Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The neural mechanisms of perceptual filling-in

Key Points

  • Filling-in is a remarkable perceptual phenomenon in which visual features such as colour, brightness, texture and motion of the surrounding area are perceived in a certain part of the visual field even though these features are not physically present.

  • One extreme possibility is that our visual system simply ignores the lack of visual input and that filling-in is a passive outcome of this. However, various psychophysical experiments suggest that some active processes are involved in the occurrence of filling-in, and that some neural computation occurs in the brain when filling-in occurs.

  • In the past decade, several single-unit recording experiments in monkeys and functional MRI experiments in humans have examined neural activities related to filling-in in early visual cortical areas. Many of these studies found that neurons are activated in the region of the retinotopic map of the early visual areas that represents the interior of the surface where filling-in occurs.

  • Neural mechanisms of filling-in investigated in the above-mentioned studies must be distinguished from topographic remapping induced by binocular retinal scotoma. When retinal lesions are made at corresponding positions in both eyes (binocular retinal scotoma), reorganization of the retinotopic map of the visual cortex occurs, but this differs from situations in which other types of filling-in occur.

  • Traditionally, 'symbolic' and 'isomorphic' theory have been proposed as neural mechanisms of filling-in. Symbolic theory assumes that early visual areas extract only the contrast information, but this contradicts the results of most of the recent neurophysiological and neuroimaging experiments.

  • Isomorphic theory assumes that when perceptual filling-in occurs, a two-dimensional array of neurons with a point-by-point representation of visual features is activated in the early visual cortex. Although neurons are activated in early visual areas during filling-in, neural responses recorded during filling-in at the blind spot differ from those predicted by isomorphic theory in several important ways.

  • Selective activation of neurons in deep layers of the visual cortex that represent a particular spatial scale and that are selective for particular features might be involved in the process that mediates perceptual filling-in.

  • This research is still at an early stage, and many questions remain to be answered about the neural mechanisms of filling-in. Understanding the details of these mechanisms is important, because it might provide answers as to where and how subjective visual experience emerges, a fundamental question about visual perception.

Abstract

Filling-in is a perceptual phenomenon in which a visual attribute such as colour, brightness, texture or motion is perceived in a region of the visual field even though such an attribute exists only in the surround. Filling-in dramatically reveals the dissociation between the retinal input and the percept, and raises fundamental questions about how these two relate to each other. Filling-in is observed in various situations, and is an essential part of our normal surface perception. Here, I review recent experiments examining brain activities associated with filling-in, and discuss possible neural mechanisms underlying this remarkable perceptual phenomenon. The evidence shows that neuronal activities in early visual cortical areas are involved in filling-in, providing new insights into visual cortical functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of various stimuli that induce filling-in.
Figure 2: Visual cortical areas of the macaque monkey.
Figure 3: Neuronal activities that correlate with perceptual completion at the blind spot.
Figure 4: Neural activation during filling-in of a phantom illusion.
Figure 5: Cortical reorganization due to retinal scotoma.
Figure 6: Possible neural mechanisms of filling-in at the blind spot.

Similar content being viewed by others

References

  1. Walls, G. L. The filling-in process. Am. J. Optom. Arch. Am. Acad. Optom. 31, 329–341 (1954).

    Article  CAS  PubMed  Google Scholar 

  2. Gerrits, H. J. M. & Vendrik, A. J. H. Simultaneous contrast, filling-in process and information processing in man's visual system. Exp. Brain Res. 11, 411–430 (1970).

    Article  CAS  PubMed  Google Scholar 

  3. Komatsu, H., Murakami, I. & Kinoshita, M. Surface representation in the visual system. Brain Res. Cogn. Brain Res. 5, 97–104 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Pessoa, L., Thompson, E. & Noe, A. Finding out about filling-in: a guide to perceptual completion for visual science and the philosophy of perception. Behav. Brain Sci. 21, 723–748; discussion 748–802 (1998).

    CAS  PubMed  Google Scholar 

  5. Ramachandran, V. S. & Gregory, R. L. Perceptual filling in of artificially induced scotomas in human vision. Nature 350, 699–702 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Ramachandran, V. S. Blind spots. Sci. Am. 266, 86–91 (1992). An excellent introduction to the phenomenon of filling-in. Provides fascinating examples of perceptual filling-in at the blind spot.

    Article  CAS  PubMed  Google Scholar 

  7. Gerrits, H. J. M. & Timmerman, G. J. M. E. N. The filling-in process in patients with retinal scotoma. Vision Res. 9, 439–442 (1969).

    Article  CAS  PubMed  Google Scholar 

  8. Gassel, M. M. & Williams, D. Visual function in patients with homonymous hemianopia. III. The completion phenomenon; insight and attitude to the defect; and visual functional efficiency. Brain 86, 229–260 (1963).

    Article  CAS  PubMed  Google Scholar 

  9. Safran, A. B. & Landis, T. Plasticity in the adult visual cortex: implications for the diagnosis of visual field defects and visual rehabilitation. Curr. Opin. Ophthalmol. 7, 53–64 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Friedman, H. S., Zhou, H. & von der Heydt, R. Color filling-in under steady fixation: behavioral demonstration in monkeys and humans. Perception 28, 1383–1395 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. von der Heydt, R., Friedman, H. & Zhou, H. in Filling-in (eds Pessoa, L. & De Weerd, P.) 106–127 (Oxford Univ. Press, New York, 2003).

  12. Hamburger, K., Prior, H., Sarris, V. & Spillmann, L. Filling-in with colour: different modes of surface completion. Vision Res. 46, 1129–1138 (2006).

    Article  PubMed  Google Scholar 

  13. Spillmann, L. & Kurtenbach, A. Dynamic noise backgrounds facilitate target fading. Vision Res. 32, 1941–1946 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. De Weerd, P., Desimone, R. & Ungerleider, L. G. Perceptual filling-in: a parametric study. Vision Res. 38, 2721–2734 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Yarbus, A. L. Eye Movements and Vision (Plenum, New York, 1967).

    Book  Google Scholar 

  16. Krauskopf, J. Effect of retinal image stabilization on the appearance of heterochromatic targets. J. Opt. Soc. Am. 53, 741–744 (1963).

    Article  CAS  PubMed  Google Scholar 

  17. Gerrits, H. J. M., de Haan, B. & Vendrik, A. J. H. Experiments with retinal stabilized images. Relations between the observations and neural data. Vision Res. 6, 427–440 (1966).

    Article  CAS  PubMed  Google Scholar 

  18. van Tuijl, H. F. J. M. & Leeuwenberg, E. L. J. Neon color spreading and structural information measures. Percept. Psychophys. 25, 269–284 (1979).

    Article  CAS  PubMed  Google Scholar 

  19. Redies, C. & Spillmann, L. The neon color effect in the Ehrenstein illusion. Perception 10, 667–681 (1982).

    Article  CAS  PubMed  Google Scholar 

  20. Grossberg, S. & Mingolla, E. Neural dynamics of form perception: boundary completion, illusory figures, and neon color spreading. Psychol. Rev. 92, 173–211 (1985).

    Article  CAS  PubMed  Google Scholar 

  21. Bressan, P., Mingolla, E., Spillmann, L. & Watanabe, T. Neon color spreading: a review. Perception 26, 1353–1366 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Cornsweet, T. Visual Perception (Academic, New York, 1970).

    Google Scholar 

  23. Grossberg, S. & Todorovic, D. Neural dynamics of 1-D and 2-D brightness perception: a unified model of classical and recent phenomena. Percept. Psychophys. 43, 241–277 (1988).

    Article  CAS  PubMed  Google Scholar 

  24. Tynan, P. & Sekular, R. Moving visual phantoms: a new contour completion effect. Science 188, 951–952 (1975).

    Article  CAS  PubMed  Google Scholar 

  25. Gyoba, J. Stationary phantoms: a completion effect without motion and flicker. Vision Res. 23, 205–211 (1983).

    Article  CAS  PubMed  Google Scholar 

  26. Murakami, I. Motion aftereffect after monocular adaptation to filled-in motion at the blind spot. Vision Res. 35, 1041–1045 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Weisstein, N., Maguire, W. & Berbaum, K. A phantom-motion aftereffect. Science 198, 955–958 (1977).

    Article  CAS  PubMed  Google Scholar 

  28. Shimojo, S., Kamitani, Y. & Nishida, S. Afterimage of perceptually filled-in surface. Science 293, 1677–1680 (2001). A clear demonstration that filling-in generates afterimage, which indicates that filling-in is accompanied by some active neural processes.

    Article  CAS  PubMed  Google Scholar 

  29. Davis, G. & Driver, J. A functional role for illusory colour spreading in the control of focused visual attention. Perception 26, 1397–1411 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Zur, D. & Ullman, S. Filling-in of retinal scotomas. Vision Res. 43, 971–982 (2003).

    Article  PubMed  Google Scholar 

  31. von der Heydt, R., Peterhans, E. & Baumgartner, G. Illusory contours and cortical neuron responses. Science 224, 1260–1262 (1984).

    Article  CAS  PubMed  Google Scholar 

  32. Fiorani, M., Rosa, M. G. P., Gattas, R. & Rocha-Miranda, C. E. Dynamic surrounds of receptive fields in primate striate cortex: a physiological basis for perceptual completion? Proc. Natl Acad. Sci. USA 89, 8547–8551 (1992).

    Article  Google Scholar 

  33. Matsumoto, M. & Komatsu, H. Neural responses in the macaque V1 to bar stimuli with various lengths presented on the blind spot. J. Neurophysiol. 93, 2374–2387 (2005).

    Article  PubMed  Google Scholar 

  34. Komatsu, H., Kinoshita, M. & Murakami, I. Neural responses in the retinotopic representation of the blind spot in the macaque V1 to stimuli for perceptual filling-in. J. Neurosci. 20, 9310–9319 (2000). Presents clear evidence that some neurons in the V1 region that represents the blind spot are activated when perceptual filling-in occurs at the blind spot. Also shows that these neurons are localized in deep layers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Roe, A. W., Lu, H. D. & Hung, C. P. Cortical processing of a brightness illusion. Proc. Natl Acad. Sci. USA 102, 3869–3874 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kayama, Y., Riso, R. R., Bartlett, J. R. & Doty, R. W. Luxotonic responses of units in macaque striate cortex. J. Neurophysiol. 42, 1495–1517 (1979).

    Article  CAS  PubMed  Google Scholar 

  37. Maguire, W. M. & Baizer, J. S. Luminance coding of briefly presented stimuli in area 17 of the rhesus monkey. J. Neurophysiol. 47, 128–137 (1982).

    Article  CAS  PubMed  Google Scholar 

  38. Rossi, A. F., Rittenhouse, C. D. & Paradiso, M. A. The representation of brightness in primary visual cortex. Science 273, 1104–1107 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Kinoshita, M. & Komatsu, H. Neural representation of the luminance and brightness of a uniform surface in the macaque primary visual cortex. J. Neurophysiol. 86, 2559–2570 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. De Weerd, P., Gattass, R., Desimone, R. & Ungerleider, L. G. Responses of cells in monkey visual cortex during perceptual filling-in of an artificial scotoma. Nature 377, 731–734 (1995). Shows good correspondence between the time course of the occurrence of texture filling-in and the gradual rise of activation of extrastriate neurons.

    Article  CAS  PubMed  Google Scholar 

  41. Sasaki, Y. & Watanabe, T. The primary visual cortex fills in color. Proc. Natl Acad. Sci. USA 101, 18251–18256 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Meng, M., Remus, D. A. & Tong, F. Filling-in of visual phantoms in the human brain. Nature Neurosci. 8, 1248–1254 (2005). This fMRI experiment shows that, in human subjects, changes in V1 activity correlate closely with the occurrence of perceptual filling-in of a phantom illusion.

    Article  CAS  PubMed  Google Scholar 

  43. Tong, F. & Engel, S. A. Interocular rivalry revealed in the human cortical blind-spot representation. Nature 411, 195–199 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Perna, A., Tosetti, M., Montanaro, D. & Morrone, M. C. Neuronal mechanisms for illusory brightness perception in humans. Neuron 47, 645–651 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Kaas, J. H. et al. Reorganization of retinotopic cortical maps in adult mammals after lesions of the retina. Science 248, 229–231 (1990).

    Article  CAS  PubMed  Google Scholar 

  46. Gilbert, C. D. & Wiesel, T. N. Receptive field dynamics in adult primary visual cortex. Nature 356, 150–152 (1992).

    Article  CAS  PubMed  Google Scholar 

  47. Smirnakis, S. M. et al. Lack of long-term cortical reorganization after macaque retinal lesions. Nature 435, 300–307 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Ramachandran, V. S. Behavioral and magnetoencephalographic correlates of plasticity in the adult human brain. Proc. Natl Acad. Sci. USA 90, 10413–10420 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gilbert, C. D. Circuitry, architecture, and functional dynamics of visual cortex. Cereb. Cortex 3, 373–386 (1993).

    Article  CAS  PubMed  Google Scholar 

  50. Schmid, L. M., Rosa, M. G., Calford, M. B. & Ambler, J. S. Visuotopic reorganization in the primary visual cortex of adult cats following monocular and binocular retinal lesions. Cereb. Cortex 6, 388–405 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Baker, C. I., Peli, E., Knouf, N. & Kanwisher, N. G. Reorganization of visual processing in macular degeneration. J. Neurosci. 25, 614–618 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tripathy, S. P., Levi, D. M., Ogmen, H. & Harden, C. Perceived length across the physiological blind spot. Vis. Neurosci. 12, 385–402 (1995).

    Article  CAS  PubMed  Google Scholar 

  53. Cumming, G. & Friend, H. Perception at the blind spot and tilt aftereffect. Perception 9, 233–238 (1980).

    Article  CAS  PubMed  Google Scholar 

  54. Awater, H., Kerlin, J. R., Evans, K. K. & Tong, F. Cortical representation of space around the blind spot. J. Neurophysiol. 94, 3314–3324 (2005).

    Article  PubMed  Google Scholar 

  55. Cohen, M. A. & Grossberg, S. Neural dynamics of brightness perception: features, boundaries, diffusion, and resonance. Percept. Psychophys. 36, 428–456 (1984). This computational modelling study presents important concepts of two parallel contour-sensitive processes, one sensitive to orientation and the other sensitive to features. The interaction that occurs between these signals is an important question that needs to be addressed.

    Article  CAS  PubMed  Google Scholar 

  56. Arrington, K. F. The temporal dynamics of brightness filling-in. Vision Res. 34, 3371–3387 (1994).

    Article  CAS  PubMed  Google Scholar 

  57. Neumann, H., Pessoa, L. & Hansen, T. Visual filling-in for computing perceptual surface properties. Biol. Cybern. 85, 355–369 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Friedman, H. S., Zhou, H. & von der Heydt, R. The coding of uniform colour figures in monkey visual cortex. J. Physiol. (Lond.) 548, 593–613 (2003).

    Article  CAS  Google Scholar 

  59. Paradiso, M. A. & Nakayama, K. Brightness perception and filling-in. Vision Res. 31, 1221–1236 (1991). Using a masking paradigm, this study shows the temporal dynamics of brightness perception and indicates that some process of filling-in occurs even when we see a uniform surface in the normal visual field.

    Article  CAS  PubMed  Google Scholar 

  60. Paradiso, M. A. & Hahn, S. Filling-in percepts produced by luminance modulation. Vision Res. 36, 2657–2663 (1996).

    Article  CAS  PubMed  Google Scholar 

  61. Nishina, S., Okada, M. & Kawato, M. Spatio-temporal dynamics of depth propagation on uniform region. Vision Res. 43, 2493–2503 (2003).

    Article  PubMed  Google Scholar 

  62. Davey, M. P., Maddess, T. & Srinivasan, M. V. The spatiotemporal properties of the Craik–O'Brien–Cornsweet effect are consistent with 'filling-in'. Vision Res. 38, 2037–2046 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Tootell, R. B., Silverman, M. S. & De Valois, R. L. Spatial frequency columns in primary visual cortex. Science 214, 813–815 (1981).

    Article  CAS  PubMed  Google Scholar 

  64. Hubener, M., Shoham, D., Grinvald, A. & Bonhoeffer, T. Spatial relationships among three columnar systems in cat area 17. J. Neurosci. 17, 9270–9284 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Everson, R. M. et al. Representation of spatial frequency and orientation in the visual cortex. Proc. Natl Acad. Sci. USA 95, 8334–8338 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Issa, N. P., Trepel, C. & Stryker, M. P. Spatial frequency maps in cat visual cortex. J. Neurosci. 20, 8504–8514 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gilbert, C. D. Laminar differences in receptive field properties of cells in cat primary visual cortex. J. Physiol. (Lond.) 268, 391–421 (1977).

    Article  CAS  Google Scholar 

  68. Gur, M., Kagan, I. & Snodderly, D. M. Orientation and direction selectivity of neurons in V1 of alert monkeys: functional relationships and laminar distributions. Cereb. Cortex 15, 1207–1221 (2005).

    Article  PubMed  Google Scholar 

  69. Raiguel, S., Van Hulle, M. M., Xiao, D. K., Marcar, V. L. & Orban, G. A. Shape and spatial distribution of receptive fields and antagonistic motion surrounds in the middle temporal area (V5) of the macaque. Eur. J. Neurosci. 7, 2064–2082 (1995).

    Article  CAS  PubMed  Google Scholar 

  70. Komatsu, H. Surface representation by population coding. Behav. Brain Sci. 21, 761–762 (1998).

    Article  Google Scholar 

  71. Mendola, J. D., Dale, A. M., Fischl, B., Liu, A. K. & Tootell, R. B. The representation of illusory and real contours in human cortical visual areas revealed by functional magnetic resonance imaging. J. Neurosci. 19, 8560–8572 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sherman, S. & Guillery, R. Exploring the Thalamus (Academic, San Diego, 2001).

    Google Scholar 

  73. Sillito, A. M., Jones, H. E., Gerstein, G. L. & West, D. C. Feature-linked synchronization of thalamic relay cell firing induced by feedback from the visual cortex. Nature 369, 479–482 (1994).

    Article  CAS  PubMed  Google Scholar 

  74. Komatsu, H., Kinoshita, M. & Murakami, I. Neural responses in the primary visual cortex of the monkey during perceptual filling-in at the blind spot. Neurosci. Res. 44, 231–236 (2002).

    Article  PubMed  Google Scholar 

  75. Haynes, J. D., Deichmann, R. & Rees, G. Eye-specific effects of binocular rivalry in the human lateral geniculate nucleus. Nature 438, 496–499 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wunderlich, K., Schneider, K. A. & Kastner, S. Neural correlates of binocular rivalry in the human lateral geniculate nucleus. Nature Neurosci. 8, 1595–1602 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Kellman, P. J., Yin, C. & Shipley, T. F. A common mechanism for illusory and occluded object completion. J. Exp. Psychol. Hum. Percept. Perform. 24, 859–869 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Shimojo, S. & Nakayama, K. Amodal representation of occluded surfaces: role of invisible stimuli in apparent motion correspondence. Perception 19, 285–299 (1990).

    Article  CAS  PubMed  Google Scholar 

  79. Watanabe, T. Orientation and color processing for partially occluded objects. Vision Res. 35, 647–655 (1995).

    Article  CAS  PubMed  Google Scholar 

  80. Peterhans, E. & von der Heydt, R. Functional organization of area V2 in the alert macaque. Eur. J. Neurosci. 5, 509–524 (1993).

    Article  CAS  PubMed  Google Scholar 

  81. von der Heydt, R., Zhou, H. & Friedman, H. S. Representation of stereoscopic edges in monkey visual cortex. Vision Res. 40, 1955–1967 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Brown, J. M. & Weisstein, N. Conflicting figure–ground and depth information reduces moving phantom visibility. Perception 20, 155–165 (1991).

    Article  CAS  PubMed  Google Scholar 

  83. Nakayama, K., Shimojo, S. & Ramachandran, V. S. Transparency: relation to depth, subjective contours, luminance, and neon color spreading. Perception 19, 497–513 (1990). Shows that filling-in is dramatically affected by the three-dimensional interpretation of the scene.

    Article  CAS  PubMed  Google Scholar 

  84. Nakayama, K., Shimonjo, S. & Silverman, G. H. Stereoscopic depth: its relation to image segmentation, grouping, and the recognition of occluded objects. Perception 18, 55–68 (1989).

    Article  CAS  PubMed  Google Scholar 

  85. Bakin, J. S., Nakayama, K. & Gilbert, C. D. Visual responses in monkey areas V1 and V2 to three-dimensional surface configurations. J. Neurosci. 20, 8188–8198 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sugita, Y. Grouping of image fragments in primary visual cortex. Nature 401, 269–272 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Hirsch, J. et al. Illusory contours activate specific regions in human visual cortex: evidence from functional magnetic resonance imaging. Proc. Natl Acad. Sci. USA 92, 6469–6473 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ffytche, D. H. & Zeki, S. Brain activity related to the perception of illusory contours. Neuroimage 3, 104–108 (1996).

    Article  CAS  PubMed  Google Scholar 

  89. Kapadia, M. K., Ito, M., Gilbert, C. D. & Westheimer, G. Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in V1 of alert monkeys. Neuron 15, 843–856 (1995).

    Article  CAS  PubMed  Google Scholar 

  90. Polat, U., Mizobe, K., Pettet, M. W., Kasamatsu, T. & Norcia, A. M. Collinear stimuli regulate visual responses depending on cell's contrast threshold. Nature 391, 580–584 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Lamme, V. A. F. The neurophysiology of figure–ground segregation in primary visual cortex. J. Neurosci. 15, 1605–1615 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zipser, K., Lamme, V. A. F. & Schiller, P. H. Contextual modulation in primary visual cortex. J. Neurosci. 16, 7376–7389 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhou, H., Friedman, H. S. & von der Heydt, R. Coding of border ownership in monkey visual cortex. J. Neurosci. 20, 6594–6611 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Baylis, G. C. & Driver, J. Shape-coding in IT cells generalizes over contrast and mirror reversal, but not figure–ground reversal. Nature Neurosci. 4, 937–942 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Qiu, F. T. & von der Heydt, R. Figure and ground in the visual cortex: V2 combines stereoscopic cues with gestalt rules. Neuron 47, 155–166 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hupe, J. M. et al. Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons. Nature 394, 784–787 (1998).

    Article  CAS  PubMed  Google Scholar 

  97. Mumford, D. in Large-Scale Neuronal Theories of the Brain (eds Koch, C. & Davis, J.) 125–152 (MIT Press, Cambridge, Massachusetts, 1994).

    Google Scholar 

  98. Rao, R. P. & Ballard, D. H. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nature Neurosci. 2, 79–87 (1999).

    Article  CAS  PubMed  Google Scholar 

  99. Mendola, J. in Filling-in (eds Pessoa, L. & De Weerd, P.) 38–58 (Oxford Univ. Press, New York, 2003).

    Book  Google Scholar 

  100. He, Z. J. & Nakayama, K. Surfaces versus features in visual search. Nature 359, 231–233 (1992).

    Article  CAS  PubMed  Google Scholar 

  101. Maunsell, J. H. R. & Van, Essen, D. C. The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. J. Neurosci. 3, 2563–2586 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Ministry of Education, Science, Sports and Culture, the Ministry of Public Management, Home Affairs, Posts and Telecommunications, the Japan Society for the Promotion of Science and the Human Frontier Science Program (HFSP).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

National Institute for Physiological Sciences

The Graduate University for Advanced Studies

Glossary

Surface interpolation

The ability of our visual system to reconstruct a continuous surface from incomplete visual inputs using surrounding information.

Contrast border

A boundary of a surface generated by spatially discontinuous change (contrast) in brightness or colour. Many neurons in the retina and early visual pathway are sensitive to contrast border.

Luminance

The intensity of light emitted from a light source or reflected from a surface that can be measured objectively.

Achromatic grating

A visual stimulus consisting of alternating light and dark bars in shades of grey.

Motion aftereffect

Also known as the waterfall illusion. Prolonged observation of a moving stimulus leads to an aftereffect in which stationary objects appear to move in the opposite direction.

Retinotopic

If a two-dimensional array of neurons in a given area corresponds topographically (in spatial arrangement) to those on the retina, this area is said to have retinotopic organization. Early visual areas have retinotopic organization with different degrees of precision.

Primary visual cortex

(Also known as V1 or the striate cortex). The cortical area that is the main recipient of visual information from the retinae (by way of the lateral geniculate nucleus).

Receptive field

The area of sensory space in which stimulus presentation leads to the response of a particular sensory neuron.

V2

The second tier of visual cortical areas, which is adjacent to V1. V2 consists of three compartments that can be visualized by cytochrome oxidase staining; thick stripe, thin stripe and interstripe.

V2 thin stripe

One of three compartments in V2 where many neurons have sensitivity to the colour or brightness of a visual stimulus.

V3

The third tier of visual cortical areas, which receives its main visual input from V1 and V2. V3 can be divided into two areas because dorsal and ventral parts of V3 have different connections and cell properties.

Extrastriate areas

A belt of visually responsive areas of cortex surrounding the primary visual cortex.

Binocular rivalry

A phenomenon that occurs when each of a subject's eyes is shown a different image. This results in a bistable visual experience. For example, perception of horizontal or vertical bars spontaneously alternates when the two bar types are viewed through different eyes simultaneously.

Macular degeneration

A disease of the retina in which the macula, the central part of the retina, degenerates.

Pointwise representation

One way to represent surface attributes such as colour is to activate colour-selective neurons that have a small receptive field at each point on a surface. This is an example of pointwise representation.

Spatial frequency

A variable determined by the width of stripes on a grating. A grating with low spatial frequency has thick stripes, whereas a grating with high spatial frequency has narrow stripes.

Pulvinar nucleus

The pulvinar is a complex of several nuclei in the thalamus that have strong connections with many visual cortical areas.

Lateral geniculate nucleus

(LGN). The LGN is a nucleus in the thalamus that acts as a major relay station for visual signals from the retina to area V1. The LGN also receives a massive feedback projection from V1.

Qualia

Qualities of conscious perceptual experience, or the 'raw' feel of sensation, such as the 'redness' of the colour red.

Depth assignment

When a retinal image contains multiple surfaces, the depth order of the surfaces is derived by using various monocular as well as binocular visual cues in the image.

Stereo-image

A set of two images — one of which is presented to the right eye and the other to the left — that contain binocular stereo-disparity. Different parts of the stereo-image appear to be at different depths.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komatsu, H. The neural mechanisms of perceptual filling-in. Nat Rev Neurosci 7, 220–231 (2006). https://doi.org/10.1038/nrn1869

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1869

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing