Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Emerging biological roles for erythropoietin in the nervous system

A Correction to this article was published on 01 August 2005

Abstract

Erythropoietin mediates an evolutionarily conserved, ancient immune response that limits damage to the heart, the nervous system and other tissues following injury. New evidence indicates that erythropoietin specifically prevents the destruction of viable tissue surrounding the site of an injury by signalling through a non-haematopoietic receptor. Engineered derivatives of erythropoietin that have a high affinity for this receptor have been developed, and these show robust tissue-protective effects in diverse preclinical models without stimulating erythropoiesis. A recent successful proof-of-concept clinical trial that used erythropoietin to treat human patients who had suffered a stroke encourages the evaluation of both this cytokine and non-erythropoietic derivatives as therapeutic agents to limit tissue injury.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Range of erythropoietin concentrations in the serum of healthy individuals and those with moderate anaemia, and the affinities of erythropoietin receptors in different cell types.
Figure 2: The central role of hypoxia-inducible factor in erythropoiesis and tissue protection.
Figure 3: Structure of cytokine receptor subunits that mediate erythropoiesis and cytoprotection.
Figure 4: Intracellular erythropoietin signalling pathways implicated in tissue protection.
Figure 5: Evolution of tissue injury and its modulation by endogenous erythropoietin or exogenous non-erythropoietic tissue-protective cytokines.
Figure 6: In vivo efficacy of non-erythropoietic, tissue-protective erythropoietin derivatives.

Similar content being viewed by others

References

  1. Miyake, T., Kung, C. K. & Goldwasser, E. Purification of human erythropoietin. J. Biol. Chem. 252, 5558–5564 (1977).

    CAS  PubMed  Google Scholar 

  2. Fisher, J. W. Erythropoietin: physiology and pharmacology update. Exp. Biol. Med. (Maywood) 228, 1–14 (2003).

    CAS  Google Scholar 

  3. Jelkmann, W. The enigma of the metabolic fate of circulating erythropoietin (Epo) in view of the pharmacokinetics of the recombinant drugs rhEpo and NESP. Eur. J. Haematol. 69, 265–274 (2002).

    CAS  PubMed  Google Scholar 

  4. Tan, C. C., Eckardt, K. U., Firth, J. D. & Ratcliffe, P. J. Feedback modulation of renal and hepatic erythropoietin mRNA in response to graded anemia and hypoxia. Am. J. Physiol. 263, F474–F481 (1992).

    CAS  PubMed  Google Scholar 

  5. Masuda, S. et al. A novel site of erythropoietin production. Oxygen-dependent production in cultured rat astrocytes. J. Biol. Chem. 269, 19488–19493 (1994).

    CAS  PubMed  Google Scholar 

  6. Konishi, Y., Chui, D. H., Hirose, H., Kunishita, T. & Tabira, T. Trophic effect of erythropoietin and other hematopoietic factors on central cholinergic neurons in vitro and in vivo. Brain Res. 609, 29–35 (1993).

    CAS  PubMed  Google Scholar 

  7. Siren, A. L. et al. Erythropoietin and erythropoietin receptor in human ischemic/hypoxic brain. Acta Neuropathol. (Berl.) 101, 271–276 (2001).

    CAS  Google Scholar 

  8. Morishita, E., Masuda, S., Nagao, M., Yasuda, Y. & Sasaki, R. Erythropoietin receptor is expressed in rat hippocampal and cerebral cortical neurons, and erythropoietin prevents in vitro glutamate-induced neuronal death. Neuroscience 76, 105–116 (1997).

    CAS  PubMed  Google Scholar 

  9. Sakanaka, M. et al. In vivo evidence that erythropoietin protects neurons from ischemic damage. Proc. Natl Acad. Sci. USA 95, 4635–4640 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Brines, M. L. et al. Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury. Proc. Natl Acad. Sci. USA 97, 10526–10531 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Siren, A. L. et al. Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc. Natl Acad. Sci. USA 98, 4044–4049 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Beleslin-Cokic, B. B. et al. Erythropoietin and hypoxia stimulate erythropoietin receptor and nitric oxide production by endothelial cells. Blood 104, 2073–2080 (2004).

    CAS  PubMed  Google Scholar 

  13. Kawakami, M., Iwasaki, S., Sato, K. & Takahashi, M. Erythropoietin inhibits calcium-induced neurotransmitter release from clonal neuronal cells. Biochem. Biophys. Res. Commun. 279, 293–297 (2000).

    CAS  PubMed  Google Scholar 

  14. Koshimura, K., Murakami, Y., Sohmiya, M., Tanaka, J. & Kato, Y. Effects of erythropoietin on neuronal activity. J. Neurochem. 72, 2565–2572 (1999).

    CAS  PubMed  Google Scholar 

  15. Martinez-Estrada, O. M. et al. Erythropoietin protects the in vitro blood-brain barrier against VEGF-induced permeability. Eur. J. Neurosci. 18, 2538–2544 (2003).

    PubMed  Google Scholar 

  16. Li, W. et al. Beneficial effect of erythropoietin on experimental allergic encephalomyelitis. Ann. Neurol. 56, 767–777 (2004).

    CAS  PubMed  Google Scholar 

  17. Semenza, G. L. HIF-1 and mechanisms of hypoxia sensing. Curr. Opin. Cell Biol. 13, 167–171 (2001).

    CAS  PubMed  Google Scholar 

  18. Schuster, J. M. & Nelson, P. S. Toll receptors: an expanding role in our understanding of human disease. J. Leukoc. Biol. 67, 767–773 (2000).

    CAS  PubMed  Google Scholar 

  19. Kertesz, N., Wu, J., Chen, T. H., Sucov, H. M. & Wu, H. The role of erythropoietin in regulating angiogenesis. Dev. Biol. 276, 101–110 (2004).

    CAS  PubMed  Google Scholar 

  20. Shingo, T., Sorokan, S. T., Shimazaki, T. & Weiss, S. Erythropoietin regulates the in vitro and in vivo production of neuronal progenitors by mammalian forebrain neural stem cells. J. Neurosci. 21, 9733–9743 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Brines, M. et al. Erythropoietin mediates tissue protection through an erythropoietin and common β-subunit heteroreceptor. Proc. Natl Acad. Sci. USA 101, 14907–14912 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Chin, K. et al. Production and processing of erythropoietin receptor transcripts in brain. Brain Res. Mol. Brain Res. 81, 29–42 (2000).

    CAS  PubMed  Google Scholar 

  23. Chikuma, M., Masuda, S., Kobayashi, T., Nagao, M. & Sasaki, R. Tissue-specific regulation of erythropoietin production in the murine kidney, brain, and uterus. Am. J. Physiol. Endocrinol. Metab. 279, E1242–E1248 (2000).

    CAS  PubMed  Google Scholar 

  24. Nagai, A. et al. Erythropoietin and erythropoietin receptors in human CNS neurons, astrocytes, microglia, and oligodendrocytes grown in culture. J. Neuropathol. Exp. Neurol. 60, 386–392 (2001).

    CAS  PubMed  Google Scholar 

  25. Masuda, S. et al. Functional erythropoietin receptor of the cells with neural characteristics. Comparison with receptor properties of erythroid cells. J. Biol. Chem. 268, 11208–11216 (1993).

    CAS  PubMed  Google Scholar 

  26. Livnah, O. et al. Crystallographic evidence for preformed dimers of erythropoietin receptor before ligand activation. Science 283, 987–990 (1999).

    CAS  PubMed  Google Scholar 

  27. Eid, T. et al. Increased expression of erythropoietin receptor on blood vessels in the human epileptogenic hippocampus with sclerosis. J. Neuropathol. Exp. Neurol. 63, 73–83 (2004).

    CAS  PubMed  Google Scholar 

  28. Juul, S. E., Anderson, D. K., Li, Y. & Christensen, R. D. Erythropoietin and erythropoietin receptor in the developing human central nervous system. Pediatr. Res. 43, 40–49 (1998).

    CAS  PubMed  Google Scholar 

  29. Suzuki, N. et al. Erythroid-specific expression of the erythropoietin receptor rescued its null mutant mice from lethality. Blood 100, 2279–2288 (2002).

    CAS  PubMed  Google Scholar 

  30. Masuda, S., Chikuma, M. & Sasaki, R. Insulin-like growth factors and insulin stimulate erythropoietin production in primary cultured astrocytes. Brain Res. 746, 63–70 (1997).

    CAS  PubMed  Google Scholar 

  31. Johns, L., Sinclair, A. J. & Davies, J. A. Hypoxia/hypoglycemia-induced amino acid release is decreased in vitro by preconditioning. Biochem. Biophys. Res. Commun. 276, 134–136 (2000).

    CAS  PubMed  Google Scholar 

  32. Blondeau, N., Plamondon, H., Richelme, C., Heurteaux, C. & Lazdunski, M. K(ATP) channel openers, adenosine agonists and epileptic preconditioning are stress signals inducing hippocampal neuroprotection. Neuroscience 100, 465–474 (2000).

    CAS  PubMed  Google Scholar 

  33. Ho, V., Acquaviva, A., Duh, E. & Bunn, H. F. Use of a marked erythropoietin gene for investigation of its cis-acting elements. J. Biol. Chem. 270, 10084–10090 (1995).

    CAS  PubMed  Google Scholar 

  34. Bernaudin, M. et al. A potential role for erythropoietin in focal permanent cerebral ischemia in mice. J. Cereb. Blood Flow Metab. 19, 643–651 (1999).

    CAS  PubMed  Google Scholar 

  35. Mori, M. et al. Activation of extracellular signal-regulated kinases ERK1 and ERK2 induces Bcl-xL up-regulation via inhibition of caspase activities in erythropoietin signaling. J. Cell Physiol. 195, 290–297 (2003).

    CAS  PubMed  Google Scholar 

  36. Ruscher, K. et al. Erythropoietin is a paracrine mediator of ischemic tolerance in the brain: evidence from an in vitro model. J. Neurosci. 22, 10291–10301 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kilic, U. et al. Erythropoietin protects from axotomy-induced degeneration of retinal ganglion cells by activating ERK-1/-2. FASEB J. 19, 249–251 (2004).

    PubMed  Google Scholar 

  38. Digicaylioglu, M. & Lipton, S. A. Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-κB signalling cascades. Nature 412, 641–647 (2001).

    CAS  PubMed  Google Scholar 

  39. Marrero, M. B., Venema, R. C., Ma, H., Ling, B. N. & Eaton, D. C. Erythropoietin receptor-operated Ca2+ channels: activation by phospholipase C-γ 1. Kidney Int. 53, 1259–1268 (1998).

    CAS  PubMed  Google Scholar 

  40. Yamamoto, M., Koshimura, K., Sohmiya, M., Murakami, Y. & Kato, Y. Effect of erythropoietin on nitric oxide production in the rat hippocampus using in vivo brain microdialysis. Neuroscience 128, 163–168 (2004).

    CAS  PubMed  Google Scholar 

  41. Yun, H. Y., Dawson, V. L. & Dawson, T. M. Neurobiology of nitric oxide. Crit. Rev. Neurobiol. 10, 291–316 (1996).

    CAS  PubMed  Google Scholar 

  42. Villa, P. et al. Erythropoietin selectively attenuates cytokine production and inflammation in cerebral ischemia by targeting neuronal apoptosis. J. Exp. Med. 198, 971–975 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Agnello, D. et al. Erythropoietin exerts an anti-inflammatory effect on the CNS in a model of experimental autoimmune encephalomyelitis. Brain Res. 952, 128–134 (2002).

    CAS  PubMed  Google Scholar 

  44. Cuzzocrea, S. et al. Erythropoietin reduces the degree of arthritis caused by type II collagen in the mouse. Arthritis Rheum. 52, 940–950 (2005).

    CAS  PubMed  Google Scholar 

  45. Sela, S. et al. The polymorphonuclear leukocyte — a new target for erythropoietin. Nephron 88, 205–210 (2001).

    CAS  PubMed  Google Scholar 

  46. Grasso, G. et al. Beneficial effects of systemic administration of recombinant human erythropoietin in rabbits subjected to subarachnoid hemorrhage. Proc. Natl Acad. Sci. USA 99, 5627–5631 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Gorio, A. et al. Recombinant human erythropoietin counteracts secondary injury and markedly enhances neurological recovery from experimental spinal cord trauma. Proc. Natl Acad. Sci. USA 99, 9450–9455 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang, L., Zhang, Z., Wang, Y., Zhang, R. & Chopp, M. Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke 35, 1732–1737 (2004).

    CAS  PubMed  Google Scholar 

  49. Nagelhus, E. A., Mathiisen, T. M. & Ottersen, O. P. Aquaporin-4 in the central nervous system: cellular and subcellular distribution and coexpression with KIR4.1. Neuroscience 129, 905–913 (2004).

    CAS  PubMed  Google Scholar 

  50. Dirnagl, U., Simon, R. P. & Hallenbeck, J. M. Ischemic tolerance and endogenous neuroprotection. Trends Neurosci. 26, 248–254 (2003).

    CAS  PubMed  Google Scholar 

  51. Dawson, T. M. Preconditioning-mediated neuroprotection through erythropoietin? Lancet 359, 96–97 (2002).

    PubMed  Google Scholar 

  52. Bernaudin, M. et al. Normobaric hypoxia induces tolerance to focal permanent cerebral ischemia in association with an increased expression of hypoxia-inducible factor-1 and its target genes, erythropoietin and VEGF, in the adult mouse brain. J. Cereb. Blood Flow Metab. 22, 393–403 (2002).

    CAS  PubMed  Google Scholar 

  53. Lee, S. M. et al. EPO receptor-mediated ERK kinase and NF-κB activation in erythropoietin-promoted differentiation of astrocytes. Biochem. Biophys. Res. Commun. 320, 1087–1095 (2004).

    CAS  PubMed  Google Scholar 

  54. Juul, S. E. et al. Erytropoietin concentrations in cerebrospinal fluid of nonhuman primates and fetal sheep following high-dose recombinant erythropoietin. Biol. Neonate 85, 138–144 (2004).

    CAS  PubMed  Google Scholar 

  55. Dame, C., Juul, S. E. & Christensen, R. D. The biology of erythropoietin in the central nervous system and its neurotrophic and neuroprotective potential. Biol. Neonate 79, 228–235 (2001).

    CAS  PubMed  Google Scholar 

  56. Ehrenreich, H. et al. Erythropoietin: a candidate compound for neuroprotection in schizophrenia. Mol. Psychiatry 9, 42–54 (2004).

    CAS  PubMed  Google Scholar 

  57. Grimm, C. et al. HIF-1-induced erythropoietin in the hypoxic retina protects against light-induced retinal degeneration. Nature Med. 8, 718–724 (2002).

    CAS  PubMed  Google Scholar 

  58. Foresta, C. et al. Erythropoietin stimulates testosterone production in man. J. Clin. Endocrinol. Metab. 78, 753–756 (1994).

    CAS  PubMed  Google Scholar 

  59. Banks, W. A., Jumbe, N. L., Farrell, C. L., Niehoff, M. L. & Heatherington, A. C. Passage of erythropoietic agents across the blood-brain barrier: a comparison of human and murine erythropoietin and the analog darbepoetin alfa. Eur. J. Pharmacol. 505, 93–101 (2004).

    CAS  PubMed  Google Scholar 

  60. Yamaji, R. et al. Brain capillary endothelial cells express two forms of erythropoietin receptor mRNA. Eur. J. Biochem. 239, 494–500 (1996).

    CAS  PubMed  Google Scholar 

  61. Harris, K. W. & Winkelmann, J. C. Enzyme-linked immunosorbent assay detects a potential soluble form of the erythropoietin receptor in human plasma. Am. J. Hematol. 52, 8–13 (1996).

    CAS  PubMed  Google Scholar 

  62. Juul, S. Recombinant erythropoietin as a neuroprotective treatment: in vitro and in vivo models. Clin. Perinatol. 31, 129–142 (2004).

    CAS  PubMed  Google Scholar 

  63. Gassmann, M. et al. Non-erythroid functions of erythropoietin. Adv. Exp. Med. Biol. 543, 323–330 (2003).

    CAS  PubMed  Google Scholar 

  64. Ghezzi, P. & Brines, M. Erythropoietin as an antiapoptotic, tissue-protective cytokine. Cell Death Differ. 11 (Suppl. 1), S37–S44 (2004).

    CAS  PubMed  Google Scholar 

  65. Tsuchiya, D., Hong, S., Rajdev, S., Panter, S. & Weinstein, P. Evaluation of the neuroprotective effect of erythropoietin in cerebral ischemia produced by the intraluminal suture model. Soc. Neurosci. Abstr. 764.17 (2001).

  66. Sadamoto, Y. et al. Erythropoietin prevents place navigation disability and cortical infarction in rats with permanent occlusion of the middle cerebral artery. Biochem. Biophys. Res. Commun. 253, 26–32 (1998).

    CAS  PubMed  Google Scholar 

  67. Celik, M. et al. Erythropoietin prevents motor neuron apoptosis and neurologic disability in experimental spinal cord ischemic injury. Proc. Natl Acad. Sci. USA 99, 2258–2263 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Junk, A. K. et al. Erythropoietin administration protects retinal neurons from acute ischemia-reperfusion injury. Proc. Natl Acad. Sci. USA 99, 10659–10664 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kumral, A. et al. Neuroprotective effect of erythropoietin on hypoxic-ischemic brain injury in neonatal rats. Biol. Neonate 83, 224–228 (2003).

    CAS  PubMed  Google Scholar 

  70. Rex, T. S. et al. Systemic but not intraocular Epo gene transfer protects the retina from light-and genetic-induced degeneration. Mol. Ther. 10, 855–861 (2004).

    CAS  PubMed  Google Scholar 

  71. Sattler, M. B. et al. Neuroprotective effects and intracellular signaling pathways of erythropoietin in a rat model of multiple sclerosis. Cell Death Differ. 11 (suppl. 2), S181–S192 (2004).

    PubMed  Google Scholar 

  72. Adembri, C. et al. Erythropoietin attenuates post-traumatic injury in organotypic hippocampal slices. J. Neurotrauma 21, 1103–1112 (2004).

    PubMed  Google Scholar 

  73. Orhan, B., Yalcin, S., Nurlu, G., Zeybek, D. & Muftuoglu, S. Erythropoietin against cisplatin-induced peripheral neurotoxicity in rats. Med. Oncol. 21, 197–203 (2004).

    CAS  PubMed  Google Scholar 

  74. Keswani, S. C. et al. A novel endogenous erythropoietin mediated pathway prevents axonal degeneration. Ann. Neurol. 56, 815–826 (2004).

    CAS  PubMed  Google Scholar 

  75. Campana, W. M. & Myers, R. R. Erythropoietin and erythropoietin receptors in the peripheral nervous system: changes after nerve injury. FASEB J. 15, 1804–1806 (2001).

    CAS  PubMed  Google Scholar 

  76. Campana, W. M. & Myers, R. R. Exogenous erythropoietin protects against dorsal root ganglion apoptosis and pain following peripheral nerve injury. Eur. J. Neurosci. 18, 1497–1506 (2003).

    PubMed  Google Scholar 

  77. Erbayraktar, S. et al. Asialoerythropoietin is a nonerythropoietic cytokine with broad neuroprotective activity in vivo. Proc. Natl Acad. Sci. USA 100, 6741–6746 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Leist, M. et al. Derivatives of erythropoietin that are tissue protective but not erythropoietic. Science 305, 239–242 (2004).

    CAS  PubMed  Google Scholar 

  79. Springborg, J. B. et al. A single subcutaneous bolus of erythropoietin normalizes cerebral blood flow autoregulation after subarachnoid haemorrhage in rats. Br. J. Pharmacol. 135, 823–829 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Genc, S. et al. Erythropoietin exerts neuroprotection in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated C57/BL mice via increasing nitric oxide production. Neurosci. Lett. 298, 139–141 (2001).

    CAS  PubMed  Google Scholar 

  81. Bianchi, R. et al. Erythropoietin both protects from and reverses experimental diabetic neuropathy. Proc. Natl Acad. Sci. USA 101, 823–828 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Lieberman, J. et al. Longitudinal study of brain morphology in first episode schizophrenia. Biol. Psychiatry 49, 487–499 (2001).

    CAS  PubMed  Google Scholar 

  83. Anagnostou, A., Lee, E. S., Kessimian, N., Levinson, R. & Steiner, M. Erythropoietin has a mitogenic and positive chemotactic effect on endothelial cells. Proc. Natl Acad. Sci. USA 87, 5978–5982 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Tojo, A., Fukamachi, H., Kasuga, M., Urabe, A. & Takaku, F. Identification of erythropoietin receptors on fetal liver erythroid cells. Biochem. Biophys. Res. Commun. 148, 443–448 (1987).

    CAS  PubMed  Google Scholar 

  85. Campana, W. M., Misasi, R. & O'Brien, J. S. Identification of a neurotrophic sequence in erythropoietin. Int. J. Mol. Med. 1, 235–241 (1998).

    CAS  PubMed  Google Scholar 

  86. Jubinsky, P. T., Krijanovski, O. I., Nathan, D. G., Tavernier, J. & Sieff, C. A. The beta chain of the interleukin-3 receptor functionally associates with the erythropoietin receptor. Blood 90, 1867–1873 (1997).

    CAS  PubMed  Google Scholar 

  87. Scott, C. L. et al. Reassessment of interactions between hematopoietic receptors using common beta-chain and interleukin-3-specific receptor beta-chain-null cells: no evidence of functional interactions with receptors for erythropoietin, granulocyte colony-stimulating factor, or stem cell factor. Blood 96, 1588–1590 (2000).

    CAS  PubMed  Google Scholar 

  88. Wang, X. et al. The nonerythropoietic asialoerythropoietin protects against neonatal hypoxia-ischemia as potently as erythropoietin. J. Neurochem. 91, 900–910 (2004).

    CAS  PubMed  Google Scholar 

  89. Dong, Y. J., Kung, C. & Goldwasser, E. Receptor binding of asialoerythropoietin. J. Cell Biochem. 48, 269–276 (1992).

    CAS  PubMed  Google Scholar 

  90. Elliott, S., Lorenzini, T., Chang, D., Barzilay, J. & Delorme, E. Mapping of the active site of recombinant human erythropoietin. Blood 89, 493–502 (1997).

    CAS  PubMed  Google Scholar 

  91. Miyashita, K. et al. Blood pressure response to erythropoietin injection in hemodialysis and predialysis patients. Hypertens. Res. 27, 79–84 (2004).

    CAS  PubMed  Google Scholar 

  92. Vaziri, N. D. et al. In vivo and in vitro pressor effects of erythropoietin in rats. Am. J. Physiol. 269, F838–F845 (1995).

    CAS  PubMed  Google Scholar 

  93. Carlini, R., Obialo, C. I. & Rothstein, M. Intravenous erythropoietin (rHuEPO) administration increases plasma endothelin and blood pressure in hemodialysis patients. Am. J. Hypertens. 6, 103–107 (1993).

    CAS  PubMed  Google Scholar 

  94. Carlini, R. G., Dusso, A. S., Obialo, C. I., Alvarez, U. M. & Rothstein, M. Recombinant human erythropoietin (rHuEPO) increases endothelin-1 release by endothelial cells. Kidney Int. 43, 1010–1014 (1993).

    CAS  PubMed  Google Scholar 

  95. Quaschning, T. et al. Erythropoietin-induced excessive erythrocytosis activates the tissue endothelin system in mice. FASEB J. 17, 259–261 (2003).

    CAS  PubMed  Google Scholar 

  96. Wolf, R. F. et al. Erythropoietin potentiates thrombus development in a canine arterio-venous shunt model. Thromb. Haemost. 77, 1020–1024 (1997).

    CAS  PubMed  Google Scholar 

  97. Leyland-Jones, B. Breast cancer trial with erythropoietin terminated unexpectedly. Lancet Oncol. 4, 459–460 (2003).

    PubMed  Google Scholar 

  98. Rosenzweig, M. Q., Bender, C. M., Lucke, J. P., Yasko, J. M. & Brufsky, A. M. The decision to prematurely terminate a trial of R-HuEPO due to thrombotic events. J. Pain Symptom Manage. 27, 185–190 (2004).

    PubMed  Google Scholar 

  99. Peterson, L. FDA oncologic drugs advisory committee (ODAC) meeting on the safety of erythropoietin in oncology. Trends Med. 1–4 (2004).

  100. Cotter, D. et al. Hematocrit was not validated as a surrogate end point for survival among epoetin-treated hemodialysis patients. J. Clin. Epidemiol. 57, 1086–1095 (2004).

    PubMed  Google Scholar 

  101. Yasuda, Y. et al. Erythropoietin regulates tumour growth of human malignancies. Carcinogenesis 24, 1021–1029 (2003).

    CAS  PubMed  Google Scholar 

  102. Pajonk, F., Weil, A., Sommer, A., Suwinski, R. & Henke, M. The erythropoietin-receptor pathway modulates survival of cancer cells. Oncogene 23, 8987–8991 (2004).

    CAS  PubMed  Google Scholar 

  103. Henke, M. et al. Erythropoietin to treat head and neck cancer patients with anaemia undergoing radiotherapy: randomised, double-blind, placebo-controlled trial. Lancet 362, 1255–1260 (2003).

    CAS  PubMed  Google Scholar 

  104. Glezer, I. & Rivest, S. Glucocorticoids: protectors of the brain during innate immune responses. Neuroscientist 10, 538–552 (2004).

    CAS  PubMed  Google Scholar 

  105. McClure, B. J. et al. Molecular assembly of the ternary granulocyte-macrophage colony-stimulating factor receptor complex. Blood 101, 1308–1315 (2003).

    CAS  PubMed  Google Scholar 

  106. Juhaszova, M. et al. Glycogen synthase kinase-3β mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J. Clin. Invest. 113, 1535–1549 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Digicaylioglu, M., Garden, G., Timberlake, S., Fletcher, L. & Lipton, S. A. Acute neuroprotective synergy of erythropoietin and insulin-like growth factor I. Proc. Natl Acad. Sci. USA 101, 9855–9860 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Recently, the number and diversity of publications concerning non-erythroid actions of erythropoietin has grown in an exponential manner. We apologize to our many colleagues for omission of their important work due to stringent space limitations in this brief perspective. We especially thank our principal colleagues, T. Coleman, Q.-w. Xie and M. Yamin at Warren Pharmaceuticals; P. Ghezzi, R. Latini and colleagues at the Mario Negri Pharmacological Institute in Milan, Italy; G. Grasso and A. Sfacteria, University of Messina, Sicily, Italy; M. Leist, T. Sager, L. Torup and co-workers at H. Lundbeck A/S, Copenhagen, Denmark; O. Yilmaz, S. Erbayraktar, Z. Erbayraktar and N. Gokmen at Dokuz Eylul University, Izmir, Turkey; and H. Ehrenreich and A. Siren, Max Planck Institute for Experimental Medicine, Gottingen, Germany. M.B. and A.C. are supported by the Kenneth S. Warren Institute and Warren Pharmaceuticals. We are employed by Warren Pharmaceuticals, which is engaged in developing non-erythropoietic tissue protective cytokines for clinical use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Brines.

Ethics declarations

Competing interests

M. B. and A. C. are employees of Warren Pharmaceuticals, Inc., which is engaged in developing tissue-protective erythropoietin analogues.

Related links

Related links

DATABASES

Entrez Gene

BCL2

BCL-XL

EPO

EPOR

GMCSF

IL-3

IL-5

JAK2

PKB

PI3K

PLCγ

STAT

TNFα

VEGF

FURTHER INFORMATION

Warren Pharmaceuticals

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brines, M., Cerami, A. Emerging biological roles for erythropoietin in the nervous system. Nat Rev Neurosci 6, 484–494 (2005). https://doi.org/10.1038/nrn1687

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1687

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing