholar 

  106. 106

    Kishi, T. et al. Increased reactive oxygen species in rostral ventrolateral medulla contribute to neural mechanisms of hypertension in stroke-prone spontaneously hypertensive rats. Circulation 109, 2357–2362 (2004).

    CAS  PubMed  Google Scholar 

  107. 107

    Smith, O. A., DeVito, J. L. & Astley, C. A. Neurons controlling cardiovascular responses to emotion are located in lateral hypothalamus-perifornical region. Am. J. Physiol. Regul. Integr. Comp. Physiol. 259, R943–R954 (1990).

    CAS  Google Scholar 

  108. 108

    Lovick, T. A. The periaqueductal gray–rostral medulla connection in the defense reaction: efferent pathways and descending control mechanisms. Behav. Brain Res. 58, 19–25 (1993).

    CAS  PubMed  Google Scholar 

  109. 109

    Bandler, R., Carrive, P. & Zhang, S. P. Integration of somatic and autonomic reactions within the midbrain periaqueductal grey: viscerotopic, somatotopic and functional organization. Prog. Brain Res. 87, 269–305 (1991).

    CAS  PubMed  Google Scholar 

  110. 110

    Esler, M. & Kaye, D. Sympathetic nervous system activation in essential hypertension, cardiac failure and psychosomatic heart disease. J. Cardiovasc. Pharmacol. 35, S1–S7 (2000). This important paper documents a generalized increase in sympathetic tone in various forms of hypertension.

    CAS  PubMed  Google Scholar 

  111. 111

    Lambert, G. W. et al. Increased central nervous system monoamine neurotransmitter turnover and its association with sympathetic nervous activity in treated heart failure patients. Circulation 92, 1813–1818 (1995).

    CAS  PubMed  Google Scholar 

  112. 112

    Felder, R. B. et al. Heart failure and the brain: new perspectives. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284, R259–R276 (2003).

    CAS  PubMed  Google Scholar 

  113. 113

    Huang, B. S. & Leenen, F. H. Blockade of brain mineralocorticoid receptors or Na+ channels prevents sympathetic hyperactivity and improves cardiac function in rats post-MI. Am. J. Physiol. Heart Circ. Physiol. 288, H2491–H2497 (2005).

    CAS  PubMed  Google Scholar 

  114. 114

    Zhang, W. G., Huang, B. S. & Leenen, F. H. H. Brain renin–angiotensin system and sympathetic hyperactivity in rats after myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 276, H1608–H1615 (1999).

    CAS  Google Scholar 

  115. 115

    Hamlyn, J. M., Hamilton, B. P. & Manunta, P. Endogenous ouabain, sodium balance and blood pressure: a review and a hypothesis. J. Hypertens. 14, 151–167 (1996).

    CAS  PubMed  Google Scholar 

  116. 116

    Weiss, M. L., Kenney, M. J., Musch, T. I. & Patel, K. P. Modifications to central neural circuitry during heart failure. Acta Physiol. Scand. 177, 57–67 (2003).

    CAS  PubMed  Google Scholar 

  117. 117

    Francis, J., Wei, S. G., Weiss, R. M. & Felder, R. B. Brain angiotensin-converting enzyme activity and autonomic regulation in heart failure. Am. J. Physiol. Heart Circ. Physiol. 287, H2138–H2146 (2004).

    CAS  PubMed  Google Scholar 

  118. 118

    Lindley, T. E., Doobay, M. F., Sharma, R. V. & Davisson, R. L. Superoxide is involved in the central nervous system activation and sympathoexcitation of myocardial infarction-induced heart failure. Circ. Res. 94, 402–409 (2004).

    CAS  PubMed  Google Scholar 

  119. 119

    Zimmerman, M. C. & Davisson, R. L. Redox signaling in central neural regulation of cardiovascular function. Prog. Biophys. Mol. Biol. 84, 125–149 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health, Heart, Lung and Blood Institute (P.G.G.).

Author information

Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Glossary

Preganglionic

Autonomic neurons that have their cell bodies in the brainstem or spinal cord and synapse onto visceral motor neurons (sympathetic or parasympathetic) in peripheral ganglia.

Baroreflex

Reflex decrease in sympathetic nerve activity that is initiated by the activation of stretch-sensitive afferents located in the arterial wall.

Renin–angiotensin system

This is a regulated biochemical pathway with paracrine function that leads to the production of angiotensin II and related bioactive peptides in the brain. This system is active in most brain regions that regulate the sympathetic outflow and is activated in various forms of hypertension and heart failure, although the causes of its activation are still not clear.

Natriuresis

Sodium excretion by the kidney.

Sympatholytic

A drug that reduces SNA by a CNS or peripheral action or reduces transmission between sympathetic ganglionic neurons and their peripheral targets.

Bulbospinal

Neurons located in the brainstem and innervating neurons in the spinal cord, such as sympathetic preganglionic neurons.

Sympathoexcitatory reflex

Any reflex that causes an increase in SNA (the opposite is a sympathoinhibitory reflex).

Vigilance-regulating network

Network of neurons that regulate the sleep–wake cycle. This network includes the suprachiasmatic and other hypothalamic nuclei and various brainstem aminergic cell groups.

Chemoreflex

Reflex elicited by the activation of the carotid bodies (by hypoxia and hypercapnia) or central chemoreceptors (by hypercapnia).

Sinoaortic denervation

Surgical procedure consisting of sectioning the nerves that contain arterial baroreceptor afferents (principally the carotid sinus nerve and the aortic nerve).

Hepatoportal osmoreceptors

Sensory afferents located close to the liver that detect changes in osmolality in the blood exiting the digestive system.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Guyenet, P. The sympathetic control of blood pressure. Nat Rev Neurosci 7, 335–346 (2006). https://doi.org/10.1038/nrn1902

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing