The physics and neurobiology of magnetoreception

Key Points

  • Behavioural experiments have shown that diverse animals can detect the Earth's magnetic field and use it as a cue for guiding movements over both long and short distances. However, whereas receptors for most other sensory systems have been characterized and studied, primary receptors involved in detecting magnetic fields have not yet been identified with certainty. This article reviews the three main mechanisms that have been proposed to underlie magnetoreception (electromagnetic induction, chemical magnetoreception and biogenic magnetite) and evaluates the evidence for each.

  • Electromagnetic induction involves detecting small electrical currents that are generated when an animal moves through the Earth's magnetic field. This requires a well-developed electrosense. Most induction models also require the animal to live in a conductive medium such as sea water. Although sharks and a few other electrosensitive marine fishes might plausibly rely on induction, no direct evidence has yet been obtained that they do so.

  • Chemical magnetoreception involves molecular reactions, the yields of which are modified by the direction and intensity of Earth-strength magnetic fields. All proposed reactions involve electron spins in pairs of radicals. At present, however, no radical pair reaction has been identified that is affected by magnetic fields as weak as the Earth's. Evidence consistent with a radical pair mechanism includes effects of light and radio-frequency fields on magnetic orientation behaviour.

  • The magnetite hypothesis posits that crystals of the magnetic mineral magnetite transduce magnetic field energy into physical forces that can be detected by the nervous system. In several animals, magnetite has been detected in anatomical locations that have been linked to magnetoreception, but unequivocal morphological or neurophysiological evidence for magnetite-based receptors has not yet been obtained.

  • All three of the proposed mechanisms are plausible from the standpoint of physics and, at present, the available data are insufficient to confirm or refute any of them. Different animals might rely on different mechanisms. Moreover, at least a few animals might use two different magnetoreception systems, one for sensing field direction and the other for sensing field elements useful for determining geographic position. Each system might be based on separate receptors with different underlying mechanisms.

  • Most magnetoreception research has been based on behavioural studies. Sustained efforts are now needed to exploit a wider range of modern neuroscience techniques. Such undertakings might be facilitated by the discovery that magnetic sensitivity exists in several favorable model systems, including zebrafish, the fruitfly Drosophila melanogaster and the mollusc Tritonia diomedea.


Diverse animals can detect magnetic fields but little is known about how they do so. Three main hypotheses of magnetic field perception have been proposed. Electrosensitive marine fish might detect the Earth's field through electromagnetic induction, but direct evidence that induction underlies magnetoreception in such fish has not been obtained. Studies in other animals have provided evidence that is consistent with two other mechanisms: biogenic magnetite and chemical reactions that are modulated by weak magnetic fields. Despite recent advances, however, magnetoreceptors have not been identified with certainty in any animal, and the mode of transduction for the magnetic sense remains unknown.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Large-scale and fine-scale structure of the Earth's magnetic field.
Figure 2: Evidence for a magnetic map in sea turtles.
Figure 3: The different magnetic properties of single-domain and superparamagnetic crystals.
Figure 4: Results of electrophysiological experiments with the bobolink bird.


  1. 1

    Wiltschko, R. & Wiltschko, W. Magnetic Orientation in Animals (Springer, Berlin, Germany, 1995). Provides a comprehensive review of magnetoreception research and its history up to 1995.

    Google Scholar 

  2. 2

    Kirschvink, J. L. Birds, bees and magnetism: a new look at the old problem of magnetoreception. Trends Neurosci. 5, 160–167 (1982).

    CAS  Article  Google Scholar 

  3. 3

    Ritz, T. et al. A model for vision-based magnetoreception in birds. Biophys. J. 78, 707–718 (2000). Develops the radical pair model as a possible mechanism for magnetoreception and speculates on its connection with visual perception.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4

    Gould, J. L. & Able, K. P. Human homing – an elusive phenomenon. Science 212, 1061–1063 (1981).

    CAS  PubMed  Article  Google Scholar 

  5. 5

    Baker R. R. Human Navigation and Magnetoreception (Manchester University Press, UK, 1989).

    Google Scholar 

  6. 6

    Skiles, D. D. in Magnetite Biomineralization and Magnetoreception in Organisms (eds Kirschvink, J. L., Jones, D. S. & MacFadden, B. J.) 43–102 (Plenum, New York, USA, 1985).

    Google Scholar 

  7. 7

    Lohmann, K. J. et al. Long-distance navigation in sea turtles. Ethol. Ecol. Evol. 11, 1–23 (1999).

    Article  Google Scholar 

  8. 8

    Beck, W. & Wiltschko, W. in Acta XIX Congressus Internationalis Ornithologica. (ed. Ouellet, H.) 1955–1962 (University of Ottawa Press, Ottowa, Canada, 1988).

    Google Scholar 

  9. 9

    Semm, P. & Beason, R. C. Responses to small magnetic variations by the trigeminal system of the bobolink. Brain Res. Bull. 25, 735–740 (1990). Provides electrophysiological evidence for a link between magnetoreception and the trigeminal system in birds.

    CAS  PubMed  Article  Google Scholar 

  10. 10

    Fransson, T. et al. Bird migration: magnetic cues trigger extensive refueling. Nature 414, 35–36 (2001).

    CAS  PubMed  Article  Google Scholar 

  11. 11

    Lohmann, K. J. & Lohmann, C. M. F. Detection of magnetic field inclination by sea turtles: a possible mechanism for determining latitude. J. Exp. Biol. 194, 23–32 (1994).

    CAS  PubMed  Google Scholar 

  12. 12

    Lohmann, K. J. & Lohmann, C. M. F. Detection of magnetic field intensity by sea turtles. Nature 380, 59–61 (1996).

    CAS  Article  Google Scholar 

  13. 13

    Lohmann, K. J. et al. Regional magnetic fields as navigational markers for sea turtles. Science 294, 364–366 (2001).

    CAS  PubMed  Article  Google Scholar 

  14. 14

    Lohmann, K. J. et al. Geomagnetic map used in sea-turtle navigation. Nature 428, 909–910 (2004).

    CAS  PubMed  Article  Google Scholar 

  15. 15

    Fischer, J. H. et al. Evidence for the use of magnetic map information by an amphibian. Anim. Behav. 62, 1–10 (2001).

    Article  Google Scholar 

  16. 16

    Phillips, J. B. et al. Behavioral titration of a magnetic map coordinate. J. Comp. Physiol. A 188, 157–160 (2002).

    Article  Google Scholar 

  17. 17

    Boles, L. C. & Lohmann, K. J. True navigation and magnetic maps in spiny lobsters. Nature 421, 60–63 (2003). Shows that lobsters can navigate over relatively small distances, apparently using magnetic cues. The distances involved imply that their magnetic sensitivity must be quite high.

    CAS  PubMed  Article  Google Scholar 

  18. 18

    Beason, R. C. & Semm, P. Magnetic responses of the trigeminal nerve system of the bobolink (Dolichonyx oryzivorus). Neurosci. Lett. 80, 229–234 (1987).

    CAS  PubMed  Article  Google Scholar 

  19. 19

    Wiltschko, W. & Wiltschko, R. Migratory orientation of European robins is affected by the wavelength of light as well as by a magnetic pulse. J. Comp. Physiol. A 177, 363–369 (1995).

    Article  Google Scholar 

  20. 20

    Lohmann, K. J. & Johnsen, S. The neurobiology of magnetoreception in vertebrate animals. Trends Neurosci. 23, 153–159 (2000).

    CAS  PubMed  Article  Google Scholar 

  21. 21

    Purcell, E. M. Electricity and Magnetism: Berkeley Physics Course Vol. 2 (McGraw-Hill, New York, USA, 1985).

    Google Scholar 

  22. 22

    Kalmijn, A. J. in Handbook of Sensory Physiology Vol III/3 (ed. Fessard, A.) 147–200 (Springer, Berlin, Germany, 1974).

    Google Scholar 

  23. 23

    Kalmijn, A. J. in International Conference on Comparative Physiology, 'Comparative Physiology of Sensory Systems', Crans-sur-Sierre, Switzerland, 14–18 Jun 1982 (eds Bolis, L., Keynes, R. D. & Maddrel, S. H. P.) 525–560 (1984).

    Google Scholar 

  24. 24

    Montgomery, J. C. Dogfish horizontal canal system: responses of primary afferent, vestibular and cerebellar neurons to rotational stimulation. Neuroscience 5, 1761–1769 (1980).

    CAS  PubMed  Article  Google Scholar 

  25. 25

    Paulin, M. G. Electroreception and the compass sense of sharks. J. Theor. Biol. 174, 325–339 (1995).

    Article  Google Scholar 

  26. 26

    Rosenblum, B. et al. in Magnetite Biomineralization and Magnetoreception in Organisms (eds Kirschvink, J. L., Jones, D. S. & MacFadden, B. J.) 365–384 (Plenum, New York, USA, 1985).

    Google Scholar 

  27. 27

    Kalmijn, A. J. The electric sense of sharks and rays. J. Exp. Biol. 55, 371–383 (1971).

    CAS  PubMed  Google Scholar 

  28. 28

    Kalmijn, A. J. in Sensory Biology of Aquatic Animals (eds Atema, J., Fay, R. R., Popper, A. N. & Tavolga, W. N.) 151–186 (Springer, Berlin, Germany, 1988).

    Google Scholar 

  29. 29

    Kalmijn, A. J. in Animal Migration, Navigation, and Homing (eds Schmidt-Koenig, K. & Keeton, W. T.) 347–353 (Springer, Berlin, Germany, 1978). Demonstrates that an electrosensitive elasmobranch can respond to magnetic fields and develops the hypothesis that this sensitivity is due to electromagnetic induction.

    Google Scholar 

  30. 30

    Klimley, A. P. Highly directional swimming by scalloped hammerhead sharks, Sphyrna lewini, and subsurface irradiance, temperature, bathymetry, and geomagnetic field. Mar. Biol. 117, 1–22 (1993).

    Article  Google Scholar 

  31. 31

    Walker, M. M., Diebel, C. E. & Kirschvink, J. L. in Sensory Processing in Aquatic Environments (eds Collin, S. P. & Marshall, N. J.) 53–74 (Springer, New York, USA, 2003).

    Google Scholar 

  32. 32

    Kirschvink, J. L., Walker, M. M. & Diebel, C. E. Magnetite-based magnetoreception Curr. Opin. Neurobiol. 11, 462–467 (2001).

    CAS  PubMed  Article  Google Scholar 

  33. 33

    Meyer, C. G., Holland, K. N. & Papastamatiou Y. P. Sharks can detect changes in the geomagnetic field. J. R. Soc. Interface 2, 129–130 (2005).

    PubMed  Article  Google Scholar 

  34. 34

    Kirschvink, J. L. Magnetite biomineralization and geomagnetic sensitivity in animals: an update and recommendations for future study. Bioelectromagnetics 10, 239–259 (1989).

    CAS  PubMed  Article  Google Scholar 

  35. 35

    Edmonds, D. Electricity and Magnetism in Biological Systems (Oxford Univ. Press, Oxford, 2001).

    Google Scholar 

  36. 36

    Leask, M. J. M. A physicochemical mechanism for magnetic field detection by migratory birds and homing pigeons. Nature 267, 144–145 (1977).

    CAS  PubMed  Article  Google Scholar 

  37. 37

    Schulten, K. in Festkörperprobleme (Advances in Solid State Physics Vol. 22) (ed. Treusch, J.) 61–83 (Vieweg, Braunschweig, Germany, 1982).

    Google Scholar 

  38. 38

    Lednev, V. V. Possible mechanism for the influence of weak magnetic fields on biological systems. Bioelectromagnetics 12, 71–75 (1991).

    CAS  PubMed  Article  Google Scholar 

  39. 39

    Liboff, A. R. Electric-field ion cyclotron resonance. Bioelectromagnetics 18, 85–87 (1997).

    CAS  PubMed  Article  Google Scholar 

  40. 40

    Grissom, C. B. Magnetic field effects in biology: a survey of possible mechanisms with emphasis on radical pair recombination. Chem. Rev. 95, 3–24 (1995). A critical review of the potential mechanisms by which weak static and alternating magnetic fields might influence biological processes.

    CAS  Article  Google Scholar 

  41. 41

    Adair, R. K. Static and low-frequency magnetic field effects: health risks and therapies. Rep. Prog. Phys. 63, 415–454 (2000).

    CAS  Article  Google Scholar 

  42. 42

    Weaver, J. C., Vaughan, T. E. & Astumian, R. D. Biological sensing of small field differences by magnetically sensitive chemical reactions. Nature 405, 707–709 (2000).

    CAS  PubMed  Article  Google Scholar 

  43. 43

    Timmel, C. R. & Henbest, K. B. A study of spin chemistry in weak magnetic fields. Phil. Trans. R. Soc. Lond. A 362, 2573–2589 (2004). Provides an in-depth review of the field of spin chemistry, with particular emphasis on the effects that weak magnetic fields exert on radical pair reactions.

    CAS  Article  Google Scholar 

  44. 44

    Eveson, R. W. et al. The effects of weak magnetic fields on radical recombination reactions in micelles. Int. J. Rad. Biol. 76, 1509–1522 (2000).

    CAS  PubMed  Article  Google Scholar 

  45. 45

    Mouritsen, H. et al. Cryptochromes and neuronal-activity markers colocalize in the retina of migratory birds during magnetic orientation. Proc. Natl Acad. Sci. USA 101, 14294–14299 (2004). Gives molecular and neurobiological evidence that cryptochromes are expressed in the retinae of birds immediately before migratory behavior.

    CAS  PubMed  Article  Google Scholar 

  46. 46

    Möller, A. et al. Retinal cryptochrome in a migratory passerine bird: a possible transducer for the avian magnetic compass. Naturwissenschaften 91, 585–588 (2004).

    PubMed  Article  CAS  Google Scholar 

  47. 47

    Cashmore, A. R. et al. Cryptochromes: blue light receptors for plants and animals. Science 284, 760–765 (1999).

    CAS  PubMed  Article  Google Scholar 

  48. 48

    Giovani, B. et al. Light-induced electron transfer in a cryptochrome blue-light photoreceptor. Nature Struct. Biol. 10, 489–490 (2003).

    CAS  PubMed  Article  Google Scholar 

  49. 49

    Taraban, M. B. et al. Magnetic field dependence of electron transfer and the role of electron spin in heme enzymes: horseradish peroxidase. J. Am. Chem. Soc. 119, 5768–5769 (1997).

    CAS  Article  Google Scholar 

  50. 50

    Canfield, J. M., Belford, R. L. & Debrunner P. G. Calculations of Earth-strength steady and oscillating magnetic field effects in coenzyme B12 radical pair systems. Mol. Phys. 89, 889–930 (1996).

    CAS  Article  Google Scholar 

  51. 51

    Cintolesi, F. et al. Anisotropic recombination of an immobilized photoinduced radical pair in a 50-μT magnetic field: a model avian photomagnetoreceptor. Chem. Phys. 294, 385–399 (2003).

    CAS  Article  Google Scholar 

  52. 52

    Beason, R. C. & Semm, P. in Biological Effects of Electric and Magnetic Fields Vol. 1 (ed. Carpenter, D. O.) 241–260 (Academic, New York, USA, 1994).

    Google Scholar 

  53. 53

    Semm, P. et al. Neural basis of the magnetic compass: interactions of visual, magnetic and vestibular inputs in the pigeon's brain. J. Comp. Physiol. A 155, 283–288 (1984).

    Article  Google Scholar 

  54. 54

    Semm, P. & Demaine, C. Neurophysiological properties of magnetic cells in the pigeon's visual system. J. Comp. Physiol. A 159, 619–625 (1986).

    CAS  PubMed  Article  Google Scholar 

  55. 55

    Semm, P. et al. in Avian Navigation (eds Papi, F. & Walraff, H. G.) 329–337 (Springer, New York, USA, 1982).

    Google Scholar 

  56. 56

    Deutschlander, M. E. et al. Extraocular magnetic compass in newts. Nature 400, 324–325 (1999).

    CAS  PubMed  Article  Google Scholar 

  57. 57

    Demaine, C. & Semm, P. The avian pineal gland as an independent magnetic sensor. Neurosci. Lett. 62, 119–122 (1985).

    CAS  PubMed  Article  Google Scholar 

  58. 58

    Wiltschko, W. et al. Red light disrupts magnetic orientation in migratory birds. Nature 364, 525–527 (1993).

    Article  Google Scholar 

  59. 59

    Wiltschko, W. & Wiltschko, R. The effect of yellow and blue light on magnetic compass orientation in European robins, Erithacus rubecula. J. Comp. Physiol. A. 184, 295–299 (1999).

    Article  Google Scholar 

  60. 60

    Muheim, R., Backman, J. & Akesson, S. Magnetic compass orientation in European robins is dependent on both wavelength and intensity of light. J. Exp. Biol. 205, 3845–3856 (2002). Reports on tests of magnetic orientation under diverse lighting environments and reviews light-dependent effects up to 2001.

    PubMed  Google Scholar 

  61. 61

    Phillips, J. B. & Borland, S. C. Behavioural evidence for use of a light-dependent magnetoreception mechanism by a vertebrate. Nature 359, 142–144 (1992). This paper was the first to demonstrate that the wavelength of light can affect magnetic orientation behaviour. It also develops an opponency model that involves two systems responsive to different wavelengths.

    Article  Google Scholar 

  62. 62

    Phillips, J. B. & Sayeed, O. Wavelength-dependent effects of light on magnetic compass orientation in Drosophila melanogaster. J. Comp. Physiol. A 172, 303–308 (1993).

    CAS  PubMed  Article  Google Scholar 

  63. 63

    Wiltschko, W. & Wiltschko, R. Magnetic compass orientation in birds and its physiological basis. Naturwissenschaften 89, 445–452 (2002).

    CAS  PubMed  Article  Google Scholar 

  64. 64

    Vacha, M. & Soukopova, H. Magnetic orientation in the mealworm beetle Tenebrio and the effect of light. J. Exp. Biol. 207, 1241–1248 (2004).

    PubMed  Article  Google Scholar 

  65. 65

    Wiltschko, W. et al. Magnetic orientation in birds: non-compass responses under monochromatic light of increased intensity. Proc. R. Soc. Lond. B 270, 2133–2140 (2003).

    Article  Google Scholar 

  66. 66

    Wiltschko, W. & Wiltschko, R. Light-dependent magnetoreception in birds: the behaviour of European robins, Erithacus rubecula, under monochromatic light of various wavelengths and intensities. J. Exp. Biol. 204, 3295–3302 (2001).

    CAS  PubMed  Google Scholar 

  67. 67

    Wiltschko, W. et al. Light-dependent magnetoreception in birds: analysis of the behaviour under red light after pre-exposure to red light. J. Exp. Biol. 207, 1193–1202 (2004).

    PubMed  Article  Google Scholar 

  68. 68

    Wiltschko, W. et al. Light-dependent magnetoreception in birds: interaction of at least two different receptors. Naturwissenschaften 91, 130–134 (2004).

    CAS  PubMed  Article  Google Scholar 

  69. 69

    Ritz, T., Dommer, D. H. & Phillips, J. B. Shedding light on vertebrate magnetoreception. Neuron 34, 503–506 (2002).

    CAS  PubMed  Article  Google Scholar 

  70. 70

    Henbest, K. B. et al. Radio frequency magnetic field effects on a radical recombination reaction: a diagnostic test for the radical pair mechanism. J. Am. Chem. Soc. 126, 8102–8103 (2004).

    CAS  PubMed  Article  Google Scholar 

  71. 71

    Ritz, T. et al. Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature 429, 177–180 (2004).

    CAS  PubMed  Article  Google Scholar 

  72. 72

    Thalau, P. et al. Magnetic compass orientation of migratory birds in the presence of a 1.315 MHz oscillating field. Naturwissenschaften 92, 86–90 (2005). References 71 and 72 were the first to show that radio frequency fields can disrupt magnetic orientation, a key prediction of the chemical magnetoreception model.

    CAS  PubMed  Article  Google Scholar 

  73. 73

    Bazylinski, D. A. & Frankel, R. B. Magnetosome formation in prokaryotes. Nature Rev. Microbiol. 2, 217–230 (2004). A comprehensive review of the molecular underpinnings of magnetosome formation.

    CAS  Article  Google Scholar 

  74. 74

    Kirschvink, J. L. et al. Magnetite Biomineralization and Magnetoreception in Organisms (Plenum, New York, USA, 1985).

    Google Scholar 

  75. 75

    Presti, D. & Pettigrew, J. D. Ferromagnetic coupling to muscle receptors as a basis for geomagnetic field sensitivity in animals. Nature 285, 99–101 (1980).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  76. 76

    Kirschvink, J. L. & Gould, J. L. Biogenic magnetite as a basis for magnetic field detection in animals. Biosystems 13, 181–201 (1981).

    CAS  PubMed  Article  Google Scholar 

  77. 77

    Shcherbakov, V. P. & Winklhofer, M. The osmotic magnetometer: a new model for magnetite-based magnetoreceptors in animals Eur. Biophys. J. 28, 380–392 (1999).

    CAS  Article  Google Scholar 

  78. 78

    Bacri, J. C. et al. Flattening of ferro-vesicle undulations under a magnetic field. Europhys. Lett. 33, 235–240 (1996).

    CAS  Article  Google Scholar 

  79. 79

    Davila, A. F. et al. A new model for a magnetoreceptor in homing pigeons based on interacting clusters of superparamagnetic magnetite. Phys. Chem. Earth 28, 647–652 (2003).

    Article  Google Scholar 

  80. 80

    Fleissner, G. E. et al. Ultrastructural analysis of a putative magnetoreceptor in the beak of homing pigeons. J. Comp. Neurol. 458, 350–360 (2003). Provides detailed ultrastructure of deposits of superparamagnetic magnetite crystals in the beak of a bird.

    CAS  PubMed  Article  Google Scholar 

  81. 81

    Walker, M. M. et al. Structure and function of the vertebrate magnetic sense. Nature 390, 371–376 (1997).

    CAS  PubMed  Article  Google Scholar 

  82. 82

    Diebel, C. E. et al. Magnetite defines a vertebrate magnetoreceptor. Nature 406, 299–302 (2000). References 81 and 82 provide the best morphological evidence to date for a magnetoreceptor based on single-domain magnetite.

    CAS  PubMed  Article  Google Scholar 

  83. 83

    Winklhofer, M. E. et al. Clusters of superparamagnetic magnetite particles in the upper-beak tissue of homing pigeons: evidence of a magnetoreceptor. Eur. J. Mineral. 13, 659–669 (2001).

    CAS  Article  Google Scholar 

  84. 84

    Beason, R. C. & Brennan, W. J. Natural and induced magnetization in the bobolink, Dolichonyx oryzivorus (Aves: Icteridae). J. Exp. Biol. 125, 49–56 (1986).

    Google Scholar 

  85. 85

    Hanzlik, M. et al. Superparamagnetic magnetite in the upper beak tissue of homing pigeons. Biometals 13, 325–331 (2000).

    CAS  PubMed  Article  Google Scholar 

  86. 86

    Dubbeldam, J. L. in The Central Nervous System of Vertebrates Vol. 3 (eds Nieuwenhuys, R., ten Donkelaar, H. J. & Nicholson, C.) 1525–1636 (Springer, Berlin, Germany, 1998).

    Google Scholar 

  87. 87

    Mora, C. V. et al. Magnetoreception and its trigeminal mediation in the homing pigeon. Nature 432, 508–511 (2004).

    CAS  PubMed  Article  Google Scholar 

  88. 88

    Kalmijn, A. J. & Blakemore, R. P. in Animal Migration, Navigation, and Homing (eds Schmidt-Koenig, K. & Keeton, W. T.) 354–355 (Springer, Berlin, Germany, 1978).

    Google Scholar 

  89. 89

    Wiltschko, W. et al. A magnetic pulse leads to a temporary deflection in orientation of migratory birds. Experientia 50, 697–700 (1994).

    Article  Google Scholar 

  90. 90

    Beason, R. C. et al. Behavioural evidence for the use of magnetic material in magnetoreception by a migratory bird. J. Exp. Biol. 198, 141–146 (1995).

    CAS  PubMed  Google Scholar 

  91. 91

    Beason, R. C. et al. Pigeon homing: effects of magnetic pulses on initial orientation. Auk 114, 405–415 (1997).

    Article  Google Scholar 

  92. 92

    Irwin, W. P. & Lohmann, K. J. Disruption of magnetic orientation in hatchling loggerhead sea turtles by pulsed magnetic fields. J. Comp. Physiol. A 191, 475–480 (2005).

    Article  Google Scholar 

  93. 93

    Munro, U. et al. Evidence for a magnetite-based navigational 'map' in birds. Naturwissenschaften 84, 26–28 (1997).

    CAS  Article  Google Scholar 

  94. 94

    Marhold, S. et al. A magnetic polarity compass for direction finding in a subterranean mammal. Naturwissenschaften 84, 421–423 (1997).

    CAS  Article  Google Scholar 

  95. 95

    Lohmann, K. J. et al. Magnetic orientation of spiny lobsters in the ocean: experiments with undersea coil systems. J. Exp. Biol. 198, 2041–2048 (1995).

    CAS  PubMed  Google Scholar 

  96. 96

    Quinn, T. P. et al. Magnetic field detection in sockeye salmon. J. Exp. Zool. 217, 137–142 (1981).

    Article  Google Scholar 

  97. 97

    Wiltschko, W. & Wiltschko, R. Magnetic compass of European robins. Science 176, 62–64 (1972).

    CAS  PubMed  Article  Google Scholar 

  98. 98

    Light, P. et al. Geomagnetic orientation of loggerhead sea turtles: evidence for an inclination compass. J. Exp. Biol. 182, 1–10 (1993).

    Google Scholar 

  99. 99

    Phillips, J. B. Two magnetoreception pathways in a migratory salamander. Science 233, 765–767 (1986).

    CAS  PubMed  Article  Google Scholar 

  100. 100

    Yorke, E. D. in Magnetite Biomineralization and Magnetoreception in Organisms (eds Kirschvink, J. L., Jones, D. S. & MacFadden, B. J.) 233–242 (Plenum, New York, USA, 1985).

    Google Scholar 

  101. 101

    Schulten, K. & Windemuth, A. in Biophysical Effects of Steady Magnetic Fields (eds Maret, G., Boccara, N. & Kiepenheuer, J.) 99–106 (Springer, Berlin, USA, 1986).

    Google Scholar 

  102. 102

    Moore, B. R. Is the homing pigeon's map geomagnetic? Nature 285, 69–70 (1980).

    Article  Google Scholar 

  103. 103

    Gould, J. L. The map sense of pigeons. Nature 296, 205–211 (1982).

    Article  Google Scholar 

  104. 104

    Gould, J. L. Sensory bases of navigation. Curr. Biol. 8, R731–R738 (1998).

    CAS  PubMed  Article  Google Scholar 

  105. 105

    Nemec, P. et al. Neuroanatomy of magnetoreception: the superior colliculus involved in magnetic orientation in a mammal. Science 294, 366–368 (2001).

    CAS  PubMed  Article  Google Scholar 

  106. 106

    Nemec, P., Burda, H. & Oelschlager, H. H. A. Towards the neural basis of magnetoreception: a neuroanatomical approach. Naturwissenschaften 92, 151–157 (2005).

    CAS  PubMed  Article  Google Scholar 

  107. 107

    Wang, J. H., Cain, S. D. & Lohmann, K. J. Identification of magnetically responsive neurons in the marine mollusc Tritonia diomedea. J. Exp. Biol. 206, 381–388 (2003).

    PubMed  Article  Google Scholar 

  108. 108

    Wang, J. H., Cain, S. D. & Lohmann, K. J. Identifiable neurons inhibited by Earth-strength magnetic stimuli in the mollusc Tritonia diomedea. J. Exp. Biol. 207, 1043–1049 (2004).

    PubMed  Article  Google Scholar 

  109. 109

    Cain, S. D. et al. Magnetic orientation and navigation in marine turtles, lobsters, and molluscs: concepts and conundrums. Integr. Comp. Biol. 45, 539–546 (2005).

    PubMed  Article  Google Scholar 

  110. 110

    Shcherbakov, D. et al. Magnetosensation in zebrafish. Curr. Biol. 15, R161–R162 (2005).

    CAS  PubMed  Article  Google Scholar 

  111. 111

    Wehner, R. & Labhart, T. Perception of the geomagnetic field in the fly, Drosophila melanogaster. Experientia 26, 967–968 (1970).

    CAS  PubMed  Article  Google Scholar 

  112. 112

    Deutschlander, M. E. et al. The case for light-dependent magnetic orientation in animals. J. Exp. Biol. 202, 891–908 (1999).

    PubMed  Google Scholar 

  113. 113

    Brown, R. L. & Robinson, P. R. Melanopsin — shedding light on the elusive circadian photopigment. Chronobiol. Int. 21, 189–204 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  114. 114

    Hattar, S. et al. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295, 1065–1070 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  115. 115

    Chaurasia, S. S. et al. Molecular cloning, localization and circadian expression of chicken melanopsin (Opn4): differential regulation of expression in pineal and retinal cell types. J. Neurochem. 92, 158–170 (2005).

    CAS  PubMed  Article  Google Scholar 

  116. 116

    Brainard, G. C. et al. Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor. J. Neurosci. 21, 6405–6412 (2001).

    CAS  PubMed  Article  Google Scholar 

  117. 117

    Lockley, S. W., Brainard, G. C. & Czeisler, C. A. High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light. J. Clin. Endocrin. Metab. 88, 4502–4505 (2005).

    Article  CAS  Google Scholar 

  118. 118

    Figueiro, M. G. et al. Preliminary evidence for spectral opponency in the suppression of melatonin by light in humans. Neuroreport 15, 313–316 (2004).

    CAS  PubMed  Article  Google Scholar 

  119. 119

    Dacey, D. M. et al. Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 433, 749–754 (2005).

    CAS  PubMed  Article  Google Scholar 

  120. 120

    Wiltschko, W. et al. Lateralization of magnetic compass orientation in a migratory bird. Nature 419, 467–470 (2002).

    CAS  PubMed  Article  Google Scholar 

  121. 121

    Iglesia, H. O., Meyer, J. & Schwartz, W. J. Lateralization of circadian pacemaker output: Activation of left- and right-sided luteinizing hormone-releasing hormone neurons involves a neural rather than a humoral pathway. J. Neurosci. 23, 7412–7414 (2003).

    PubMed  Article  Google Scholar 

  122. 122

    Iglesia, H. O. et al. Antiphase oscillation of the left and right suprachiasmatic nuclei. Science 290, 799–801 (2000).

    PubMed  Article  Google Scholar 

  123. 123

    Dobson, J. Magnetic iron compounds in neurological disorders. Ann. NY Acad. Sci. 1012, 183–192 (2004).

    CAS  PubMed  Article  Google Scholar 

  124. 124

    Sweeney, R. E. IGRFGRID — a program for creation of a total magnetic field (International Geomagnetic Reference Field) grid representing the Earth's main magnetic field. U.S. Geological Survey Open-File Report 90–45a 37 (1990).

    Google Scholar 

  125. 125

    U.S. Geological Survey Open File Report 2005–1052 [online] <> (2005).

  126. 126

    Avens, L. & Lohmann, K. J. Navigation and seasonal migratory orientation in juvenile sea turtles. J. Exp. Biol. 207, 1771–1778 (2004).

    PubMed  Article  Google Scholar 

  127. 127

    Ireland, L. C. in A Handbook for Biotelemetry and Radio Tracking (eds Amlaner, J. & MacDonald, D. S.) 761–764 (Pergamon, Oxford, 1980).

    Google Scholar 

Download references


We thank P. Hore, J. Canfield and C. Lohmann for comments on drafts of the manuscript. The authors' research was supported by a grant from the National Science Foundation.

Author information



Corresponding author

Correspondence to Sönke Johnsen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.



A biological structure that can transduce the strength and/or orientation of the local magnetic field to an animal's nervous system.


(GPS). A network of artificial satellite transmitters that provide highly accurate position fixes for Earth-based, portable receivers.


A current in a loop of conducting wire that is caused by a changing magnetic field in the circle formed by the loop.


Magnetite (Fe3O4) synthesized by a living organism.


The force exerted on a charged particle moving through a magnetic field.


The relatively slow rotation of the axis of a spinning object.


The return of a donated electron to its donor.


Quantum mechanical principle that states, among other things, that two electrons with the same spin cannot occupy the same orbital.


Two charged molecules held in close proximity in solution by a cage of solvent molecules.


An aggregate of detergent-like molecules in solution, with hydrophilic ends facing outwards and hydrophobic ends facing inwards.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Johnsen, S., Lohmann, K. The physics and neurobiology of magnetoreception. Nat Rev Neurosci 6, 703–712 (2005).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing