Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mitochondrial uncoupling proteins in the cns: in support of function and survival

Key Points

  • Neuronal uncoupling proteins (UCP2, UCP4, BMCP1/UCP5) are integral membrane proteins located in the inner mitochondrial membrane that allow controlled 'proton leak' into the mitochondrial matrix. This controlled proton leak, or uncoupling activity, reduces the mitochondrial membrane potential — the proton motive force that drives ATP synthesis and dissipates energy as heat.

  • UCP mRNA and protein are found throughout the CNS, including in the hypothalamus, hippocampus, cerebellum, limbic system, spinal cord, brainstem, cortex, substantia nigra and ventral tegmentum. The global distribution of UCP proteins in the CNS suggests that they have an important role in neuronal function.

  • Chronic mitochondrial uncoupling leads to reduced reactive oxygen species production, reduced membrane potential-dependent mitochondrial calcium influx, increased local temperature in neuronal microenvironments, and, paradoxically, promotes cellular ATP concentrations by activating mitochondrial biogenesis. Through these mechanisms, it is thought that neuronal UCPs can positively influence neuronal function, including synaptic plasticity and synaptic transmission, and retard the neuronal deterioration that is associated with neurological disorders.

  • Neuronal uncoupling activity is known to help prevent neuronal death in ageing and in many models of neurodegeneration, including Parkinson's disease, epilepsy, ischaemia, stroke and traumatic brain injury in vivo. In all of these neuropathologies, neuronal mitochondrial uncoupling reduces free radical production and oxidative stress.

  • Many other debilitating neurological conditions that have similar aetiologies to those described above, such as Alzhemier's diease and amyotrophic lateral sclerosis, are also likely to benefit from neuronal uncoupling activity. However, this hypothesis eagerly awaits future research.

  • Because mitochondrial dysfunction lies at the heart of many neurological disorders, advances in our understanding of neuronal UCP function are likely to deliver successful clinical treatment strategies against these neurological pathologies. Many of these advances will rely on improved technical approaches to clarify tissue-specific functions of UCP biology.

Abstract

Mitochondrial uncoupling mediated by uncoupling protein 1 (UCP1) is classically associated with non-shivering thermogenesis by brown fat. Recent evidence indicates that UCP family proteins are also present in selected neurons. Unlike UCP1, these proteins (UCP2, UCP4 and BMCP1/UCP5) are not constitutive uncouplers and are not crucial for non-shivering thermogenesis. However, they can be activated by free radicals and free fatty acids, and their activity has a profound influence on neuronal function. By regulating mitochondrial biogenesis, calcium flux, free radical production and local temperature, neuronal UCPs can directly influence neurotransmission, synaptic plasticity and neurodegenerative processes. Insights into the regulation and function of these proteins offer unsuspected avenues for a better understanding of synaptic transmission and neurodegeneration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The mechanism of mitochondrial uncoupling.
Figure 2: Proposed mechanism through which neuronal uncoupling proteins can regulate neuronal function.
Figure 3: Uncoupling protein 2 reduces reactive oxygen species production in vivo.
Figure 4: Superoxides activate uncoupling proteins via a mitochondrial feedback loop.
Figure 5: Fatty acid-induced uncoupling activity in UCP2-knockout mice and mice that overexpress human UCP2.
Figure 6: Uncoupling protein 2 prevents dopamine cell loss in the substantia nigra after MPTP treatment.

Similar content being viewed by others

References

  1. Krauss, S., Zhang, C. Y. & Lowell, B. B. The mitochondrial uncoupling-protein homologues. Nature Rev. Mol. Cell Biol. 6, 248–261 (2005). An up-to-date review on the biochemical regulation of UCPs.

    CAS  Google Scholar 

  2. Nicholls, D. G. & Locke, R. M. Thermogenic mechanisms in brown fat. Physiol. Rev. 64, 1–64 (1984). Seminal review on the actions of UCP1 in brown adipose tissue.

    CAS  PubMed  Google Scholar 

  3. Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004).

    CAS  PubMed  Google Scholar 

  4. Skulachev, V. P. Uncoupling: new approaches to an old problem of bioenergetics. Biochim. Biophys. Acta 1363, 100–124 (1998).

    CAS  PubMed  Google Scholar 

  5. Fleury, C. et al. Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia. Nature Genet. 15, 269–272 (1997).

    CAS  PubMed  Google Scholar 

  6. Boss, O. et al. Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific expression. FEBS Lett. 408, 39–42 (1997).

    CAS  PubMed  Google Scholar 

  7. Mao, W. et al. UCP4, a novel brain-specific mitochondrial protein that reduces membrane potential in mammalian cells. FEBS Lett. 443, 326–330 (1999).

    CAS  PubMed  Google Scholar 

  8. Sanchis, D. et al. BMCP1, a novel mitochondrial carrier with high expression in the central nervous system of humans and rodents, and respiration uncoupling activity in recombinant yeast. J. Biol. Chem. 273, 34611–34615 (1998). References 5, 7 and 8 are the original papers describing the discovery of UCP2, UCP4 and BMCP1/UCP5.

    CAS  PubMed  Google Scholar 

  9. Miroux, B., Frossard, V., Raimbault, S., Ricquier, D. & Bouillaud, F. The topology of the brown adipose tissue mitochondrial uncoupling protein determined with antibodies against its antigenic sites revealed by a library of fusion proteins. EMBO J. 12, 3739–3745 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Saier, M. H. Jr. Vectorial metabolism and the evolution of transport systems. J. Bacteriol. 182, 5029–5035 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Richard, D. et al. Distribution of the uncoupling protein 2 mRNA in the mouse brain. J. Comp. Neurol. 397, 549–560 (1998).

    CAS  PubMed  Google Scholar 

  12. Richard, D., Clavel, S., Huang, Q., Sanchis, D. & Ricquier, D. Uncoupling protein 2 in the brain: distribution and function. Biochem. Soc. Trans. 29, 812–817 (2001).

    CAS  PubMed  Google Scholar 

  13. Diano, S. et al. Mitochondrial uncoupling protein 2 (UCP2) in the nonhuman primate brain and pituitary. Endocrinology 141, 4226–4638 (2000).

    CAS  PubMed  Google Scholar 

  14. Horvath, T. L. et al. Brain uncoupling protein 2: uncoupled neuronal mitochondria predict thermal synapses in homeostatic centers. J. Neurosci. 19, 10417–10427 (1999). Illustrates hypothalamic expression of UCP2 protein and establishes the putative role of UCP2 in producing local temperature gradients that may enhance synaptic function.

    CAS  PubMed  Google Scholar 

  15. Horvath, T. L. et al. Coenzyme Q induces nigral mitochondrial uncoupling and prevents dopamine cell loss in a primate model of Parkinson's disease. Endocrinology 144, 2757–2760 (2003).

    CAS  PubMed  Google Scholar 

  16. Kim-Han, J. S., Reichert, S. A., Quick, K. L. & Dugan, L. L. BMCP1: a mitochondrial uncoupling protein in neurons which regulates mitochondrial function and oxidant production. J. Neurochem. 79, 658–668 (2001).

    CAS  PubMed  Google Scholar 

  17. Yamada, S., Isojima, Y., Yamatodani, A. & Nagai, K. Uncoupling protein 2 influences dopamine secretion in PC12h cells. J. Neurochem. 87, 461–469 (2003).

    CAS  PubMed  Google Scholar 

  18. Zhang, C. Y. et al. Uncoupling protein-2 negatively regulates insulin secretion and is a major link between obesity, beta cell dysfunction, and type 2 diabetes. Cell 105, 745–755 (2001).

    CAS  PubMed  Google Scholar 

  19. Arsenijevic, D. et al. Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production. Nature Genet. 26, 435–439 (2000).

    CAS  PubMed  Google Scholar 

  20. Fuxe, K. et al. Dynamics of volume transmission in the brain. Focus on catecholamine and opioid peptide communication and the role of uncoupling protein 2. J. Neural Transm. 112, 65–76 (2005).

    CAS  PubMed  Google Scholar 

  21. Nicholls, D. G. & Ward, M. W. Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts. Trends Neurosci. 23, 166–174 (2000).

    CAS  PubMed  Google Scholar 

  22. Stout, A. K., Raphael, H. M., Kanterewicz, B. I., Klann, E. & Reynolds, I. J. Glutamate-induced neuron death requires mitochondrial calcium uptake. Nature Neurosci. 1, 366–373 (1998). Shows that mitochondrial uncoupling agents reduce the mitochondrial membrane potential, decrease calcium overload and prevent glutamatergic neuronal death.

    CAS  PubMed  Google Scholar 

  23. Teshima, Y., Akao, M., Jones, S. P. & Marban, E. Uncoupling protein-2 overexpression inhibits mitochondrial death pathway in cardiomyocytes. Circ. Res. 93, 192–200 (2003).

    CAS  PubMed  Google Scholar 

  24. Diano, S. et al. Uncoupling protein 2 prevents neuronal death including that occurring during seizures: a mechanism for preconditioning. Endocrinology 144, 5014–5021 (2003). Provides the first experimental indication that sustained elevated mitochondrial uncoupling triggers mitochondrial proliferation in which elevated ATP levels are associated with decreased free radical-induced damage. Therefore, cells are better prepared to withstand toxic insults.

    CAS  PubMed  Google Scholar 

  25. Garcia-Martinez, C. et al. Overexpression of UCP3 in cultured human muscle lowers mitochondrial membrane potential, raises ATP/ADP ratio, and favors fatty acid vs. glucose oxidation. FASEB J. 15, 2033–2035 (2001).

    CAS  PubMed  Google Scholar 

  26. Andrews, Z. B. et al. Uncoupling protein-2 is critical for nigral dopamine cell survival in a mouse model of Parkinson's disease. J. Neurosci. 25, 184–191 (2005). The first report to show that UCP2-knockout mice are predisposed, whereas animals that overexpress UCP2 are resistant, to nigral neurodegeneration, probably owing to alterations in buffering in vivo ROS production.

    CAS  PubMed  Google Scholar 

  27. Rossmeisl, M. et al. Expression of the uncoupling protein 1 from the aP2 gene promoter stimulates mitochondrial biogenesis in unilocular adipocytes in vivo. Eur. J. Biochem. 269, 19–28 (2002).

    CAS  PubMed  Google Scholar 

  28. Wu, Z. et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98, 115–124 (1999). Shows that PGC1 stimulates mitochondrial biogenesis and respiration through induction of UCP2.

    CAS  PubMed  Google Scholar 

  29. Wisloff, U. et al. Cardiovascular risk factors emerge after artificial selection for low aerobic capacity. Science 307, 418–420 (2005).

    CAS  PubMed  Google Scholar 

  30. Korshunov, S. S., Skulachev, V. P. & Starkov, A. A. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 416, 15–18 (1997).

    CAS  PubMed  Google Scholar 

  31. Sullivan, P. G., Dube, C., Dorenbos, K., Steward, O. & Baram, T. Z. Mitochondrial uncoupling protein-2 protects the immature brain from excitotoxic neuronal death. Ann. Neurol. 53, 711–717 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Negre-Salvayre, A. et al. A role for uncoupling protein-2 as a regulator of mitochondrial hydrogen peroxide generation. FASEB J. 11, 809–815 (1997).

    CAS  PubMed  Google Scholar 

  33. Mattson, M. P. & Liu, D. Mitochondrial potassium channels and uncoupling proteins in synaptic plasticity and neuronal cell death. Biochem. Biophys. Res. Commun. 304, 539–549 (2003).

    CAS  PubMed  Google Scholar 

  34. Mattiasson, G. et al. Uncoupling protein-2 prevents neuronal death and diminishes brain dysfunction after stroke and brain trauma. Nature Med. 9, 1062–1068 (2003). The first study to show that UCP2 provides neuroprotection against stroke and ischaemic insults. The results also suggest that UCP2 has the ability to channel ROS from the mitochondrial matrix to the cytosol, where they can be neutralized by antioxidants.

    CAS  PubMed  Google Scholar 

  35. Pecqueur, C. et al. Uncoupling protein 2, in vivo distribution, induction upon oxidative stress, and evidence for translational regulation. J. Biol. Chem. 276, 8705–8712 (2001).

    CAS  PubMed  Google Scholar 

  36. Voehringer, D. W. et al. Gene microarray identification of redox and mitochondrial elements that control resistance or sensitivity to apoptosis. Proc. Natl Acad. Sci. USA 97, 2680–2685 (2000).

    CAS  PubMed  Google Scholar 

  37. Echtay, K. S. et al. Superoxide activates mitochondrial uncoupling proteins. Nature 415, 96–99 (2002).

    CAS  PubMed  Google Scholar 

  38. Echtay, K. S., Murphy, M. P., Smith, R. A., Talbot, D. A. & Brand, M. D. Superoxide activates mitochondrial uncoupling protein 2 from the matrix side. Studies using targeted antioxidants. J. Biol. Chem. 277, 47129–47135 (2002).

    CAS  PubMed  Google Scholar 

  39. Echtay, K. S. et al. A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling. EMBO J. 22, 4103–4110 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Couplan, E. et al. No evidence for a basal, retinoic, or superoxide-induced uncoupling activity of the uncoupling protein 2 present in spleen or lung mitochondria. J. Biol. Chem. 277, 26268–26275 (2002). References 37–40 debate the role of superoxide and markers of oxidative damage as regulators of UCP function.

    CAS  PubMed  Google Scholar 

  41. Mattson, M. P. Pathways towards and away from Alzheimer's disease. Nature 430, 631–639 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Aihara, H., Okada, Y. & Tamaki, N. The effects of cooling and rewarming on the neuronal activity of pyramidal neurons in guinea pig hippocampal slices. Brain Res. 893, 36–45 (2001).

    CAS  PubMed  Google Scholar 

  43. Yu, X. X. et al. Characterization of novel UCP5/BMCP1 isoforms and differential regulation of UCP4 and UCP5 expression through dietary or temperature manipulation. FASEB J. 14, 1611–1618 (2000).

    CAS  PubMed  Google Scholar 

  44. Masino, S. A. & Dunwiddie, T. V. Temperature-dependent modulation of excitatory transmission in hippocampal slices is mediated by extracellular adenosine. J. Neurosci. 19, 1932–1939 (1999).

    CAS  PubMed  Google Scholar 

  45. Scarpace, P. J., Matheny, M., Borst, S. & Tumer, N. Thermoregulation with age: role of thermogenesis and uncoupling protein expression in brown adipose tissue. Proc. Soc. Exp. Biol. Med. 205, 154–161 (1994).

    CAS  PubMed  Google Scholar 

  46. Smythies, J. Redox mechanisms at the glutamate synapse and their significance: a review. Eur. J. Pharmacol. 370, 1–7 (1999).

    CAS  PubMed  Google Scholar 

  47. Li, Z., Okamoto, K., Hayashi, Y. & Sheng, M. The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119, 873–887 (2004).

    CAS  Google Scholar 

  48. Horvath, B., Spies, C., Warden, C. H., Diano, S. & Horvath, T. L. Uncoupling protein 2 in primary pain and temperature afferents of the spinal cord. Brain Res. 955, 260–263 (2002).

    CAS  PubMed  Google Scholar 

  49. Morris, R., Cheunsuang, O., Stewart, A. & Maxwell, D. Spinal dorsal horn neurone targets for nociceptive primary afferents: do single neurone morphological characteristics suggest how nociceptive information is processed at the spinal level. Brain Res. Brain Res. Rev. 46, 173–190 (2004).

    PubMed  Google Scholar 

  50. Horvath, B. et al. Uncoupling protein 2 (UCP2) lowers alcohol sensitivity and pain threshold. Biochem. Pharmacol. 64, 369–374 (2002).

    CAS  PubMed  Google Scholar 

  51. Ding, Y., Cesare, P., Drew, L., Nikitaki, D. & Wood, J. N. ATP, P2X receptors and pain pathways. J. Auton. Nerv. Syst. 81, 289–294 (2000).

    CAS  PubMed  Google Scholar 

  52. Mogil, J. S. The genetic mediation of individual differences in sensitivity to pain and its inhibition. Proc. Natl Acad. Sci. USA 96, 7744–7751 (1999).

    CAS  PubMed  Google Scholar 

  53. Henshall, D. C. & Simon, R. P. Epilepsy and apoptosis pathways. J. Cereb. Blood Flow Metab. 11 May 2005 (10.1038/sj.jcbfm.9600149).

  54. Patel, M., Day, B. J., Crapo, J. D., Fridovich, I. & McNamara, J. O. Requirement for superoxide in excitotoxic cell death. Neuron 16, 345–355 (1996).

    CAS  PubMed  Google Scholar 

  55. Reynolds, I. J. & Hastings, T. G. Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation. J. Neurosci. 15, 3318–3327 (1995).

    CAS  PubMed  Google Scholar 

  56. Schulz, J. B. et al. Involvement of free radicals in excitotoxicity in vivo. J. Neurochem. 64, 2239–2247 (1995).

    CAS  PubMed  Google Scholar 

  57. Billups, B. & Forsythe, I. D. Presynaptic mitochondrial calcium sequestration influences transmission at mammalian central synapses. J. Neurosci. 22, 5840–5847 (2002).

    CAS  PubMed  Google Scholar 

  58. Nicholls, D. G. & Budd, S. L. Mitochondria and neuronal glutamate excitotoxicity. Biochim. Biophys. Acta 1366, 97–112 (1998).

    CAS  PubMed  Google Scholar 

  59. Maragos, W. F., Rockich, K. T., Dean, J. J. & Young, K. L. Pre- or post-treatment with the mitochondrial uncoupler 2,4-dinitrophenol attenuates striatal quinolinate lesions. Brain Res. 966, 312–316 (2003).

    CAS  PubMed  Google Scholar 

  60. Bagetta, G. et al. Abnormal expression of neuronal nitric oxide synthase triggers limbic seizures and hippocampal damage in rat. Biochem. Biophys. Res. Commun. 291, 255–260 (2002).

    CAS  PubMed  Google Scholar 

  61. Bellissimo, M. I. et al. Superoxide dismutase, glutathione peroxidase activities and the hydroperoxide concentration are modified in the hippocampus of epileptic rats. Epilepsy Res. 46, 121–128 (2001).

    CAS  PubMed  Google Scholar 

  62. Gupta, R. C., Milatovic, D. & Dettbarn, W. D. Nitric oxide modulates high-energy phosphates in brain regions of rats intoxicated with diisopropylphosphorofluoridate or carbofuran: prevention by N-tert-butyl-alpha-phenylnitrone or vitamin E. Arch. Toxicol. 75, 346–356 (2001).

    CAS  PubMed  Google Scholar 

  63. Blumcke, I. et al. Cellular pathology of hilar neurons in Ammon's horn sclerosis. J. Comp. Neurol. 414, 437–453 (1999).

    CAS  PubMed  Google Scholar 

  64. Clavel, S., Paradis, E., Ricquier, D. & Richard, D. Kainic acid upregulates uncoupling protein-2 mRNA expression in the mouse brain. Neuroreport 14, 2015–2017 (2003).

    CAS  PubMed  Google Scholar 

  65. Schauwecker, P. E. & Steward, O. Genetic determinants of susceptibility to excitotoxic cell death: implications for gene targeting approaches. Proc. Natl Acad. Sci. USA 94, 4103–4108 (1997).

    CAS  PubMed  Google Scholar 

  66. Sullivan, P. G., Springer, J. E., Hall, E. D. & Scheff, S. W. Mitochondrial uncoupling as a therapeutic target following neuronal injury. J. Bioenerg. Biomembr. 36, 353–356 (2004).

    CAS  PubMed  Google Scholar 

  67. Nevo, Y. et al. Unprovoked seizures and developmental disabilities: clinical characteristics of children referred to a child development center. Pediatr. Neurol. 13, 235–241 (1995).

    CAS  PubMed  Google Scholar 

  68. Hauser, W. A. The prevalence and incidence of convulsive disorders in children. Epilepsia 35 (Suppl. 2), S1–S6 (1994).

    PubMed  Google Scholar 

  69. Dal-Pizzol, F. et al. Lipid peroxidation in hippocampus early and late after status epilepticus induced by pilocarpine or kainic acid in Wistar rats. Neurosci. Lett. 291, 179–182 (2000).

    CAS  PubMed  Google Scholar 

  70. Sullivan, P. G. et al. The ketogenic diet increases mitochondrial uncoupling protein levels and activity. Ann. Neurol. 55, 576–580 (2004).

    CAS  PubMed  Google Scholar 

  71. Conti, B. et al. Uncoupling protein 2 protects dopaminergic neurons from acute 1,2,3,6-methyl-phenyl-tetrahydropyridine toxicity. J. Neurochem. 93, 493–501 (2005).

    CAS  PubMed  Google Scholar 

  72. Duan, W. & Mattson, M. P. Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson's disease. J. Neurosci. Res. 57, 195–206 (1999).

    CAS  PubMed  Google Scholar 

  73. Beal, M. F., Matthews, R. T., Tieleman, A. & Shults, C. W. Coenzyme Q10 attenuates the 1-methyl-4-phenyl-1,2,3,tetrahydropyridine (MPTP) induced loss of striatal dopamine and dopaminergic axons in aged mice. Brain Res. 783, 109–114 (1998).

    CAS  PubMed  Google Scholar 

  74. Shults, C. W. et al. Effects of coenzyme Q10 in early Parkinson disease: evidence of slowing of the functional decline. Arch. Neurol. 59, 1541–1550 (2002).

    PubMed  Google Scholar 

  75. Thiruchelvam, M. et al. Age-related irreversible progressive nigrostriatal dopaminergic neurotoxicity in the paraquat and maneb model of the Parkinson's disease phenotype. Eur. J. Neurosci. 18, 589–600 (2003).

    PubMed  Google Scholar 

  76. Gonzalez-Polo, R. A., Soler, G., Rodriguezmartin, A., Moran, J. M. & Fuentes, J. M. Protection against MPP+ neurotoxicity in cerebellar granule cells by antioxidants. Cell Biol. Int. 28, 373–380 (2004).

    CAS  PubMed  Google Scholar 

  77. McCarthy, S., Somayajulu, M., Sikorska, M., Borowy-Borowski, H. & Pandey, S. Paraquat induces oxidative stress and neuronal cell death; neuroprotection by water-soluble Coenzyme Q10. Toxicol. Appl. Pharmacol. 201, 21–31 (2004).

    CAS  PubMed  Google Scholar 

  78. Bechmann, I. et al. Brain mitochondrial uncoupling protein 2 (UCP2): a protective stress signal in neuronal injury. Biochem. Pharmacol. 64, 363–367 (2002). Provided the first in vivo experimental evidence that UCP2 may function as a neuroprotector in the brain.

    CAS  PubMed  Google Scholar 

  79. Sullivan, P. G., Keller, J. N., Mattson, M. P. & Scheff, S. W. Traumatic brain injury alters synaptic homeostasis: implications for impaired mitochondrial and transport function. J. Neurotrauma 15, 789–798 (1998).

    CAS  PubMed  Google Scholar 

  80. Sullivan, P. G. et al. Exacerbation of damage and altered NF-κB activation in mice lacking tumor necrosis factor receptors after traumatic brain injury. J. Neurosci. 19, 6248–6256 (1999).

    CAS  PubMed  Google Scholar 

  81. de Bilbao, F. et al. Resistance to cerebral ischemic injury in UCP2 knockout mice: evidence for a role of UCP2 as a regulator of mitochondrial glutathione levels. J. Neurochem. 89, 1283–1292 (2004).

    CAS  PubMed  Google Scholar 

  82. Ross, C. A. & Poirier, M. A. Protein aggregation and neurodegenerative disease. Nature Med. 10 (Suppl.), S10–S17 (2004).

    PubMed  Google Scholar 

  83. Watson, G. S. & Craft, S. The role of insulin resistance in the pathogenesis of Alzheimer's disease: implications for treatment. CNS Drugs 17, 27–45 (2003).

    CAS  PubMed  Google Scholar 

  84. Blass, J. P. Brain metabolism and brain disease: is metabolic deficiency the proximate cause of Alzheimer dementia? J. Neurosci. Res. 66, 851–856 (2001).

    CAS  PubMed  Google Scholar 

  85. Hand, C. K. & Rouleau, G. A. Familial amyotrophic lateral sclerosis. Muscle Nerve 25, 135–159 (2002).

    CAS  PubMed  Google Scholar 

  86. Rosen, D. R. et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59–62 (1993).

    CAS  PubMed  Google Scholar 

  87. Menzies, F. M., Ince, P. G. & Shaw, P. J. Mitochondrial involvement in amyotrophic lateral sclerosis. Neurochem. Int. 40, 543–551 (2002).

    CAS  PubMed  Google Scholar 

  88. Balaban, R. S., Nemoto, S. & Finkel, T. Mitochondria, oxidants, and aging. Cell 120, 483–495 (2005).

    CAS  PubMed  Google Scholar 

  89. Harman, D. Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11, 298–300 (1956).

    CAS  PubMed  Google Scholar 

  90. Dauer, W. & Przedborski, S. Parkinson's disease: mechanisms and models. Neuron 39, 889–909 (2003).

    CAS  PubMed  Google Scholar 

  91. Horvath, T. L. et al. Uncoupling proteins-2 and 3 influence obesity and infIammation in transgenic mice. Int. J. Obes. 27, 433–442 (2003).

    CAS  Google Scholar 

  92. Fridell, Y. W., Sanchez-Blanco, A., Silvia, B. A. & Helfand, S. L. Targeted expression of the human uncoupling protein 2 (hUCP2) to adult neurons extends life span in the fly. Cell Metab. 1, 145–152 (2005). The first study to show that neuron-specific UCP2 promotes longevity, through a reduction in oxidative stress, without compromising fertility or physical activity.

    CAS  PubMed  Google Scholar 

  93. Speakman, J. R. et al. Uncoupled and surviving: individual mice with high metabolism have greater mitochondrial uncoupling and live longer. Aging Cell 3, 87–95 (2004).

    CAS  PubMed  Google Scholar 

  94. Brand, M. D. Uncoupling to survive? The role of mitochondrial inefficiency in ageing. Exp. Gerontol. 35, 811–820 (2000). First formulation of the hypothesis that enhanced uncoupled respiration promotes longevity.

    CAS  PubMed  Google Scholar 

  95. Echtay, K. S., Winkler, E., Frischmuth, K. & Klingenberg, M. Uncoupling proteins 2 and 3 are highly active H+ transporters and highly nucleotide sensitive when activated by coenzyme Q (ubiquinone). Proc. Natl Acad. Sci. USA 98, 1416–1421 (2001).

    CAS  PubMed  Google Scholar 

  96. Echtay, K. S., Winkler, E. & Klingenberg, M. Coenzyme Q is an obligatory cofactor for uncoupling protein function. Nature 408, 609–613 (2000).

    CAS  PubMed  Google Scholar 

  97. Esteves, T. C. & Brand, M. D. The reactions catalysed by the mitochondrial uncoupling proteins UCP2 and UCP3. Biochim. Biophys. Acta 1709, 35–44 (2005).

    CAS  PubMed  Google Scholar 

  98. Jaburek, M. et al. Transport function and regulation of mitochondrial uncoupling proteins 2 and 3. J. Biol. Chem. 274, 26003–26007 (1999).

    CAS  PubMed  Google Scholar 

  99. Echtay, K. S. et al. Regulation of UCP3 by nucleotides is different from regulation of UCP1. FEBS Lett. 450, 8–12 (1999).

    CAS  PubMed  Google Scholar 

  100. Jaburek, M. & Garlid, K. D. Reconstitution of recombinant uncoupling proteins: UCP1, -2, and -3 have similar affinities for ATP and are unaffected by coenzyme Q10. J. Biol. Chem. 278, 25825–25831 (2003).

    CAS  PubMed  Google Scholar 

  101. Brand, M. D. & Esteves, T. C. Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. Cell Metab. 2, 85–93 (2005).

    CAS  PubMed  Google Scholar 

  102. Garlid, K. D., Jaburek, M. & Jezek, P. Mechanism of uncoupling protein action. Biochem. Soc. Trans. 29, 803–806 (2001).

    CAS  PubMed  Google Scholar 

  103. Sivitz, W. I., Fink, B. D. & Donohoue, P. A. Fasting and leptin modulate adipose and muscle uncoupling protein: divergent effects between messenger ribonucleic acid and protein expression. Endocrinology 140, 1511–1519 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors' research projects associated with mechanisms discussed in this paper have been supported by an OTKA grant and the following institutes of the National Institutes of Health (NIH): National Institute on Aging (NIA), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) and National Institute of Neurological Disorders and Stroke (NINDS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamas L. Horvath.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

BMCP1

caspase 3

PGC1

PPARγ

SOD1

UCP1

UCP2

UCP3

UCP4

OMIM

Alzheimer's disease

Amyotrophic lateral sclerosis

Parkinson's disease

Glossary

ELECTRON TRANSFER CHAIN

This comprises a series of five enzyme and protein complexes associated with the inner mitochondrial membrane. It converts energy in the form of the electron transfer potential of NADH and FADH2 into the energy found in the terminal phosphate of ATP, consuming oxygen and producing water in the process.

XANTHINE PLUS XANTHINE OXIDASE SYSTEM

An exogenous system used to generate superoxide and study the molecular and cellular consequences of superoxide production.

PC12 CELLS

A cloned rat pheochromocytomal cell line that retains a number of chromaffin cell characteristics, including the synthesis and secretion of catecholamines and the expression of various neuropeptide genes. PC12 cells are often used to study the cell biology of neuronal genes after transfection.

MPTP

(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine). A toxic by-product of the chemical synthesis of a meperidine analogue that induces a parkinsonian syndrome that is almost indistinguishable from Parkinson's disease. MPTP is commonly used to study cellular and molecular aspects of Parkinson's disease in mice and monkeys, as it specifically induces dopaminergic neurodegeneration in the substantia nigra.

COENZYME Q

(2,3-dimethyloxy-5-methyl-6-multiprenyl-1,4-benzoquinone; also known as ubiquinone). A mobile electron carrier from complexes 1 and 2 to complex 3 of the electron transfer chain that is located in the hydrophobic domain of the inner mitochondrial membrane. It also acts, with vitamin E, to provide anitoxidative protection.

OLIGOMYCIN-INDUCED STATE 4 RESPIRATION

A state of mitochondrial respiration that requires oligomycin to prevent ADP phosphorylation (state 3 respiration) by blocking protons from interacting with ATP synthase. State 4 respiration is a direct measure of mitochondrial uncoupling activity.

ISCHAEMIC PRECONDITIONING

A process that occurs after sublethal ischaemic insults. Neurons activate defensive mechanisms, such as cellular calcium buffering and antioxidants systems, that counteract ischaemic damage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrews, Z., Diano, S. & Horvath, T. Mitochondrial uncoupling proteins in the cns: in support of function and survival. Nat Rev Neurosci 6, 829–840 (2005). https://doi.org/10.1038/nrn1767

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1767

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing