Key Points
-
The adult brain is a plastic place. Neuronal responses to a changing environment can occur at the level of molecules, spines, dendrites, axons and, with processes of adult neurogenesis, at the level of entire cells.
-
Neurogenesis definitely occurs in two regions of the adult brain: the subventricular zone (SVZ) lining the lateral ventricle and the subgranular zone (SGZ) of the dentate gyrus in the hippocampus.
-
Neuroblasts from the SVZ migrate along the rostral migratory stream (RMS) to provide new inhibitory granule cells and glomerular cells in the olfactory bulb. Newborn cells from the SGZ migrate to the granular layer of the dentate gyrus, where most of them become excitatory granule cells.
-
The functional maturation of adult-born cells always involves the expression of neurotransmitter receptors before synaptic activity, and the presence of (excitatory) GABA (γ-aminobutyric acid)-mediated influences prior to glutamatergic input. But other maturational features depend on specific cell types, with, for example, olfactory bulb granule cells being late to develop sodium-based action potentials.
-
Factors intrinsic to adult-born cells influence many facets of their maturation. Proliferation and cell fate decisions are particularly strongly controlled by the proteins expressed by neuroblasts.
-
Factors extrinsic to adult-born cells also have a huge influence on all processes of neurogenesis. In this way, adult neurogenesis represents another weapon in the brain's plasticity armoury for dealing with a constantly changing world.
-
With respect to its possible functions, adult neurogenesis might alter the olfactory bulb and hippocampus at the cellular, network and system levels. Computational models suggest that cell turnover might be especially beneficial for the learning of new information.
-
Definitive experiments to demonstrate the function(s) of adult neurogenesis await manipulations that can specifically and completely eliminate it. However, numerous lines of correlative and intervention evidence suggest that hippocampal neurogenesis might be crucial for spatial learning, and that olfactory bulb neurogenesis could be important for sensory discrimination.
Abstract
The adult brain is a plastic place. To ensure that the mature nervous system's control of behaviour is flexible in the face of a varying environment, morphological and physiological changes are possible at many levels, including that of the entire cell. In two areas of the adult brain — the olfactory bulb and the dentate gyrus — new neurons are generated throughout life and form an integral part of the normal functional circuitry. This process is not fixed, but highly modulated, revealing a plastic mechanism by which the brain's performance can be optimized for a given environment. The functional benefits of this whole-cell plasticity, however, remain a matter for debate.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Human Cytomegalovirus IE2 Disrupts Neural Progenitor Development and Induces Microcephaly in Transgenic Mouse
Molecular Neurobiology Open Access 29 March 2023
-
Endogenous but not sensory-driven activity controls migration, morphogenesis and survival of adult-born juxtaglomerular neurons in the mouse olfactory bulb
Cellular and Molecular Life Sciences Open Access 18 March 2023
-
Differential vulnerability of adult neurogenic niches to dosage of the neurodevelopmental-disorder linked gene Foxg1
Molecular Psychiatry Open Access 22 March 2022
Access options
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Harzsch, S. & Dawirs, R. R. Neurogenesis in the developing crab brain: postembryonic generation of neurons persists beyond metamorphosis. J. Neurobiol. 29, 384–398 (1996).
Goldman, S. A. & Nottebohm, F. Neuronal production, migration and differentiation in a vocal control nucleus of the adult female canary brain. Proc. Natl Acad. Sci. USA 80, 2390–2394 (1983).
Altman, J. & Das, G. D. Post-natal origin of microneurones in the rat brain. Nature 207, 953–956 (1965).
Gould, E., Reeves, A. J., Graziano, M. S. & Gross, C. G. Neurogenesis in the neocortex of adult primates. Science 286, 548–552 (1999).
Kornack, D. R. & Rakic, P. Continuation of neurogenesis in the hippocampus of the adult macaque monkey. Proc. Natl Acad. Sci. USA 96, 5768–5773 (1999).
Eriksson, P. S. et al. Neurogenesis in the adult human hippocampus. Nature Med. 4, 1313–1317 (1998).
Kempermann, G., Wiskott, L. & Gage, F. H. Functional significance of adult neurogenesis. Curr. Opin. Neurobiol. 14, 186–191 (2004).
Rakic, P. Adult neurogenesis in mammals, an identity crisis. J. Neurosci. 22, 614–618 (2002).
Alvarez-Buylla, A. & Garcia-Verdugo, J. M. Neurogenesis in adult subventricular zone. J. Neurosci. 22, 629–634 (2002).
Palmer, T. D., Ray, J. & Gage, F. H. FGF-2-responsive neuronal progenitors reside in proliferative and quiescent regions of the adult rodent brain. Mol. Cell. Neurosci. 6, 474–486 (1995).
Weiss, S. et al. Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J. Neurosci. 16, 7599–7609 (1996).
Tropepe, V. et al. Retinal stem cells in the adult mammalian eye. Science 287, 2032–2036 (2000).
Bernier, P. J., Bedard, A., Vinet, J., Levesque, M. & Parent, A. Newly generated neurons in the amygdala and adjoining cortex of adult primates. Proc. Natl Acad. Sci. USA 99, 11464–11469 (2002).
Gritti, A. et al. Multipotent neural stem cells reside into the rostral extension and OB of adult rodents. J. Neurosci. 22, 437–445 (2002).
Zhao, M. et al. Evidence for neurogenesis in the adult mammalian substantia nigra. Proc. Natl Acad. Sci. USA 100, 7925–7930 (2003).
Kokoeva, M., Yin, H. & Flier, J. S. Neurogenesis in the hypothalamus of adult mice: potential role in energy balance. Science 310, 679–683 (2005).
Bauer, S., Hay, M., Amilhon, B., Jean, A. & Moyse, E. In vivo neurogenesis in the dorsal vagal complex of the adult rat brainstem. Neuroscience 130, 75–90 (2005).
Kornack, D. R. & Rakic, P. Cell proliferation without neurogenesis in adult primate neocortex. Science 294, 2127–2130 (2001).
Lie, D. C. et al. The adult substantia nigra contains progenitor cells with neurogenic potential. J. Neurosci. 22, 6639–6649 (2002).
Koketsu, D., Mikami, A., Miyamoto, Y. & Hisatsune, T. Nonrenewal of neurons in the cerebral neocortex of adult macaque monkeys. J. Neurosci. 23, 937–942 (2003).
Frielingsdorf, H., Schwarz, K., Brundin, P. & Mohapel, P. No evidence for new dopaminergic neurons in the adult mammalian substantia nigra. Proc. Natl Acad. Sci. USA 101, 10177–10182 (2004).
Doetsch, F., Caillé, I., Lim, D. A., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716 (1999).A classic paper for anyone interested in the fields of adult neural stem cells.
Laywell, E. D., Rakic, P., Kukekov, V. G., Holland, E. C. & Steindler, D. A. Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc. Natl Acad. Sci. USA 97, 13883–13888 (2000).
Garcia, A. D., Doan, N. B., Imura, T., Bush, T. G. & Sofroniew, M. V. GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nature Neurosci. 7, 1233–1241 (2004).Establishes the cellular identity in vivo of adult multipotent neural progenitors responsible for constitutive adult neurogenesis.
Alvarez-Buylla, A., Garcia-Verdugo, J. M. & Tramontin, A. D. A unified hypothesis on the lineage of neural stem cells. Nature Rev. Neurosci. 2, 287–293 (2001).
Lois, C. & Alvarez-Buylla, A. Long-distance neuronal migration in the adult mammalian brain. Science 264, 1145–1148 (1994).
Jankovski, A. & Sotelo, C. Subventricular zone–olfactory bulb migratory pathway in the adult mouse: cellular composition and specificity as determined by heterochronic and heterotopic transplantation. J. Comp. Neurol. 371, 376–396 (1996).
Cameron, H. A. & McKay, R. D. Adult neurogenesis produces a large pool of new granule cells in the DG. J. Comp. Neurol. 435, 406–417 (2001).
Kuhn, H. G., Dickinson-Anson, H. & Gage, F. H. Neurogenesis in the DG of the adult rat: age-related decrease of neuronal progenitor proliferation. J. Neurosci. 16, 2027–2033 (1996).
Stanfield, B. B. & Trice, J. E. Evidence that granule cells generated in the DG of adult rats extend axonal projections. Exp. Brain Res. 72, 399–406 (1988).
Markakis, E. A. & Gage, F. H. Adult-generated neurons in the DG send axonal projections to field CA3 and are surrounded by synaptic vesicles. J. Comp. Neurol. 406, 449–460 (1999).
Doetsch, F. The glial identity of neural stem cells. Nature Neurosci. 6, 1127–1134 (2003).
Alvarez-Buylla, A. & Lim, D. A. For the long run: maintaining germinal niches in the adult brain. Neuron 41, 683–686 (2004).
Ming, G. L. & Song, H. Adult neurogenesis in the mammalian central nervous system. Annu. Rev. Neurosci. 28, 223–250 (2005).
Zhao, C., Teng, E. M., Summers, R. G. Jr, Ming, G. -L. & Gage, F. H. Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J. Neurosci. 26, 3–11 (2006).
Seki, T. & Arai, Y. Highly polysialylated neural cell adhesion molecule (NCAM-H) is expressed by newly generated granule cells in the DG of the adult rat. J. Neurosci. 13, 2351–2358 (1993).
Brandt, M. D. et al. Transient calretinin expression defines early postmitotic step of neuronal differentiation in adult hippocampal neurogenesis of mice. Mol. Cell. Neurosci. 24, 603–613 (2003).
Seri, B., Garcia-Verdugo, J. M., Collado-Morente, L., McEwen, B. S. & Alvarez-Buylla, A. Cell types, lineage, and architecture of the germinal zone in the adult DG. J. Comp. Neurol. 478, 359–378 (2004).
Wang, L. P., Kempermann, G. & Kettenmann, H. A subpopulation of precursor cells in the mouse DG receives synaptic GABAergic input. Mol. Cell. Neurosci. 29, 181–189 (2005).
Tozuka, Y., Fukuda, S., Namba, T., Seki, T. & Hisatsune, T. GABAergic excitation promotes neuronal differentiation in adult hippocampal progenitor cells. Neuron 47, 803–815 (2005).
Ben-Ari, Y. Excitatory actions of GABA during development: the nature of the nurture. Nature Rev. Neurosci. 3, 728–739 (2002).
Deisseroth, K. et al. Excitation–neurogenesis coupling in adult neural stem/progenitor cells. Neuron 42, 535–552 (2004).
Liu, X., Wang, Q., Haydar, T. F. & Bordey, A. Nonsynaptic GABA signaling in postnatal subventricular zone controls proliferation of GFAP-expressing progenitors. Nature Neurosci. 8, 1179–1187 (2005).Shows that GABA released from neuroblasts provides a feedback mechanism to control the proliferation of GFAP-expressing progenitors.
Overstreet, L. S. et al. A transgenic marker for newly born granule cells in DG. J. Neurosci. 24, 3251–3259 (2004).
Overstreet-Wadiche, L. S., Bromberg, D. A., Bensen, A. L. & Westbrook, G. L. GABAergic signaling to newborn neurons in DG. J. Neurophysiol. 94, 4528–4532 (2005).
Espósito, M. S. et al. Neuronal differentiation in the adult hippocampus recapitulates embryonic development. J. Neurosci. 25, 10074–10086 (2005).
van Praag, H. et al. Functional neurogenesis in the adult hippocampus. Nature 415, 1030–1034 (2002).The first paper to show that new neurons in the adult hippocampus become functional.
Wang, S., Scott, B. W. & Wojtowicz, J. M. Heterogenous properties of dentate granule neurons in the adult rat. J. Neurobiol. 42, 248–257 (2000).
Snyder, J. S., Kee, N. & Wojtowicz, J. M. Effects of adult neurogenesis on synaptic plasticity in the rat DG. J. Neurophysiol. 85, 2423–2431 (2001).
Schmidt-Hieber, C., Jonas, P. & Bischofberger, J. Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature 429, 184–187 (2004).
Soares, S. & Sotelo, C. Adult neural stem cells from the mouse subventricular zone are limited in migratory ability compared to progenitor cells of similar origin. Neuroscience 128, 807–817 (2004).
Raineteau, O., Rietschin, L., Gradwohl, G., Guillemot, F. & Gahwiler, B. H. Neurogenesis in hippocampal slice cultures. Mol. Cell. Neurosci. 26, 241–250 (2004).
Kamada, M. et al. Intrinsic and spontaneous neurogenesis in the postnatal slice culture of rat hippocampus. Eur. J. Neurosci. 20, 2499–2508 (2004).
Liu, S. et al. Generation of functional inhibitory neurons in the adult rat hippocampus. J. Neurosci. 23, 732–736 (2003).
Gutierrez, R. et al. Plasticity of the GABAergic phenotype of the 'glutamatergic' granule cells of the rat DG. J. Neurosci. 23, 5594–5598 (2003).
Petreanu, L. & Alvarez-Buylla, A. Maturation and death of adult-born OB granule neurons: role of olfaction. J. Neurosci. 22, 6106–6113 (2002).An elegant study of the maturation and elimination of newborn bulbar interneurons.
Belluzzi, O., Benedusi, M., Ackman, J. & LoTurco, J. J. Electrophysiological differentiation of new neurons in the OB. J. Neurosci. 23, 10411–10418 (2003).
Carleton, A., Petreanu, L. T., Lansford, R., Alvarez-Buylla, A. & Lledo, P. -M. Becoming a new neuron in the adult OB. Nature Neurosci. 6, 507–518 (2003).References 57 and 58 physiologically characterize newborn periglomerular and granular cells, showing that they are functional neurons that synaptically integrate into olfactory bulb circuitry.
Winner, B., Cooper-Kuhn, C. M., Aigner, R., Winkler, J. & Kuhn, H. G. Long-term survival and cell death of newly generated neurons in the adult rat OB. Eur. J. Neurosci. 16, 1681–1689 (2002).
Shen, Q. et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304, 1338–1340 (2004).
Song, H., Stevens, C. F. & Gage, F. H. Astroglia induce neurogenesis from adult neural stem cells. Nature 417, 39–44 (2002).One of the first demonstrations that hippocampal neurogenesis requires the proximity of astrocytes.
Wurmser, A. E. et al. Cell fusion-independent differentiation of neural stem cells to the endothelial lineage. Nature 430, 350–356 (2004).The first results to show that endothelial cells induce conversion of neural stem cells into an endothelial-like population.
Yoshikawa, K. Cell cycle regulators in neural stem cells and postmitotic neurons. Neurosci. Res. 37, 1–14 (2000).
Cooper-Kuhn, C. M. et al. Impaired adult neurogenesis in mice lacking the transcription factor E2F1. Mol. Cell. Neurosci. 21, 312–323 (2002).
Conover, J. C. et al. Disruption of Eph/ephrin signaling affects migration and proliferation in the adult subventricular zone. Nature Neurosci. 3, 1091–1097 (2000).
Holmberg, J. et al. Ephrin-A2 reverse signaling negatively regulates neural progenitor proliferation and neurogenesis. Genes Dev. 19, 462–471 (2005).
McMahon, A. P., Ingham, P. W. & Tabin, C. J. Developmental roles and clinical significance of hedgehog signaling. Curr. Top. Dev. Biol. 53, 1–114 (2003).
Machold, R. et al. Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron 39, 937–950 (2003).
Lai, K., Kaspar, B. K., Gage, F. H. & Schaffer, D. V. Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nature Neurosci. 6, 21–27 (2003).
Lie, D. C. Wnt signalling regulates adult hippocampal neurogenesis. Nature 437, 1370–1375 (2005).The first identification of an instructive factor for neurogenesis from adult neural stem cells.
Amoureux, M. C., Cunningham, B. A., Edelman, G. M. & Crossin, K. L. N-CAM binding inhibits the proliferation of hippocampal progenitor cells and promotes their differentiation to a neuronal phenotype. J. Neurosci. 20, 3631–3640 (2000).
Belvindrah, R., Rougon, G. & Chazal, G. Increased neurogenesis in adult mCD24-deficient mice. J. Neurosci. 22, 3594–3607 (2002).
Caillé, I. et al. Soluble form of amyloid precursor protein regulates proliferation of progenitors in the adult subventricular zone. Development 131, 2173–2181 (2004).
Lim, D. A. et al. Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 28, 713–726 (2000).One of the first papers to show the molecular signals that are required for the neurogenic lineage to be maintained throughout adult life.
Ueki, T. et al. A novel secretory factor, Neurogenesin-1, provides neurogenic environmental cues for neural stem cells in the adult hippocampus. J. Neurosci. 23, 11732–11740 (2003).
Fan, X. T., Xu, H. W., Cai, W. Q., Yang, H. & Liu, S. Antisense Noggin oligodeoxynucleotide administration decreases cell proliferation in the DG of adult rats. Neurosci. Lett. 366, 107–111 (2004).
Hitoshi, S. et al. Primitive neural stem cells from the mammalian epiblast differentiate to definitive neural stem cells under the control of Notch signaling. Genes Dev. 18, 1806–1811 (2004).
Grandbarbe, L. et al. Delta–Notch signaling controls the generation of neurons/glia from neural stem cells in a stepwise process. Development 130, 1391–1402 (2003).
Molofsky, A. V. et al. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425, 962–967 (2003).
Shi, Y. et al. Expression and function of orphan nuclear receptor TLX in adult neural stem cells. Nature 427, 78–83 (2004).
Hack, M. A. et al. Neuronal fate determinants of adult OB neurogenesis. Nature Neurosci. 8, 865–871 (2005).
Kohwi, M., Osumi, N., Rubenstein, J. L. & Alvarez-Buylla, A. Pax6 is required for making specific subpopulations of granule and periglomerular neurons in the OB. J. Neurosci. 25, 6997–7003 (2005).
Maekawa, M. et al. Pax6 is required for production and maintenance of progenitor cells in postnatal hippocampal neurogenesis. Genes Cells 10, 1001–1014 (2005).
Parras, C. M. et al. Mash1 specifies neurons and oligodendrocytes in the postnatal brain. EMBO J. 23, 4495–4505 (2004).
Bolteus, A. J. & Bordey, A. GABA release and uptake regulate neuronal precursor migration in the postnatal subventricular zone. J. Neurosci. 24, 7623–7631 (2004).One of the first papers to demonstrate the influence of astrocyte-like cells on SVZ-derived precursor migration.
Abrous, D. N., Koehl, M. & Le Moal, M. Adult neurogenesis: from precursors to network and physiology. Physiol. Rev. 85, 523–569 (2005).
Cameron, H. A., McEwen, B. S. & Gould, E. Regulation of adult neurogenesis by excitatory input and NMDA receptor activation in the DG. J. Neurosci. 15, 4687–4692 (1995).
Gould, E., McEwen, B. S., Tanapat, P., Galea, L. A. & Fuchs, E. Neurogenesis in the DG of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. J. Neurosci. 17, 2492–2498 (1997).
Bernabeu, R. & Sharp, F. R. NMDA and AMPA/kainate glutamate receptors modulate dentate neurogenesis and CA3 synapsin-I in normal and ischemic hippocampus. J. Cereb. Blood Flow Metab. 20, 1669–1680 (2000).
Yoshimizu, T. & Chaki, S. Increased cell proliferation in the adult mouse hippocampus following chronic administration of group II metabotropic glutamate receptor antagonist, MGS0039. Biochem. Biophys. Res. Commun. 315, 493–496 (2004).
Bai, F., Bergeron, M. & Nelson, D. L. Chronic AMPA receptor potentiator (LY451646) treatment increases cell proliferation in adult rat hippocampus. Neuropharmacology 44, 1013–1021 (2003).
Dawirs, R. R., Hildebrandt, K. & Teuchert-Noodt, G. Adult treatment with haloperidol increases dentate granule cell proliferation in the gerbil hippocampus. J. Neural. Transm. 105, 317–327 (1998).
Yamaguchi, M. et al. Repetitive cocaine administration decreases neurogenesis in adult rat hippocampus. Ann. NY Acad. Sci. 1025, 351–362 (2004).
Kippin, T. E., Kapur, S. & van der Kooy, D. Dopamine specifically inhibits forebrain neural stem cell proliferation, suggesting a novel effect of antipsychotic drugs. J. Neurosci. 25, 5815–5823 (2005).
Baker, S. A., Baker, K. A. & Hagg, T. Dopaminergic nigrostriatal projections regulate neural precursor proliferation in the adult mouse subventricular zone. Eur. J. Neurosci. 20, 575–579 (2004).
Hoglinger, G. U. et al. Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nature Neurosci. 7, 726–735 (2004).
Banasr, M., Hery, M., Printemps, R. & Daszuta, A. Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the DG and the subventricular zone. Neuropsychopharmacology 29, 450–460 (2004).
Radley, J. J. & Jacobs, B. L. 5-HT1A receptor antagonist administration decreases cell proliferation in the DG. Brain Res. 955, 264–267 (2002).
Brezun, J. M. & Daszuta, A. Depletion in serotonin decreases neurogenesis in the DG and the subventricular zone of adult rats. Neuroscience 89, 999–1002 (1999).
Malberg, J. E., Eisch, A. J., Nestler, E. J. & Duman, R. S. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J. Neurosci. 20, 9104–9110 (2000).
Santarelli, L. et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301, 805–809 (2003).
Cooper-Kuhn, C. M., Winkler, J. & Kuhn, H. G. Decreased neurogenesis after cholinergic forebrain lesion in the adult rat. J. Neurosci. Res. 77, 155–165 (2004).
Mohapel, P., Leanza, G., Kokaia, M. & Lindvall, O. Forebrain acetylcholine regulates adult hippocampal neurogenesis and learning. Neurobiol. Aging 26, 939–946 (2005).
Packer, M. A. et al. Nitric oxide negatively regulates mammalian adult neurogenesis. Proc. Natl Acad. Sci. USA 100, 9566–9571 (2003).
Moreno-Lopez, B. Nitric oxide is a physiological inhibitor of neurogenesis in the adult mouse subventricular zone and OB. J. Neurosci. 24, 85–95 (2004).
Eisch, A. J., Barrot, M., Schad, C. A., Self, D. W. & Nestler, E. J. Opiates inhibit neurogenesis in the adult rat hippocampus. Proc. Natl Acad. Sci. USA 97, 7579–7584 (2000).
Persson, A. I. et al. μ- and δ-opioid receptor antagonists decrease proliferation and increase neurogenesis in cultures of rat adult hippocampal progenitors. Eur. J. Neurosci. 17, 1159–1172 (2003).
Rueda, D., Navarro, B., Martinez-Serrano, A., Guzman, M. & Galve-Roperh, I. The endocannabinoid anandamide inhibits neuronal progenitor cell differentiation through attenuation of the Rap1/B-Raf/ERK pathway. J. Biol. Chem. 277, 46645–46650 (2002).
Herrera, D. G. et al. Selective impairment of hippocampal neurogenesis by chronic alcoholism: protective effects of an antioxidant. Proc. Natl Acad. Sci. USA 100, 7919–7924 (2003).
Aberg, E., Hofstetter, C. P., Olson, L. & Brene, S. Moderate ethanol consumption increases hippocampal cell proliferation and neurogenesis in the adult mouse. Int. J. Neuropsychopharmacol. 8, 557–567 (2005).
Jiang, W. et al. Cannabinoids promote embryonic and adult hippocampus neurogenesis and produce anxiolytic- and antidepressant-like effects. J. Clin. Invest. 115, 3104–3116 (2005).
Katoh-Semba, R. et al. Riluzole enhances expression of brain-derived neurotrophic factor with consequent proliferation of granule precursor cells in the rat hippocampus. FASEB J. 16, 1328–1330 (2002).
Zigova, T., Pencea, V., Wiegand, S. J. & Luskin, M. B. Intraventricular administration of BDNF increases the number of newly generated neurons in the adult OB. Mol. Cell. Neurosci. 11, 234–245 (1998).
Emsley, J. G. & Hagg, T. Endogenous and exogenous ciliary neurotrophic factor enhances forebrain neurogenesis in adult mice. Exp. Neurol. 183, 298–310 (2003).
Chojnacki, A., Shimazaki, T., Gregg, C., Weinmaster, G. & Weiss, S. Glycoprotein 130 signaling regulates Notch1 expression and activation in the self-renewal of mammalian forebrain neural stem cells. J. Neurosci. 23, 1730–1741 (2003).
Jin, K. et al. Neurogenesis and aging: FGF-2 and HB-EGF restore neurogenesis in hippocampus and subventricular zone of aged mice. Aging Cell 2, 175–183 (2003).
Jin, K. et al. Cerebral neurogenesis is induced by intranasal administration of growth factors. Ann. Neurol. 53, 405–409 (2003).
Kuhn, H. G., Winkler, J., Kempermann, G., Thal, L. J. & Gage, F. H. Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J. Neurosci. 17, 5820–5829 (1997).
Aberg, M. A. et al. IGF-I has a direct proliferative effect in adult hippocampal progenitor cells. Mol. Cell. Neurosci. 24, 23–40 (2003).
Craig, C. G. et al. In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. J. Neurosci. 16, 2649–2658 (1996).
Enwere, E. et al. Aging results in reduced epidermal growth factor receptor signaling, diminished olfactory neurogenesis, and deficits in fine olfactory discrimination. J. Neurosci. 24, 8354–8365 (2004).
Jin, K. et al. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc. Natl Acad. Sci. USA 99, 11946–11950 (2002).
Greenberg, D. A. & Jin, K. From angiogenesis to neuropathology. Nature 438, 954–959 (2005).
Cao, L. et al. VEGF links hippocampal activity with neurogenesis, learning and memory. Nature Genet. 36, 827–835 (2004).
Consiglio, A. et al. Robust in vivo gene transfer into adult mammalian neural stem cells by lentiviral vectors. Proc. Natl Acad. Sci. USA 101, 14835–14840 (2004).
Cameron, H. A. & Gould, E. Adult neurogenesis is regulated by adrenal steroids in the DG. Neuroscience 61, 203–209 (1994).The first study identifying an external factor that regulates neuronal birth in the adult dentate gyrus.
Tanapat, P., Hastings, N. B., Reeves, A. J. & Gould, E. Estrogen stimulates a transient increase in the number of new neurons in the mk DG of the adult female rat. J. Neurosci. 19, 5792–5801 (1999).
Coe, C. L. et al. Prenatal stress diminishes neurogenesis in the DG of juvenile rhesus monkeys. Biol. Psychiatry 54, 1025–1034 (2003).
Montaron, M. F. et al. Lifelong corticosterone level determines age-related decline in neurogenesis and memory. Neurobiol. Aging 13 Jun 2005 (10.1016/j.neurobiolaging.2005.02.014).
Rodriguez, J. J. et al. Complex regulation of the expression of the polysialylated form of the neuronal cell adhesion molecule by glucocorticoids in the rat hippocampus. Eur. J. Neurosci. 10, 2994–3006 (1998).
Shingo, T. et al. Pregnancy-stimulated neurogenesis in the adult female forebrain mediated by prolactin. Science 299, 117–120 (2003).
Lemkine, G. F. et al. Adult neural stem cell cycling in vivo requires thyroid hormone and its α receptor. FASEB J. 19, 863–865 (2005).
Mayo, W. et al. Pregnenolone sulfate enhances neurogenesis and PSA-NCAM in young and aged hippocampus. Neurobiol. Aging 26, 103–114 (2005).
van Praag, H., Christie, B. R., Sejnowski, T. J. & Gage, F. H. Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc. Natl Acad. Sci. USA 96, 13427–13431 (1999).
Brown, J. et al. Enriched environment and physical activity stimulate hippocampal but not OB neurogenesis. Eur. J. Neurosci. 17, 2042–2046 (2003).
Neeper, S. A., Gomez-Pinilla, F., Choi, J. & Cotman, C. Exercise and brain neurotrophins. Nature 373, 109 (1995).
Kempermann, G., Kuhn, H. G. & Gage, F. H. More hippocampal neurons in adult mice living in an enriched environment. Nature 386, 493–495 (1997).One of the first papers to study environmental factors that regulate new neuron birth in the dentate gyrus.
Kempermann, G., Brandon, E. P. & Gage, F. H. Environmental stimulation of 129/SvJ mice causes increased cell proliferation and neurogenesis in the adult DG. Curr. Biol. 8, 939–942 (1998).
Mirescu, C., Peters, J. D. & Gould, E. Early life experience alters response of adult neurogenesis to stress. Nature Neurosci. 7, 841–846 (2004).
Kozorovitskiy, Y. & Gould, E. Dominance hierarchy influences adult neurogenesis in the DG. J. Neurosci. 24, 6755–6759 (2004).
Guzman-Marin, R. et al. Sleep deprivation suppresses neurogenesis in the adult hippocampus of rats. Eur. J. Neurosci. 22, 2111–2116 (2005).
Bonfanti, L. & Theodosis, D. T. Expression of polysialylated neural cell adhesion molecule by proliferating cells in the subependymal layer of the adult rat, in its rostral extension and in the OB. Neuroscience 62, 291–305 (1994).
Cremer, H. et al. Inactivation of the N-CAM gene in mice results in size reduction of the OB and deficits in spatial learning. Nature 367, 455–459 (1994).
Wu, W. et al. Directional guidance of neuronal migration in the olfactory system by the protein Slit. Nature 400, 331–336 (1999).
Nguyen-Ba-Charvet, K. T. et al. Multiple roles for slits in the control of cell migration in the rostral migratory stream. J. Neurosci. 24, 1497–1506 (2004).
Anton, E. S. et al. Receptor tyrosine kinase ErbB4 modulates neuroblast migration and placement in the adult forebrain. Nature Neurosci. 7, 1319–1328 (2004).
Emsley, J. G. & Hagg, T. α6/β1 integrin directs migration of neuronal precursors in adult mouse forebrain. Exp. Neurol. 183, 273–285 (2003).
Liu, G. & Rao, Y. Neuronal migration from the forebrain to the OB requires a new attractant persistent in the OB. J. Neurosci. 23, 6651–6659 (2003).
Kirschenbaum, B., Doetsch, F., Lois, C. & Alvarez-Buylla, A. Adult subventricular zone neuronal precursors continue to proliferate and migrate in the absence of the OB. J. Neurosci. 19, 2171–2180 (1999).
Hack, I., Bancila, M., Loulier, K., Carroll, P. & Cremer, H. Reelin is a detachment signal in tangential chain-migration during postnatal neurogenesis. Nature Neurosci. 5, 939–945 (2002).
Saghatelyan, A., de Chevigny, A., Schachner, M. & Lledo, P. M. Tenascin-R mediates activity-dependent recruitment of neuroblasts in the adult mouse forebrain. Nature Neurosci. 7, 347–356 (2004).
Ng, K. L. et al. Dependence of OB neurogenesis on prokineticin 2 signaling. Science 308, 1923–1927 (2005).
Dayer, A. G., Ford, A. A., Cleaver, K. M., Yassaee, M. & Cameron, H. A. Short-term and long-term survival of new neurons in the rat DG. J. Comp. Neurol. 460, 563–572 (2003).
Nilsson, M., Perfilieva, E., Johansson, U., Orwar, O. & Eriksson, P. S. Enriched environment increases neurogenesis in the adult rat DG and improves spatial memory. J. Neurobiol. 39, 569–578 (1999).
Leuner, B. et al. Learning enhances the survival of new neurons beyond the time when the hippocampus is required for memory. J. Neurosci. 24, 7477–7481 (2004).
Mechawar, N., Saghatelyan, A., Grailhe, R., Lledo, P. -M. & Changeux, J. P. Nicotinic receptors regulate the survival of newborn neurons in the adult OB. Proc. Natl Acad. Sci. USA 101, 9822–9826 (2004).
Corotto, F. S., Henegar, J. R. & Maruniak, J. A. Odor deprivation leads to reduced neurogenesis and reduced neuronal survival in the OB of the adult mouse. Neuroscience 61, 739–744 (1994).
Rochefort, C., Gheusi, G., Vincent, J. D. & Lledo, P. -M. Enriched odor exposure increases the number of newborn neurons in the adult OB and improves odor memory. J. Neurosci. 22, 2679–2689 (2002).
Saghatelyan, A. et al. Activity-dependent adjustments of the inhibitory network in the adult OB following early postnatal deprivation. Neuron 46, 103–116 (2005).Provides striking evidence that newborn neurons bring unique features to the mature neuronal network.
Yamaguchi, M. & Mori, K. Critical period for sensory experience-dependent survival of newly generated granule cells in the adult mouse OB. Proc. Natl Acad. Sci. USA 102, 9697–9702 (2005).
Miwa, N. & Storm, D. R. Odorant-induced activation of extracellular signal-regulated kinase/mitogen-activated protein kinase in the OB promotes survival of newly formed granule cells. J. Neurosci. 25, 5404–5412 (2005).
Rochefort, C. & Lledo, P. M. Short-term survival of newborn neurons in the adult olfactory bulb after exposure to a complex odor environment. Eur. J. Neurosci. 22, 2863–2870 (2005).
Kuhn, H. G. et al. Increased generation of granule cells in adult Bcl-2-overexpressing mice: a role for cell death during continued hippocampal neurogenesis. Eur. J. Neurosci. 22, 1907–1915 (2005).
Magavi, S. S. P., Mitchell, B. D., Szentirmai, O. & Macklis, J. D. Adult-born and preexisting olfactory granule neurons undergo distinct experience-dependent modifications of their olfactory responses in vivo. J. Neurosci. 25, 10729–10739 (2005).
Lemaire, V., Aurousseau, C., Le Moal, M. & Abrous, D. N. Behavioural trait of reactivity to novelty is related to hippocampal neurogenesis. Eur. J. Neurosci. 11, 4006–4014 (1999).
Drapeau, E. et al. Spatial memory performances of aged rats in the water maze predict levels of hippocampal neurogenesis. Proc. Natl Acad. Sci. USA 100, 14385–14390 (2003).
Merrill, D. A., Karim, R., Darraq, M., Chiba, A. A. & Tuszynski, M. H. Hippocampal cell genesis does not correlate with spatial learning ability in aged rats. J. Comp. Neurol. 459, 201–207 (2003).
Dobrossy, M. D. et al. Differential effects of learning on neurogenesis: learning increases or decreases the number of newly born cells depending on their birth date. Mol. Psychiatry 8, 974–982 (2003).Highlights the complex interactions between cognitive processes and adult neurogenesis. Depending on the precise demands of the task, and on the age of newborn cells, water maze training can have different effects on cell proliferation and survival.
Zhao, X. et al. Mice lacking methyl-CpG binding protein 1 have deficits in adult neurogenesis and hippocampal function. Proc. Natl Acad. Sci. USA 100, 6777–6782 (2003).
Kempermann, G. & Gage, F. H. Genetic determinants of adult hippocampal neurogenesis correlate with acquisition, but not probe trial performance, in the water maze task. Eur. J. Neurosci. 16, 129–136 (2002).
Feng, R. et al. Deficient neurogenesis in forebrain-specific presenilin-1 knockout mice is associated with reduced clearance of hippocampal memory traces. Neuron 32, 911–926 (2001).
Gheusi, G. et al. Importance of newly generated neurons in the adult OB for odor discrimination. Proc. Natl Acad. Sci. USA 97, 1823–1828 (2000).
Gilbert, M. E., Kelly, M. E., Samsam, T. E. & Goodman, J. H. Chronic developmental lead exposure reduces neurogenesis in adult rat hippocampus but does not impair spatial learning. Toxicol. Sci. 86, 365–374 (2005).
Ueda, S., Sakakibara, S. & Yoshimoto, K. Effect of long-lasting serotonin depletion on environmental enrichment-induced neurogenesis in adult rat hippocampus and spatial learning. Neuroscience 135, 395–402 (2005).
Lledo, P. -M., Gheusi, G. & Vincent, J. D. Information processing in the mammalian olfactory system. Physiol. Rev. 85, 281–317 (2005).
Gould, E. et al. Learning enhances adult neurogenesis in the hippocampal formation. Nature Neurosci. 3, 260–265 (1999).
Ambrogini, P. et al. Learning may reduce neurogenesis in adult rat DG. Neurosci. Lett. 359, 13–16 (2004).
Shors, T. J. et al. Neurogenesis in the adult is involved in the formation of trace memories. Nature 410, 372–376 (2001).One of the most direct attempts to demonstrate a role for adult neurogenesis in learning. Reduced hippocampal neurogenesis due to application of the toxin MAM is associated with impaired hippocampus-dependent trace conditioning.
Shors, T. J., Townsend, D. A., Zhao, M., Kozorovitskiy, Y. & Gould, E. Neurogenesis may relate to some but not all types of hippocampal-dependent learning. Hippocampus 12, 578–584 (2002).
Moser, E. I. Altered inhibition of dentate granule cells during spatial learning in an exploration task. J. Neurosci. 16, 1247–1259 (1996).
Snyder, J. S., Hong, N. S., McDonald, R. J. & Wojtowicz, J. M. A role for adult neurogenesis in spatial long-term memory. Neuroscience 130, 843–852 (2005).Another of the most direct attempts to demonstrate a role for adult neurogenesis in learning. Reduced hippocampal neurogenesis due to irradiation treatment is associated with impaired long-term memory in the spatial water maze.
Raber, J. et al. Radiation-induced cognitive impairments are associated with changes in indicators of hippocampal neurogenesis. Radiat. Res. 162, 39–47 (2004).
Monje, M. L., Mizumatsu, S., Fike, J. R. & Palmer, T. D. Irradiation induces neural precursor-cell dysfunction. Nature Med. 8, 955–962 (2002).
Cecchi, G. A., Petreanu, L. T., Alvarez-Buylla, A. & Magnasco, M. O. Unsupervised learning and adaptation in a model of adult neurogenesis. J. Comput. Neurosci. 11, 175–182 (2001).
Becker, S. A computational principle for hippocampal learning and neurogenesis. Hippocampus 15, 722–738 (2005).
Meltzer, L. A., Yabaluri, R. & Deisseroth, K. A role for circuit homeostasis in adult neurogenesis. Trends Neurosci. 28, 653–660 (2005).
Chambers, R. A., Potenza, M. N., Hoffman, R. E. & Miranker, W. Simulated apoptosis/neurogenesis regulates learning and memory capabilities of adaptive neural networks. Neuropsychopharmacology 29, 747–758 (2004).A computational model in which increased turnover of cells aids the learning of new information and also facilitates the forgetting of old information.
Kempermann, G. Why new neurons? Possible functions for adult hippocampal neurogenesis. J. Neurosci. 22, 635–638 (2002).
Lynch, G. & Granger, R. in Olfaction (eds Davis, J. L. & Eichenbaum, H.) 141–165 (MIT Press, Boston, Massachusetts, 1991).
Hensch, T. K. Critical period plasticity in local cortical circuits. Nature Rev. Neurosci. 6, 877–888 (2005).
Brunjes, P. C. Unilateral naris closure and olfactory system development. Brain Res. Brain Res. Rev. 19, 146–160 (1994).
Brennan, P., Kaba, H. & Keverne, E. B. Olfactory recognition: a simple memory system. Science 250, 1223–1226 (1990).
Lemasson, M., Saghatelyan, A., Olivo-Marin, J. C. & Lledo, P. -M. Neonatal and adult neurogenesis provide two distinct populations of granule cells in the mouse OB. J. Neurosci. 25, 6816–6825 (2005).
Parent, J. M. Injury-induced neurogenesis in the adult mammalian brain. Neuroscientist 9, 261–272 (2003).
Dash, P. K., Mach, S. A. & Moore, A. N. Enhanced neurogenesis in the rodent hippocampus following traumatic brain injury. J. Neurosci. Res. 63, 313–319 (2001).
Yagita, Y. et al. Differential expression of Musashi1 and nestin in the adult rat hippocampus after ischemia. J. Neurosci. Res. 69, 750–756 (2002).
Kokaia, Z. & Lindvall, O. Neurogenesis after ischaemic brain insults. Curr. Opin. Neurobiol. 13, 127–132 (2003).
Rice, A. C. et al. Proliferation and neuronal differentiation of mitotically active cells following traumatic brain injury. Exp. Neurol. 183, 406–417 (2003).
Arvidsson, A., Collin, T., Kirik, D., Kokaia, Z. & Lindvall, O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nature Med. 8, 963–970 (2002).
Jin, K. et al. Directed migration of neuronal precursors into the ischemic cerebral cortex and striatum. Mol. Cell. Neurosci. 24, 171–189 (2003).
Zhang, R. et al. Activated neural stem cells contribute to stroke-induced neurogenesis and neuroblast migration toward the infarct boundary in adult rats. J. Cereb. Blood Flow Metab. 24, 441–448 (2004).
Zhang, R. L., Zhang, Z. G., Zhang, L. & Chopp, M. Proliferation and differentiation of progenitor cells in the cortex and the subventricular zone in the adult rat after focal cerebral ischemia. Neuroscience 105, 33–41 (2001).
Buffo, A. et al. Expression pattern of the transcription factor Olig2 in response to brain injuries: implications for neuronal repair. Proc. Natl Acad. Sci. USA 102, 18183–18188 (2005).
Curtis, M. A. et al. Increased cell proliferation and neurogenesis in the adult human Huntington's disease brain. Proc. Natl Acad. Sci. USA 100, 9023–9027 (2003).
Jin, K. et al. Enhanced neurogenesis in Alzheimer's disease transgenic (PDGF-APP) mice. Proc. Natl Acad. Sci. USA 101, 13363–13367 (2004).
Yoshimura, S. et al. FGF-2 regulation of neurogenesis in adult hippocampus after brain injury. Proc. Natl Acad. Sci. USA 98, 5874–5879 (2001).
Zhu, D. Y., Liu, S. H., Sun, H. S. & Lu, Y. M. Expression of inducible nitric oxide synthase after focal cerebral ischemia stimulates neurogenesis in the adult rodent DG. J. Neurosci. 23, 223–229 (2003).
Manev, H., Uz, T., Manev, R. & Zhang, Z. Neurogenesis and neuroprotection in the adult brain. A putative role for 5-lipoxygenase? Ann. NY Acad. Sci. 939, 45–51 (2001).
Nakatomi, H. et al. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 110, 429–441 (2002).
Nelson, P. T. et al. Clonal human (hNT) neuron grafts for stroke therapy: neuropathology in a patient 27 months after implantation. Am. J. Pathol. 160, 1201–1206 (2002).
Sanai, N. et al. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427, 740–744 (2004).
Morshead, C. M. & van der Kooy, D. Disguising adult neural stem cells. Curr. Opin. Neurobiol. 14, 125–131 (2004).
Ge, S. et al. GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature 439, 589–593 (2006).
Kulkarni, V. A., Jha, S. & Vaidya, V. A. Depletion of norepinephrine decreases the proliferation, but does not influence the survival and differentiation, of granule cell progenitors in the adult rat hippocampus. Eur. J. Neurosci. 16, 2008–2012 (2002).
Mercer, A. et al. PACAP promotes neural stem cell proliferation in adult mouse brain. J. Neurosci. Res. 76, 205–215 (2004).
Lu, L. et al. Modification of hippocampal neurogenesis and neuroplasticity by social environments. Exp. Neurol. 183, 600–609 (2003).
Derrick, B. E., York, A. D. & Martinez, J. L. Jr. Increased granule cell neurogenesis in the adult DG following mossy fiber stimulation sufficient to induce long-term potentiation. Brain Res. 857, 300–307 (2000).
Lucassen, P. J., Fuchs, E. & Czeh, B. Antidepressant treatment with tianeptine reduces apoptosis in the hippocampal DG and temporal cortex. Biol. Psychiatry 55, 789–796 (2004).
Jang, M.H. et al. Alcohol and nicotine reduce cell proliferation and enhance apoptosis in DG. Neuroreport 13, 1509–1513 (2002).
Sawamoto, K. et al. New neurons follow the flow of cerebrospinal fluid in the adult brain. Science 311, 629–632 (2006).
Ziv, Y. et al. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nature Neurosci. 9, 268–275 (2006).
Götz, M. & Huttner, W. B. The cell biology of neurogenesis. Nature Rev. Mol. Cell Biol. 6, 777–788 (2005).
Acknowledgements
This work was supported by the Pasteur Institute (GPH 'stem cells'), the Fondation pour la Recherche Médicale, the Association Française Contre les Myopathies, the Fédération pour la Recherche sur le Cerveau and a grant from Région Ile-de-France (all in France). We apologize to those authors whose references, although relevant to this subject, have not been included in this review owing to space constraints.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Related links
Glossary
- Adult neurogenesis
-
The entire set of events leading to the production of new neurons in the adult brain, from precursor cell division to functionally integrated survival.
- Precursors
-
CNS stem cells and all progenitors are generally referred to as precursor cells.
- Progenitor
-
A mitotic cell with a fast cell-division cycle that retains the ability to proliferate and to give rise to terminally differentiated cells but that is not capable of indefinite self-renewal.
- Retrovirus
-
An RNA virus that uses reverse transcriptase to convert its RNA into DNA.
- Neurogenic niche
-
Regions where the degree of neurogenesis depends on the interaction of the microenvironment with precursor cells that have neurogenic potential.
- Antisense oligodeoxynucleotide
-
A small deoxynucleotide that is complementary to a select region of the mRNA that encodes the protein of interest. It can potentially interfere with transcription and translation, thereby decreasing gene expression. These molecules have been used in vivo to selectively inhibit the expression of peptides and proteins in the brain. This provides a simple way of studying the effects of the absence of a gene product in simple organisms and in cells.
- Stereological analyses
-
Classic stereology microscopy has developed along independent pathways as a methodology to provide a quantitative understanding of the structure of the brain. This type of analysis has concentrated on the unbiased numerical estimation of parameters such as length, area, volume and population size that characterize entire regions of the brain as well as individual elements within them, for example, cell volume.
- Trace eyeblink conditioning
-
A hippocampus-dependent task in which animals must associate a conditioned stimulus with an eyeblink-producing unconditioned stimulus. The key 'trace' aspect comes from the fact that the two stimuli are separated in time.
- Morris water maze
-
In its most common form, a test of spatial learning and memory, in which animals must use spatial cues to locate a hidden platform in a pool of opaque water.
- Long-term potentiation
-
(LTP). An enduring increase in the amplitude of excitatory postsynaptic potentials as a result of high-frequency (tetanic) stimulation of afferent pathways. LTP is often considered to be the cellular basis of learning and memory in vertebrates.
- Barnes maze
-
In its most common form, a challenging test of spatial learning and memory. Animals must locate a single escape tunnel hidden under one of 40 possible entrance holes.
Rights and permissions
About this article
Cite this article
Lledo, PM., Alonso, M. & Grubb, M. Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci 7, 179–193 (2006). https://doi.org/10.1038/nrn1867
Issue Date:
DOI: https://doi.org/10.1038/nrn1867
This article is cited by
-
Differential vulnerability of adult neurogenic niches to dosage of the neurodevelopmental-disorder linked gene Foxg1
Molecular Psychiatry (2023)
-
Laminin-coated electronic scaffolds with vascular topography for tracking and promoting the migration of brain cells after injury
Nature Biomedical Engineering (2023)
-
Human Cytomegalovirus IE2 Disrupts Neural Progenitor Development and Induces Microcephaly in Transgenic Mouse
Molecular Neurobiology (2023)
-
The Dialogue Between Neuroinflammation and Adult Neurogenesis: Mechanisms Involved and Alterations in Neurological Diseases
Molecular Neurobiology (2023)
-
Single-cell transcriptomic analysis reveals the adverse effects of cadmium on the trajectory of neuronal maturation
Cell Biology and Toxicology (2023)