Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Normal huntingtin function: an alternative approach to Huntington's disease

Key Points

  • A mutation in the protein huntingtin causes the devastating neurodegenerative disorder Huntington's disease (HD).

  • Huntingtin is a high-molecular-weight, ubiquitously expressed protein that has no sequence homology with other proteins and a fundamental role in embryonic development. It seems to have appeared some millions of years ago, before the divergence of the protostoma (which gave rise to insects) and deuterostoma (mammals) branches.

  • Biological evidence shows that huntingtin is anti-apoptotic in vitro and in vivo. This cell-autonomous activity can be shown in neuronal and non-neuronal cells, and is contained in the 548 amino acid terminus (N548) of the protein. In addition, huntingtin protects neurons from excitotoxicity in vivo.

  • In the search for additional functions of wild-type huntingtin that could be more neuron-specific, huntingtin was found to stimulate brain-derived neurotrophic factor (BDNF) gene transcription through inhibition of a silencer element (Repressor element 1, also known as neuron-restrictive silencer element, NRSE) located in the promoter of the BDNF gene. Through a similar mechanism, huntingtin controls the transcription of many other neuronal genes that carry an RE1/NRSE in their promoters. Wild-type huntingtin also regulates fast axonal trafficking, vesicle transport (including transport of BDNF) and synaptic transmission, and so has a crucial role in normal brain function.

  • Mutation of huntingtin causes reduced BDNF production, enhanced activity of the RE1/NRSE silencer (with repression of neuronal gene transcription), reduced transport of mitochondria and BDNF, altered synaptic transmission and many other alterations as a consequence of its increased toxicity.

  • Whereas increased expression of wild-type huntingtin leads to increased survival and BDNF production, its depletion produces some (but not all) of the phenotypes observed in HD mice. This suggests that reduced huntingtin activity might have a role in HD and that wild-type huntingtin might act as a modifier of HD pathology.

  • Wild-type huntingtin levels have been manipulated by its overexpression or depletion in HD models. Its overexpression reduces mutant huntingtin toxicity in HD cells in vitro and in the testes of HD transgenic mice. Its reduced level in HD mice causes a worsening of some of the HD phenotypes. Finally, reducing the level of BDNF in HD mice causes earlier onset of symptoms and increased motor dysfunction.

  • Huntingtin is, therefore, endowed with important functions in the healthy brain. Some of these same functions are reduced in HD, so wild-type huntingtin might act as a modifier of HD pathology. Restoring the activity of its downstream targets could be beneficial to patients with this disorder.

Abstract

Several neurological diseases are characterized by the altered activity of one or a few ubiquitously expressed cell proteins, but it is not known how these normal proteins turn into harmful executors of selective neuronal cell death. We selected huntingtin in Huntington's disease to explore this question because the dominant inheritance pattern of the disease seems to exclude the possibility that the wild-type protein has a role in the natural history of this condition. However, even in this extreme case, there is considerable evidence that normal huntingtin is important for neuronal function and that the activity of some of its downstream effectors, such as brain-derived neurotrophic factor, is reduced in Huntington's disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of huntingtin amino acid sequence.
Figure 2: Huntingtin function over a lifetime.
Figure 3: Wild-type but not mutant huntingtin facilitates cortical BDNF mRNA production.
Figure 4: Molecular mechanism of wild-type huntingtin function.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Cattaneo, E. et al. Loss of normal huntingtin function: new developments in Huntington's disease research. Trends Neurosci. 24, 182–188 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72, 971–983 (1993).

  3. Reiner, A. et al. Differential loss of striatal projection neurons in Huntington disease. Proc. Natl Acad. Sci. USA 85, 5733–5737 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vonsattel, G. J. P. & DiFiglia, M. Huntington Disease. J. Neuropathol. Exp. Neurol. 57, 369–384 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Harper, P. S. Huntington's Disease 2nd edn (W. B. Saunders, London, 1996).

    Google Scholar 

  6. Sipione, S. & Cattaneo, E. Modeling Huntington's disease in cells, flies, and mice. Mol. Neurobiol. 23, 21–51 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Bates, G., Harper, P. & Jones, L. (eds) Huntington's Disease 3rd edn (Oxford Univ. Press, Oxford, UK, 2002).

    Google Scholar 

  8. Snell, R. G. et al. Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington's disease. Nature Genet. 4, 393–397 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Andrew, S. E. et al. The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's disease. Nature Genet. 4, 398–403 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Harper, S. Q. et al. RNA interference improves motor and neuropathological abnormalities in a Huntington's disease mouse model. Proc. Natl Acad. Sci. USA 102, 5820–5825 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zuccato, C., Tartari, M., Goffredo, D., Cattaneo, E. & Rigamonti, D. From target identification to drug screening assays for neurodegenerative diseases. Pharmacol. Res. 52, 245–251 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Hughes, R. E. & Olson, J. M. Therapeutic opportunities in polyglutamine disease Nature Med. 7, 419–423 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. McMurray, C. T. Huntington's disease: new hope for therapeutics. Trends Neurosci. 24, S32–S38 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Rigamonti, D. et al. Wild-type huntingtin protects from apoptosis upstream of caspase-3. J. Neurosci. 20, 3705–3713 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zuccato, C. et al. Loss of huntingtin-mediated BDNF gene transcription in Huntington's disease. Science 293, 493–498 (2001). Together with reference 16, this paper shows that wild-type but not mutant huntingtin contributes to the transcription of the BDNF gene. Cortex taken from HD mice and patients with HD has reduced BDNF mRNA and protein.

    Article  CAS  PubMed  Google Scholar 

  16. Zuccato, C. et al. Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nature Genet. 35, 76–83 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, Y. et al. Depletion of wild-type huntingtin in mouse models of neurologic diseases. J. Neurochem. 87, 101–106 (2003). Levels of full-length huntingtin are reduced in the brains of transgenic mouse models of HD, ischaemia and trauma, and in the spinal cord after injury. Wild-type huntingtin protects against neurodegeneration after ischaemia.

    Article  CAS  PubMed  Google Scholar 

  18. Leavitt, B. R., et al. Wild-type huntingtin protects neurons from excitotoxicity. J. Neurochem. (in the press).

  19. O'Kusky, J. R., Nasir, J., Cicchetti, F., Parent, A. & Hayden, M. R. Neuronal degeneration in the basal ganglia and loss of pallido–subthalamic synapses in mice with targeted disruption of the Huntington's disease gene. Brain Res. 818, 468–479 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Dragatsis, I., Levine, M. S. & Zeitlin, S. Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice. Nature Genet. 26, 300–306 (2000). A Cre/ loxP site-specific recombination strategy was used to inactivate Hdh expression in postnatal mouse neurons. This resulted in a progressive degenerative neuronal phenotype.

    Article  CAS  PubMed  Google Scholar 

  21. Gunawardena, S. et al. Disruption of axonal transport by loss of huntingtin or expression of pathogenic PolyQ proteins in Drosophila. Neuron 40, 25–40 (2003). Reduction of D. melanogaster huntingtin or expression of proteins containing pathogenic polyQ repeats disrupts axonal transport.

    Article  CAS  PubMed  Google Scholar 

  22. Trushina, E. et al. Mutant huntingtin impairs axonal trafficking in mammalian neurons in vivo and in vitro. Mol. Cell Biol. 24, 8195–8209 (2004). Expression of full-length mutant huntingtin or reduction in the level of wild-type huntingtin impairs vesicular and mitochondrial trafficking in mammalian neurons in vitro and in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gauthier, L. R. et al. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 118, 127–138 (2004). This work indicates that wild-type huntingtin enhances vesicular transport of BDNF along microtubules. BDNF transport (but not mitochondrial transport) is specifically attenuated in HD.

    Article  CAS  PubMed  Google Scholar 

  24. Ho, L. W., Brown, R., Maxwell, M., Wyttenbach, A. & Rubinsztein, D. C. Wild type Huntingtin reduces the cellular toxicity of mutant huntingtin in mammalian cell models of Huntington's disease. J. Med. Genet. 38, 450–452 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Leavitt, B. R. et al. Wild-type huntingtin reduces the cellular toxicity of mutant huntingtin in vivo. Am. J. Hum. Genet. 68, 313–324 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Sun, Y., Savanenin, A., Reddy, P. H. & Liu, Y. F. Polyglutamine-expanded huntingtin promotes sensitization of N-methyl-D-aspartate receptors via post-synaptic density 95. J. Biol. Chem. 276, 24713–24718 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Van Raamsdonk, J. M. et al. Loss of wild-type huntingtin influences motor dysfunction and survival in the YAC128 mouse model of Huntington disease. Hum. Mol. Genet. 14, 1379–1392 (2005). YAC128−/− mice that do not express wild-type huntingtin show defects in motor coordination and are hypoactive. Striatal neuropathology is only mildly worsened, but testis atrophy and degeneration is markedly worsened.

    Article  CAS  PubMed  Google Scholar 

  28. Trottier, Y. et al. Polyglutamine expansion as a pathological epitope in Huntington's disease and four dominant cerebellar ataxias. Nature 378, 403–406 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Ferrante, R. J. et al. Heterogeneous topographic and cellular distribution of huntingtin expression in the normal human neostriatum. J. Neurosci. 17, 3052–3063 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fusco, F. R. et al. Cellular localization of huntingtin in striatal and cortical neurons in rats: lack of correlation with neuronal vulnerability in Huntington's disease. J. Neurosci. 19, 1189–1202 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. DiFiglia, M. et al. Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron 14, 1075–1081 (1995). Shows the detection of huntingtin in synaptosomes and vesicles, where its immunoreactivity overlaps with the distribution of vesicle membrane proteins.

    Article  CAS  PubMed  Google Scholar 

  32. Velier, J. et al. Wild-type and mutant huntingtins function in vesicle trafficking in the secretory and endocytic pathways. Exp. Neurol. 152, 34–40 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Hilditch-Maguire, P. et al. Huntingtin: an iron-regulated protein essential for normal nuclear and perinuclear organelles. Hum. Mol. Genet. 22, 2789–2797 (2000).

    Article  Google Scholar 

  34. Hoffner, G., Kahlem, P. & Djian, P. Perinuclear localization of huntingtin as a consequence of its binding to microtubules through an interaction with β-tubulin: relevance to Huntington's disease. J. Cell Sci. 115, 941–948 (2002).

    CAS  PubMed  Google Scholar 

  35. Kegel, K. B. et al. Huntingtin is present in the nucleus, interacts with the transcriptional corepressor C-terminal binding protein, and represses transcription. J. Biol. Chem. 277, 7466–7746 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Li, J. Y., Plomann, M. & Brundin, P. Huntington's disease: a synaptopathy? Trends Mol. Med. 9, 414–420 (2003). Provides details on the impairment of exocytosis, endocytosis and synaptic transmission in HD.

    Article  CAS  PubMed  Google Scholar 

  37. Everett, C. M. & Wood, N. W. Trinucleotide repeats and neurodegenerative disease. Brain 127, 2385–2405 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Perutz, M. F., Johnson, T., Suzuki, M. & Finch, J. T. Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases. Proc. Natl Acad. Sci. USA 91, 5355–5358 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Harjes, P. & Wanker, E. E. The hunt for huntingtin function: interaction partners tell many different stories. Trends Biochem. Sci. 28, 425–433 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Li, S. H. & Li, X. J. Huntingtin-protein interactions and the pathogenesis of Huntington's disease. Trends Genet. 20, 146–154 (2004).

    Article  PubMed  CAS  Google Scholar 

  41. Goehler, H. et al. A protein interaction network links GIT1, an enhancer of huntingtin aggregation, to Huntington's disease. Mol. Cell 15, 853–865 (2004). Extensive analysis of protein–protein interactions has led to the discovery of GIT1, a G-protein-coupled receptor kinase-interacting protein, which enhances huntingtin aggregation by recruitment of the protein to membranous vesicles.

    Article  CAS  PubMed  Google Scholar 

  42. Steffan, J. S. et al. SUMO modification of huntingtin and Huntington's disease pathology. Science 304, 100–104 (2004). Sumoylation of an N-terminal fragment of huntingtin reduces the ability of the protein to form aggregates, therefore exacerbating its toxicity. Aggregated huntingtin is considered less pathogenic than soluble huntingtin.

    Article  CAS  PubMed  Google Scholar 

  43. Andrade, M. A. & Bork, P. HEAT repeats in the Huntington's disease protein. Nature Genet. 11, 115–116 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Neuwald, A. F. & Hirano, T. HEAT repeats associated with condensins, cohesins, and other complexes involved in chromosome-related functions. Genome Res. 10, 1445–1452 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. MacDonald, M. E. Huntingtin: alive and well and working in middle management. Sci. STKE. 207, pe48 (2003).

    Google Scholar 

  46. Takano, H. & Gusella, J. F. The predominantly HEAT-like motif structure of huntingtin and its association and coincident nuclear entry with dorsal, an NF-κB/Rel/dorsal family transcription factor. BMC Neurosci. 3, 15 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Xia, J., Lee, D. H., Taylor, J., Vandelft, M. & Truant, R. Huntingtin contains a highly conserved nuclear export signal. Hum. Mol. Genet. 12, 1393–1403 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Cornett, J. et al. Expansion of huntingtin impairs its nuclear export. Nature Genet. 37, 198–204 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Goldberg, Y. P. et al. Cleavage of huntingtin by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract. Nature Genet. 13, 442–449 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Wellington, C. L. et al. Caspase cleavage of gene products associated with triplet expansion disorders generates truncated fragments containing the polyglutamine tract. J. Biol. Chem. 273, 9158–9167 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Wellington, C. L. et al. Inhibiting caspase cleavage of huntingtin reduces toxicity and aggregate formation in neuronal and nonneuronal cells. J. Biol. Chem. 275, 19831–19838 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Gafni, J. & Ellerby, L. M. Calpain activation in Huntington's disease. J. Neurosci. 22, 4842–4849 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gafni, J. et al. Inhibition of calpain cleavage of huntingtin reduces toxicity: accumulation of calpain/caspase fragments in the nucleus. J. Biol. Chem. 279, 20211–20220 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Davies, S. W. et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90, 537–548 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. DiFiglia, M. et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277, 1990–1993 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Kim, Y. J. et al. Caspase 3-cleaved N-terminal fragments of wild-type and mutant huntingtin are present in normal and Huntington's disease brains, associate with membranes, and undergo calpain-dependent proteolysis. Proc. Natl Acad. Sci. USA 98, 12784–12789 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lunkes, A. et al. Proteases acting on mutant huntingtin generate cleaved products that differentially build up cytoplasmic and nuclear inclusions. Mol. Cell 10, 259–269 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Wellington, C. L. et al. Caspase cleavage of mutant huntingtin precedes neurodegeneration in Huntington's disease. J. Neurosci. 22, 7862–7872 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li, Z. et al. A putative Drosophila homolog of the Huntington's disease gene. Hum. Mol. Genet. 8, 1807–1815 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Mende-Mueller, L. M., Toneff, T., Hwang, S. R., Chesselet, M. F. & Hook, V. Y. Tissue-specific proteolysis of Huntingtin (htt) in human brain: evidence of enhanced levels of N- and C-terminal htt fragments in Huntington's disease striatum. J. Neurosci. 21, 1830–1837 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ona, V. O. et al. Inhibition of caspase-1 slows disease progression in a mouse model of Huntington's disease. Nature 399, 263–267 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Kalchman, M. A. et al. Huntingtin is ubiquitinated and interacts with a specific ubiquitin- conjugating enzyme. J. Biol. Chem. 271, 19385–19394 (1996).

    Article  CAS  PubMed  Google Scholar 

  63. Humbert, S. et al. The IGF-1/Akt pathway is neuroprotective in Huntington's disease and involves huntingtin phosphorylation by Akt. Dev. Cell 2, 831–837 (2002). Huntingtin is phosphorylated on Ser421 and this modification protects against the toxicity of polyQ-expanded huntingtin in cell culture.

    Article  CAS  PubMed  Google Scholar 

  64. Warby, S. C. et al. Huntingtin phosphorylation on serine 421 is significantly reduced in the striatum and by polyglutamine expansion in vivo. Hum. Mol. Genet. 14, 1569–1577 (2005). Phosphorylation at Ser421 is reduced in HD mice.

    Article  CAS  PubMed  Google Scholar 

  65. Luo, S., Vacher, C., Davies, J. E. & Rubinsztein, D. C. Cdk5 phosphorylation of huntingtin reduces its cleavage by caspases: implications for mutant huntingtin toxicity. J. Cell Biol. 169, 647–656 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hackam, A. S. et al. Huntingtin interacting protein 1 induces apoptosis via a novel caspase-dependent death effector domain. J. Biol. Chem. 275, 41299–41308 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Huang, K. et al. Huntingtin-interacting protein HIP14 is a palmitoyl transferase involved in palmitoylation and trafficking of multiple neuronal proteins. Neuron 44, 977–986 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Marcora, E., Gowan, K. & Lee, J. E. Stimulation of NeuroD activity by huntingtin and huntingtin-associated proteins HAP1 and MLK2. Proc. Natl Acad. Sci. USA 100, 9578–9583 (2003). The authors propose that huntingtin, together with HAP1, functions as a scaffold protein for the activation of the transcription factor NeuroD by mixed-linage kinase 2 (MLK2).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Trettel, F. et al. Dominant phenotypes produced by the HD mutation in STHdhQ111 striatal cells. Hum. Mol. Genet. 9, 2799–2809 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Ko, J., Ou, S. & Patterson, P. H. New anti-huntingtin monoclonal antibodies: implications for huntingtin conformation and its binding proteins. Brain Res. Bull. 56, 319–329 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Nasir, J. et al. Targeted disruption of the Huntington's disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell 81, 811–823 (1995).

    Article  CAS  PubMed  Google Scholar 

  72. Duyao, M. P. et al. Inactivation of the mouse Huntington's disease gene homolog Hdh. Science 269, 407–410 (1995).

    Article  CAS  PubMed  Google Scholar 

  73. Zeitlin, S., Liu, J. P., Chapman, D. L., Papaioannou, V. E. & Efstratiadis, A. Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington's disease gene homologue. Nature Genet. 11, 155–163 (1995).

    Article  CAS  PubMed  Google Scholar 

  74. Dragatsis, I., Efstratiadis, A. & Zeitlin, S. Mouse mutant embryos lacking huntingtin are rescued from lethality by wild-type extraembryonic tissues. Development 125, 1529–1539 (1998).

    CAS  PubMed  Google Scholar 

  75. Haeckel, E. Riddle of the Universe at the Close of the Nineteenth Century (1899).

    Google Scholar 

  76. Wexler, N. S. et al. Homozygotes for Huntington's disease. Nature 326, 194–197 (1987).

    Article  CAS  PubMed  Google Scholar 

  77. Myers, R. H. et al. Homozygote for Huntington disease. Am. J. Hum. Genet. 45, 615–618 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Gottfried, M., Lavine, L. & Roessmann, U. Neuropathological findings in Wolf–Hirschhorn (4p-) syndrome. Acta Neuropathol. (Berl.) 55, 163–165 (1981).

    Article  CAS  Google Scholar 

  79. Ambrose, C. M. et al. Structure and expression of the Huntington's disease gene: evidence against simple inactivation due to an expanded CAG repeat. Somat. Cell Mol. Genet. 20, 27–38 (1994).

    Article  CAS  PubMed  Google Scholar 

  80. White, J. K. et al. Huntingtin is required for neurogenesis and is not impaired by the Huntington's disease CAG expansion. Nature Genet. 17, 404–410 (1997).

    Article  CAS  PubMed  Google Scholar 

  81. Auerbach, W. et al. HD mutation causes progressive lethal neurological disease in mice expressing reduced levels of huntingtin. Hum. Mol. Genet. 10, 2515–2523 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Metzler, M. et al. Life without huntingtin: normal differentiation into functional neurons. J. Neurochem. 72, 1009–1018 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Metzler, M. et al. Huntingtin is required for normal hematopoiesis. Hum. Mol. Genet. 12, 387–394 (2000).

    Article  Google Scholar 

  84. Reiner, A. et al. Neurons lacking huntingtin differentially colonize brain and survive in chimeric mice. J. Neurosci. 21, 7608–7619 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Reiner, A., Dragatsis, I., Zeitlin, S. & Goldowitz, D. Wild-type huntingtin plays a role in brain development and neuronal survival. Mol. Neurobiol. 28, 259–276 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Zeron, M. M et al. Increased sensitivity to N-methyl-D-aspartate receptor-mediated excitotoxicity in a mouse model of Huntington's disease. Neuron 33, 849–860 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Rigamonti, D. et al. Huntingtin neuroprotective activity occurs via inhibition of pro-caspase 9 processing. J. Biol. Chem. 276, 14545–14548 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Gervais, F. G. et al. Recruitment and activation of caspase-8 by the Huntingtin-interacting protein Hip-1 and a novel partner Hippi. Nature Cell Biol. 4, 95–105 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Rangone, H. et al. The serum- and glucocorticoid-induced kinase SGK inhibits mutant huntingtin-induced toxicity by phosphorylating serine 421 of huntingtin. Eur. J. Neurosci. 19, 273–279 (2004).

    Article  PubMed  Google Scholar 

  90. Widmer, H. R. & Hefti, F. Neurotrophin-4/5 promotes survival and differentiation of rat striatal neurons developing in culture. Eur. J. Neurosci. 6, 1669–1679 (1994).

    Article  CAS  PubMed  Google Scholar 

  91. Nakao, N., Brundin, P., Funa, K., Lindvall, O. & Odin, P. Trophic and protective actions of brain-derived neurotrophic factor on striatal DARPP-32-containing neurons in vitro. Brain Res. Dev. Brain Res. 90, 92–101 (1995).

    Article  CAS  PubMed  Google Scholar 

  92. Alcantara, S. et al. TrkB signaling is required for postnatal survival of CNS neurons and protects hippocampal and motor neurons from axotomy-induced cell death. J. Neurosci. 17, 3623–3633 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ivkovic, S. & Ehrlich, M. E. Expression of the striatal DARPP-32/ARPP-21 phenotype in GABAergic neurons requires neurotrophins in vivo and in vitro. J. Neurosci. 19, 5409–5419 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Jovanovic, J. N., Czernik, A. J., Fienberg, A. A., Greengard, P. & Sihra, T. S. Synapsins as mediators of BDNF-enhanced neurotransmitter release. Nature Neurosci. 3, 323–329 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Fusco, F. R. et al. Co-localization of brain-derived neurotrophic factor (BDNF) and wild-type huntingtin in normal and quinolinic acid-lesioned rat brain. Eur. J. Neurosci. 18, 1093–1102 (2003).

    Article  PubMed  Google Scholar 

  96. Hofer, M., Pagliusi, S. R., Hohn, A., Leibrock, J. & Barde, Y. A. Regional distribution of brain-derived neurotrophic factor mRNA in the adult mouse brain. EMBO J. 9, 2459–2464 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Altar, C. A. et al. Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature 389, 856–860 (1997). BDNF is widely distributed in nerve terminals, is present in the cortex and even in the striatum. The striatum lacks BDNF mRNA; the cortex is the primary source of striatal BDNF.

    Article  CAS  PubMed  Google Scholar 

  98. Baquet, Z. C., Gorski, J. A. & Jones, K. R. Early striatal dendrite deficits followed by neuron loss with advanced age in the absence of anterograde cortical brain-derived neurotrophic factor. J. Neurosci. 24, 4250–4258 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mizuno, K, Carnahan, J. & Nawa, H. Brain-derived neurotrophic factor promotes differentiation of striatal GABAergic neurons. Dev. Biol. 165, 243–256 (1994).

    Article  CAS  PubMed  Google Scholar 

  100. Ventimiglia, R., Mather, P. E, Jones, B. E. & Lindsay, R. M. The neurotrophins BDNF, NT-3 and NT-4/5 promote survival and morphological and biochemical differentiation of striatal neurons in vitro. Eur. J. Neurosci. 7, 213–222 (1995).

    Article  CAS  PubMed  Google Scholar 

  101. Bemelmans, A. P. et al. Brain-derived neurotrophic factor-mediated protection of striatal neurons in an excitotoxic rat model of Huntington's disease, as demonstrated by adenoviral gene transfer. Hum. Gene Ther. 10, 2987–2997 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Canals, J. M. et al. Expression of brain-derived neurotrophic factor in cortical neurons is regulated by striatal target area. J. Neurosci. 21, 117–124 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Perez-Navarro, E., Gavalda, N., Gratacos, E. & Alberch, J. Brain-derived neurotrophic factor prevents changes in Bcl-2 family members and caspase-3 activation induced by excitotoxicity in the striatum. J. Neurochem. 92, 678–691 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Hodgson, J. G. et al. A YAC mouse model for Huntington's disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron 23, 181–192 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Metsis, M., Timmusk, T., Arenas, E. & Persson, H. Differential usage of multiple brain-derived neurotrophic factor promoters in the rat brain following neuronal activation. Proc. Natl Acad. Sci. USA 90, 8802–8806 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Timmusk, T. et al. Identification of brain-derived neurotrophic factor promoter regions mediating tissue-specific, axotomy-, and neuronal activity-induced expression in transgenic mice. J. Cell Biol. 128, 185–199 (1995). Analyses the activity of BDNF regulatory regions, and shows that a tissue-specific activation of the different BDNF promoter exons occurs in the brain and the periphery.

    Article  CAS  PubMed  Google Scholar 

  107. Pattabiraman, P. P. et al. Neuronal activity regulates the developmental expression and subcellular localization of cortical BDNF mRNA isoforms in vivo. Mol. Cell. Neurosci. 28, 556–570 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Szebenyi, G. et al. Neuropathogenic forms of huntingtin and androgen receptor inhibit fast axonal transport. Neuron 40, 41–52 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Block-Galarza, J. et al. Fast transport and retrograde movement of huntingtin and HAP 1 in axons. Neuroreport 8, 2247–2251 (1997).

    Article  CAS  PubMed  Google Scholar 

  110. Gunawardena, S. & Goldstein, L. S. Cargo-carrying motor vehicles on the neuronal highway: transport pathways and neurodegenerative disease. J. Neurobiol. 58, 258–271 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Maue, R. A., Kraner, S. D., Goodman, R. H. & Mandel, G. Neuron-specific expression of the rat brain type II sodium channel gene is directed by upstream regulatory elements. Neuron 4, 223–321 (1990).

    Article  CAS  PubMed  Google Scholar 

  112. Kraner, S. D., Chong, J. A., Tsay, H. J. & Mandel, G. Silencing the type II sodium channel gene: a model for neural-specific gene regulation. Neuron 9, 37–44 (1992).

    Article  CAS  PubMed  Google Scholar 

  113. Mori, N., Schoenherr, C., Vandenbergh, D. J. & Anderson, D. J. A common silencer element in the SCG10 and type II Na+ channel genes binds a factor present in nonneuronal cells but not in neuronal cells. Neuron 9, 45–54 (1992).

    Article  CAS  PubMed  Google Scholar 

  114. Chong, J. A. et al. REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell 80, 949–957 (1995).

    Article  CAS  PubMed  Google Scholar 

  115. Schoenherr, C. J. & Anderson, D. J. The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science 267, 1360–1363 (1995).

    Article  CAS  PubMed  Google Scholar 

  116. Bruce, W. A. et al. Genome-wide analyses of repressor element 1 silencing transcription factors/neuron restrictive silencing factor (REST/NRSF) target genes. Proc. Natl Acad. Sci. USA 101, 10458–10463 (2004). A report on in silico and biochemical approaches that revealed the presence of 1,892 RE1/NRSE sites in the human genome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Smith, R., Brundin, P. & Li, J. Y. Synaptic dysfunction in Huntington's disease: a new perspective. Cell. Mol. Life Sci. 62, 1901–1912 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Sheng, M. & Kim, M. J. Postsynaptic signaling and plasticity mechanisms. Science 298, 776–780 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Reddy, P. H. et al. Behavioural abnormalities and selective neuronal loss in HD transgenic mice expressing mutated full-length HD cDNA. Nature Genet. 20, 198–202 (1998).

    Article  CAS  PubMed  Google Scholar 

  120. Wheeler, V. C. et al. Length-dependent gametic CAG repeat instability in the Huntington's disease knock-in mouse. Hum. Mol. Genet. 8, 115–122 (1999).

    Article  CAS  PubMed  Google Scholar 

  121. Squitieri, F. et al. Homozygosity for CAG mutation in Huntington disease is associated with a more severe clinical course. Brain 126, 946–955 (2003).

    Article  PubMed  Google Scholar 

  122. Zuccato, C. et al. Progressive loss of BDNF in a mouse model of Huntington's disease and rescue by BDNF delivery. Pharmacol. Res. 52, 133–139 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Hermel, E. et al. Specific caspase interactions and amplification are involved in selective neuronal vulnerability in Huntington's disease. Cell Death Differ. 11, 424–438 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Luthi-Carter, R. et al. Dysregulation of gene expression in the R6/2 model of polyglutamine disease: parallel changes in muscle and brain. Hum. Mol. Genet. 11, 1911–1926 (2002).

    Article  CAS  PubMed  Google Scholar 

  125. Duan, W. et al. Dietary restriction normalizes glucose metabolism and BDNF levels, slows disease progression, and increases survival in huntingtin mutant mice. Proc. Natl Acad. Sci. USA 100, 2911–2916 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Gines, S. et al. Specific progressive cAMP reduction implicates energy deficit in presymptomatic Huntington's disease knock-in mice. Hum. Mol. Genet. 12, 497–508 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. Ferrer, I., Goutan, E., Marin, C., Rey, M. J. & Ribalta, T. Brain-derived neurotrophic factor in Huntington disease. Brain Res. 866, 257–261 (2000).

    Article  CAS  PubMed  Google Scholar 

  128. Spires, T. L. et al. Environmental enrichment rescues protein deficits in a mouse model of Huntington's disease, indicating a possible disease mechanism. J. Neurosci. 24, 2270–2276 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Canals, J. M. et al. Brain-derived neurotrophic factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington's disease. J. Neurosci. 24, 7727–7739 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Pineda, J. R. et al. Brain-derived neurotrophic factor modulates dopaminergic deficits in a transgenic mouse model of Huntington's disease. J. Neurochem. 93, 1057–1068 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Rubinsztein, D. C. How does the Huntington's disease mutation damage cells? Sci. Aging Knowl. Environ. 37, PE26 (2003).

    Google Scholar 

  132. Dyer, R. B. & McMurray, C. T. Mutant protein in Huntington disease is resistant to proteolysis in affected brain. Nature Genet. 29, 270–278 (2001).

    Article  CAS  PubMed  Google Scholar 

  133. Busch, A. et al. Mutant huntingtin promotes the fibrillogenesis of wild-type huntingtin: a potential mechanism for loss of huntingtin function in Huntington's disease. J. Biol. Chem. 278, 41452–41461 (2003).

    Article  CAS  PubMed  Google Scholar 

  134. Goffredo, D. et al. Calcium-dependent cleavage of endogenous wild-type huntingtin in primary cortical neurons. J. Biol. Chem. 277, 39594–39598 (2002).

    Article  CAS  PubMed  Google Scholar 

  135. Kim, M. et al. Huntingtin is degraded to small fragments by calpain after ischemic injury. Exp. Neurol. 183, 109–115 (2003).

    Article  CAS  PubMed  Google Scholar 

  136. Levine, M. S. et al. Enhanced sensitivity to N-methyl-D-aspartate receptor activation in transgenic and knockin mouse models of Huntington's disease. J. Neurosci. Res. 58, 515–532 (1999).

    Article  CAS  PubMed  Google Scholar 

  137. Cepeda, C. et al. Increased GABAergic function in mouse models of Huntington's disease: reversal by BDNF. J. Neurosci. Res. 78, 855–867 (2004).

    Article  CAS  PubMed  Google Scholar 

  138. Rosas, H. D. et al. Evidence for more widespread cerebral pathology in early HD: an MRI-based morphometric analysis. Neurology 60, 1615–1620 (2003). Despite the fact that most clinical symptoms of HD have been attributed to striatal degeneration, patients with HD have a significant reduction in the volume of almost all brain structures.

    Article  CAS  PubMed  Google Scholar 

  139. Pauly, P. C. & Harris, D. A. Copper stimulates endocytosis of the prion protein. J. Biol. Chem. 273, 33107–33110 (1998).

    Article  CAS  PubMed  Google Scholar 

  140. Watt, N. T. & Hooper, N. M. The prion protein and neuronal zinc homeostasis. Trends Biochem. Sci. 28, 406–410 (2003).

    Article  CAS  PubMed  Google Scholar 

  141. Brown, D. R. Copper and prion disease. Brain Res. Bull. 55, 165–173 (2001).

    Article  CAS  PubMed  Google Scholar 

  142. Mouillet-Richard, S. et al. Signal transduction through prion protein. Science 289, 1925–1928 (2000).

    Article  CAS  PubMed  Google Scholar 

  143. Chiarini, L. B. et al. Cellular prion protein transduces neuroprotective signals. EMBO J. 21, 3317–3326 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Collinge, J. et al. Prion protein is necessary for normal synaptic function. Nature 370, 295–297 (1994).

    Article  CAS  PubMed  Google Scholar 

  145. Mallucci, G. R. et al. Post-natal knockout of prion protein alters hippocampal CA1 properties, but does not result in neurodegeneration. EMBO J. 21, 202–210 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Graner, E. et al. Cellular prion protein binds laminin and mediates neuritogenesis. Brain Res. Mol. Brain Res. 76, 85–92 (2000).

    Article  CAS  PubMed  Google Scholar 

  147. Roucou, X. et al. Cellular prion protein inhibits proapoptotic Bax conformational change in human neurons and in breast carcinoma MCF-7 cells. Cell Death Differ. 12, 783–795 (2005).

    Article  CAS  PubMed  Google Scholar 

  148. Lee, K. S. et al. Towards cellular receptors for prions. Rev. Med. Virol. 13, 399–408 (2003).

    Article  CAS  PubMed  Google Scholar 

  149. Zalfa, F. et al. The fragile X syndrome protein FMRP associates with BC1 RNA and regulates the translation of specific mRNAs at synapses. Cell 112, 317–327 (2003).

    Article  CAS  PubMed  Google Scholar 

  150. Baxendale, S. et al. Comparative sequence analysis of the human and pufferfish Huntington's disease genes. Nature Genet. 10, 67–76 (1995).

    Article  CAS  PubMed  Google Scholar 

  151. Holbert, S. et al. Cdc42-interacting protein 4 binds to huntingtin: neuropathologic and biological evidence for a role in Huntington's disease. Proc. Natl Acad. Sci. USA 100, 2712–2717 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kauffman, J. S., Zinovyeva, A., Yagi, K., Makabe, K. W. & Raff, R. A. Neural expression of the Huntington's disease gene as a chordate evolutionary novelty. J. Exp. Zool. B Mol. Dev. Evol. 297, 57–64 (2003).

    Article  PubMed  Google Scholar 

  153. Pecheux, C., Gall, A. L., Kaplan, J. C. & Dode, C. Sequence analysis of the CAG triplet repeats region in the Huntington disease gene (IT15) in several mammalian species. Ann. Genet. 39, 81–86 (1996).

    CAS  PubMed  Google Scholar 

  154. Karlovich, C. A., John, R. M., Ramirez, L., Stainier, D. Y. & Myers, R. M. Characterization of the Huntington's disease (HD) gene homologue in the zebrafish Danio rerio. Gene 217, 117–125 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work described in this review has been supported by grants from the Huntington's Disease Society of America (HDSA; USA), the Hereditary Disease Foundation (HDF; USA), HighQ Foundation (USA), Telethon (Italy), the Cariplo Foundation (Italy), Ministero dell'Istruzione dell'Universita' e della Ricerca (Italy) and the European Commission Framework VI Programme (NeuroNE). E.C. is member and coordinator of the 'Huntingtin Function' HDSA Coalition For the Cure Team. We apologize for the omission of a number of significant papers that could not be cited because of space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Cattaneo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

BDNF

HAP1

HIP1

HIP14

HIPPI

huntingtin

PSD-95

REST

TPR

Entrez Nucleotide

BDNF

OMIM

Creutzfeldt–Jakob disease

Fragile X mental retardation

Huntington's disease

Wolf–Hirschhorn syndrome

FURTHER INFORMATION

Cattaneo's lab

Glossary

RNA INTERFERENCE

(RNAi). A method by which double-stranded RNA that is encoded on an exogenous vector can be used to interfere with normal RNA processing, causing rapid degradation of the endogenous RNA and thereby precluding translation. This provides a simple way of studying the effects of the absence of a gene product in simple organisms and in cells.

POLAR ZIPPER

A term used by Max Perutz to describe a three-dimensional protein motif consisting of interactions between polar residues on separate subunits or separate proteins.

EXTRA-EMBRYONIC TISSUE

All tissues that do not contribute to the embryo but support its development.

VISCERAL ENDODERM

Extra-embryonic tissue in pre-gastrulation stages of the mouse embryo.

ONTOGENESIS

The events involved in the development of an organism, from the earliest embryonic stage to maturity.

PHYLOGENESIS

The events involved in the evolution of a species.

NEUROGENESIS

The birth of new neurons, which occurs not only in developing organisms but also throughout adult life in both vertebrates and invertebrates. Ongoing neurogenesis is thought to be an important mechanism underlying neuronal plasticity, allowing organisms to adapt to environmental changes, and influencing learning and memory throughout life.

CHIMAERA

An organism that is composed of cells derived from at least two genetically different zygotes.

DOMINANT-NEGATIVE

Describes a mutant molecule that can form a heteromeric complex with the normal molecule, knocking out the activity of the entire complex.

CRE/LOXP SITE-SPECIFIC RECOMBINATION SYSTEM

A system derived from the Escherichia coli bacteriophage P1. Two short DNA sequences (loxP sites) are engineered to flank the target DNA. Activation of the Cre-recombinase enzyme catalyses recombination between the loxP sites, which leads to excision of the intervening sequence. This tool is used at late stages of maturation or in the adult to study the function of genes whose deletion causes embryonic lethality.

EXCITOTOXICITY

Cellular toxicity involving the activation of glutamate receptors in the CNS. Glutamate, an excitatory amino acid neurotransmitter, activates different types of ionotropic (ion channel-forming) and metabotropic (G-protein-coupled) receptor. Excessive activation of these receptors by high concentrations of glutamate or by neurotoxins acting at the same receptors leads to cell death.

CORTICO-STRIATAL SYNAPSE

Cortical afferents reaching the striatum are intermingled with other cellular elements (the striatal targets, dopaminergic inputs and glial cells), which may be able to influence the output of the cortex. The activity of each of these cellular elements is finely regulated through a complex interplay between the receptor systems they express.

FAST AXONAL TRAFFICKING

Several motor proteins move various cargoes on microtubule tracks — such as membrane organelles, protein complexes, complexes of nucleic acids, signalling molecules, neuroprotective and repair molecules, and vesicular and cytoskeletal components — to deliver them from the neuronal cell body through the long axon to their final destination.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cattaneo, E., Zuccato, C. & Tartari, M. Normal huntingtin function: an alternative approach to Huntington's disease. Nat Rev Neurosci 6, 919–930 (2005). https://doi.org/10.1038/nrn1806

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1806

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing