Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Interactions between number and space in parietal cortex

Key Points

  • Various behavioural paradigms indicate that numbers are represented along a left-to-right oriented 'mental number line'. In the spatial–numerical association of response codes (SNARC) effect, small numbers are responded to faster with the left hand, with saccades to the left or when presented to the left, and large numbers show a similar advantage for right-sided responses.

  • Patients who neglect the left portion of space show a similar neglect of the left portion of the 'mental number line'. When asked to bisect a physical line, they deviate to the right. Similarly, when asked to bisect a numerical interval, they deviate towards larger values ('to the right' on the mental number line).

  • Recent functional MRI and single-unit physiology studies indicate that numerical quantity might be represented by neurons in a frontal–parietal network. Because of the specificity and proximity of numerical and spatial representations in the parietal lobe, we suggest that this region might be crucial for behavioural interactions between number and space.

  • Studies of spatial cognition in the parietal lobe of the macaque monkey indicate several regions that could be involved in spatial cognition in the intraparietal sulcus (IPS), including the lateral intraparietal (LIP), ventral intraparietal (VIP) and anterior intraparietal (AIP) areas. Of particular interest is area LIP, which is involved in saccades, the planning of actions and shifts of attention in space.

  • Neuroimaging studies indicate possible human homologues of these macaque regions. Although tentative, these homologies are based on common physiological properties and common organization along the IPS.

  • Interestingly, the regions that have been identified as being involved in numerical tasks in the IPS overlap with regions that have been shown to be involved in spatial cognition. In particular, 'number neurons' are located in the depth of the IPS, in a region that might be homologous to area VIP.

  • We suggest that behavioural interactions between number and space are due to shifts of attention along the mental number line, mediated by VIP–LIP circuitry. We therefore predict that addition tasks should lead to greater activation of left area LIP, and subtraction tasks to greater activation of right area LIP. Similarly, shifting attention to the left should interfere with addition, and shifting attention to the right should interfere with subtraction.

  • Given that this circuitry is present in both non-human primates and humans, we propose that the neural architecture might place constraints on the evolution of numerical–spatial interactions in humans.

Abstract

Since the time of Pythagoras, numerical and spatial representations have been inextricably linked. We suggest that the relationship between the two is deeply rooted in the brain's organization for these capacities. Many behavioural and patient studies have shown that numerical–spatial interactions run far deeper than simply cultural constructions, and, instead, influence behaviour at several levels. By combining two previously independent lines of research, neuroimaging studies of numerical cognition in humans, and physiological studies of spatial cognition in monkeys, we propose that these numerical–spatial interactions arise from common parietal circuits for attention to external space and internal representations of numbers.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Behavioural studies showing numerical–spatial interactions.
Figure 2: Lesion evidence for interference between numbers and space.
Figure 3: Location of numerical processing relative to the regions of the intraparietal sulcus involved in space and grasping.
Figure 4: Spatial updating in the lateral intraparietal area.
Figure 5: Numerical tasks and intraparietal regions.

References

  1. Dehaene, S. The Number Sense: How The Mind Creates Mathematics (Oxford Univ. Press, New York, USA, 1997).

    Google Scholar 

  2. Butterworth, B. The Mathematical Brain (Macmillan, London, UK, 1999).

    Google Scholar 

  3. Singh, S. Fermat's Last Theorem (Fourth Estate, London, UK, 1997).

    Google Scholar 

  4. Dehaene, S., Bossini, S. & Giraux, P. The mental representation of parity and numerical magnitude. J. Exp. Psychol. Gen. 122, 371–396 (1993). A series of chronometric studies that first demonstrated the SNARC effect, showing that large numbers are preferentially represented to the right, and that small numbers are preferentially represented to the left.

    Article  Google Scholar 

  5. Fias, W., Brysbaert, M., Geypens, F. & D'ydewalle, G. The importance of magnitude information in numerical processing: evidence from the SNARC effect. Math. Cogn. 2, 95–110 (1996).

    Article  Google Scholar 

  6. Fias, W., Lauwereyns, J. & Lammertyn, J. Irrelevant digits affect feature-based attention depending on the overlap of neural circuits. Cog. Brain Res. 12, 415–423 (2001).

    Article  CAS  Google Scholar 

  7. Lammertyn, J., Fias, W. & Lauwereyns, J. Semantic influences on feature-based attention due to overlap of neural circuits. Cortex 38, 878–882 (2002).

    Article  Google Scholar 

  8. Denys, K. et al. The processing of visual shape in the cerebral cortex of human and nonhuman primates: a functional magnetic resonance imaging study. J. Neurosci. 24, 2551–2565 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Claeys, K. G. et al. Color discrimination involves ventral and dorsal stream visual areas. Cereb. Cortex 14, 803–822 (2004).

    Article  PubMed  Google Scholar 

  10. Fischer, M. H., Castel, A. D., Dodd, M. D. & Pratt, J. Perceiving numbers causes spatial shifts of attention. Nature Neurosci. 6, 555–556 (2003). This recent paper shows that even a non-informative, completely task-irrelevant digit can bias attention.

    Article  CAS  PubMed  Google Scholar 

  11. Calabria, M. & Rossetti, Y. Interference between number processing and line bisection: a methodology. Neuropsychologia 43, 779–783 (2005).

    Article  PubMed  Google Scholar 

  12. Fischer, M. H. Number processing induces spatial performance biases. Neurology 57, 822–826 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Spence, C., Pavani, F. & Driver, J. Crossmodal links between vision and touch in covert endogenous spatial attention. J. Exp. Psychol. Hum. Percept. Perform. 26, 1298–1319 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Kennett, S., Eimer, M., Spence, C. & Driver, J. Tactile-visual links in exogenous spatial attention under different postures: convergent evidence from psychophysics and ERPs. J. Cogn. Neurosci. 13, 462–478 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Macaluso, E., Driver, J. & Frith, C. D. Multimodal spatial representations engaged in human parietal cortex during both saccadic and manual spatial orienting. Curr. Biol. 13, 990–999 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Valenza, N., Murray, M. M., Ptak, R. & Vuilleumier, P. The space of senses: impaired crossmodal interactions in a patient with Balint syndrome after bilateral parietal damage. Neuropsychologia 42, 1737–1748 (2004).

    Article  PubMed  Google Scholar 

  17. Fischer, M. H. Spatial representations in number processing — evidence from a pointing task. Vis. Cogn. 10, 493–508 (2003).

    Article  Google Scholar 

  18. Schwarz, W. & Keus, I. M. Moving the eyes along the mental number line: comparing SNARC effects with saccadic and manual responses. Percept. Psychophys. 66, 651–664 (2004).

    Article  PubMed  Google Scholar 

  19. Andres, M., Davare, M., Pesenti, M., Olivier, E. & Seron, X. Number magnitude and grip aperture interaction. Neuroreport 15, 2773–2777 (2004).

    PubMed  Google Scholar 

  20. Caessens, B., Hommel, B., Reynvoet, B. & Van Der Goten, K. Backward-compatibility effects with irrelevant stimulus-response overlap: the case of the SNARC effect. J. Gen. Psychol. 131, 411–425 (2004).

    PubMed  Google Scholar 

  21. Mapelli, D., Rusconi, E. & Umilta, C. The SNARC effect: an instance of the Simon effect? Cognition 88, B1–B10 (2003).

    Article  PubMed  Google Scholar 

  22. Keus, I. M., Jenks, K. M. & Schwarz, W. Psychophysiological evidence that the SNARC effect has its functional locus in a response selection stage. Cog. Brain Res. (in the press).

  23. Lavidor, M., Brinksman, V. & Göbel, S. M. Hemispheric asymmetry and the mental number line: comparison of double-digit numbers. Neuropsychologia 42, 1927–1933 (2004).

    Article  PubMed  Google Scholar 

  24. Moyer, R. S. & Landauer, T. K. Time required for judgments of numerical inequality. Nature 215, 1519–1520 (1967).

    Article  CAS  PubMed  Google Scholar 

  25. Dehaene, S., Dupoux, E. & Mehler, J. Is numerical comparison digital? Analogical and symbolic effects in two-digit number comparison. J. Exp. Psychol. Hum. Percept. Perform. 16, 626–641 (1990).

    Article  CAS  PubMed  Google Scholar 

  26. Berch, D. B., Foley, E. J., Hill, R. J. & Ryan, P. M. Extracting parity and magnitude from Arabic numerals: developmental changes in number processing and mental representation. J. Exp. Child Psychol. 74, 286–308 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Ito, Y. & Hatta, T. Spatial structure of quantitative representation of numbers: evidence from the SNARC effect. Mem. Cognit. 32, 662–673 (2004).

    Article  PubMed  Google Scholar 

  28. Bachtold, D., Baumuller, M. & Brugger, P. Stimulus-response compatibility in representational space. Neuropsychologia 36, 731–735 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Gevers, W., Reynvoet, B. & Fias, W. The mental representation of ordinal sequences is spatially organized. Cognition 87, B87–B95 (2003).

    Article  PubMed  Google Scholar 

  30. Gevers, W., Reynvoet, B. & Fias, W. The mental representation of ordinal sequences is spatially organised: evidence from days of the week. Cortex 40, 171–172 (2004).

    Article  PubMed  Google Scholar 

  31. Galton, F. Inquiries into Human Faculty and its Development (Dent and Sons, London, 1883).

    Book  Google Scholar 

  32. Seron, X., Pesenti, M., Noel, M. -P., Deloche, G. & Cornet, J. -A. Images of numbers: or 'when 98 is upper left and 6 sky blue'. Cognition 44, 159–196 (1992).

    Article  CAS  PubMed  Google Scholar 

  33. Gerstmann, J. Syndrome of finger agnosia, disorientation for right and left, agraphia, acalculia. Arch. Neurol. Psychol. 44, 398–408 (1940).

    Article  Google Scholar 

  34. Benton, A. L. Gerstmann's syndrome. Arch. Neurol. 49, 445–447 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Mayer, E. et al. A pure case of Gerstmann syndrome with a subangular lesion. Brain 122, 1107–1120 (1999).

    Article  PubMed  Google Scholar 

  36. Roux, F. -E., Boetto, S., Sacko, O., Chollet, F. & Trémoulet, M. Writing, calculating, and finger recognition in the region of the angular gyrus: a cortical stimulation study of Gerstmann syndrome. J. Neurosurg. 99, 716–727 (2003).

    Article  PubMed  Google Scholar 

  37. Spalding, J. M. K. & Zangwill, O. Disturbance of number-form in a case of brain injury. J. Neurol. Neurosurg. Psychiatry 12, 24–29 (1950).

    Article  Google Scholar 

  38. Zorzi, M., Priftis, K. & Umilta, C. Neglect disrupts the mental number line. Nature 417, 138–139 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Vuilleumier, P., Ortigue, S. & Brugger, P. The number space and neglect. Cortex 40, 399–410 (2004). These two papers show that not only does right parietal damage lead to neglect of the left side of external space, but also to neglect of the left side of the mental number line, which leads to systematic deficits in numerical bisection tasks.

    Article  PubMed  Google Scholar 

  40. Bisiach, E. & Luzzatti, C. Unilateral neglect of representational space. Cortex 14, 129–133 (1978).

    Article  CAS  PubMed  Google Scholar 

  41. Driver, J. & Vuilleumier, P. Perceptual awareness and its loss in unilateral neglect and extinction. Cognition 79, 39–88 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Rossetti, Y. et al. Prism adaptation to a rightward optical deviation rehabilitates left hemispatial neglect. Nature 395, 166–169 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Frassinetti, F., Angeli, V., Meneghello, F., Avanzi, S. & Ladavas, E. Long-lasting amelioration of visuospatial neglect by prism adaptation. Brain 125, 608–623 (2002).

    Article  PubMed  Google Scholar 

  44. Rode, G., Rossetti, Y. & Boisson, D. Prism adaptation improves representational neglect. Neuropsychologia 39, 1250–1254 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Rossetti, Y. et al. Does action make the link between number and space representation? Visuo-manual adaptation improves number bisection in unilateral neglect. Psychol. Sci. 15, 426–430 (2004). This paper shows that not only can prism adaptation improve perceptual neglect, but it also alleviates neglect of the left side of the mental number line.

    Article  CAS  PubMed  Google Scholar 

  46. Göbel, S., Walsh, V. & Rushworth, M. F. S. The mental number line and the human angular gyrus. Neuroimage 14, 1278–1289 (2001).

    Article  PubMed  Google Scholar 

  47. Dehaene, S., Molko, N., Cohen, L. & Wilson, A. J. Arithmetic and the brain. Curr. Opin. Neurobiol. 14, 218–224 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Dehaene, S. Varieties of numerical abilities. Cognition 44, 1–42 (1992).

    Article  CAS  PubMed  Google Scholar 

  49. Dehaene, S., Spelke, E., Pinel, P., Stanescu, R. & Tsivkin, S. Sources of mathematical thinking: behavioral and brain-imaging evidence. Science 284, 970–974 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Pinel, P., Dehaene, S., Riviere, D. & Lebihan, D. Modulation of parietal activation by semantic distance in a number comparison task. Neuroimage 14, 1013–1026 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Pinel, P., Piazza, M., Le Bihan, D. & Dehaene, S. Distributed and overlapping cerebral representations of number, size, and luminance during comparative judgments. Neuron 41, 983–993 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Piazza, M., Giacomini, E., Le Bihan, D. & Dehaene, S. Single-trial classification of parallel pre-attentive and serial attentive processes using functional magnetic resonance imaging. Proc. R. Soc. Lond. B 270, 1237–1245 (2003).

    Article  Google Scholar 

  53. Chochon, F., Cohen, L., Van De Moortele, P. F. & Dehaene, S. Differential contributions of the left and right inferior parietal lobules to number processing. J. Cognit. Neurosci. 11, 617–630 (1999).

    Article  CAS  Google Scholar 

  54. Eger, E., Sterzer, P., Russ, M. O., Giraud, A. -L. & Kleinschmidt, A. A supramodal number representation in human intraparietal cortex. Neuron 37, 719–725 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Pesenti, M., Thioux, M., Seron, X. & De Volder, A. Neuroanatomical substrates of Arabic number processing, numerical comparison, and simple addition: a PET study. J. Cogn. Neurosci. 12, 461–479 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Rickard, T. C. et al. The calculating brain: an fMRI study. Neuropsychologia 38, 325–335 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Dehaene, S., Piazza, M., Pinel, P. & Cohen, L. Three parietal circuits for number processing. Cognit. Neuropsychol. 20, 487–506 (2003).

    Article  Google Scholar 

  58. Fias, W., Lammertyn, J., Reynvoet, B., Dupont, P. & Orban, G. A. Parietal representation of symbolic and nonsymbolic magnitude. J. Cogn. Neurosci. 15, 47–56 (2003).

    Article  PubMed  Google Scholar 

  59. Simon, O., Mangin, J. F., Cohen, L., Le Bihan, D. & Dehaene, S. Topographical layout of hand, eye, calculation, and language-related areas in the human parietal lobe. Neuron 33, 475–487 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nature Rev. Neurosci. 3, 201–215 (2002).

    Article  CAS  Google Scholar 

  61. Turconi, E. & Seron, X. Dissociation between order and quantity meaning in a patient with Gerstmann syndrome. Cortex 38, 911–914 (2002).

    Article  Google Scholar 

  62. Hauser, M. D., Carey, S. & Hauser, L. B. Spontaneous number representation in semi-free-ranging rhesus monkeys. Proc. R. Soc. Lond. B 267, 829–833 (2000).

    Article  CAS  Google Scholar 

  63. Hauser, M. D., Dehaene, S., Dehaene-Lambertz, G. & Patalano, A. L. Spontaneous number discrimination of multi-format auditory stimuli in cotton-top tamarins (Saguinus oedipus). Cognition 86, B23–B32 (2002).

    Article  PubMed  Google Scholar 

  64. Dehaene, S., Dehaene-Lambertz, G. & Cohen, L. Abstract representations of numbers in the animal and human brain. Trends Neurosci. 21, 355–361 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Matsuzawa, T. Use of numbers by a chimpanzee. Nature 315, 57–59 (1985).

    Article  CAS  PubMed  Google Scholar 

  66. Boysen, S. T. & Berntson, G. G. Numerical competence in a chimpanzee (Pan troglodytes). J. Comp. Psychol. 103, 23–31 (1989).

    Article  CAS  PubMed  Google Scholar 

  67. Harris, E. H. & Washburn, D. A. Macaques' (Macaca mulatta) use of numerical cues in maze trials. Anim. Cogn. (in the press).

  68. Thompson, R. F., Mayers, K. S., Robertson, R. T. & Patterson, C. J. Number coding in association cortex of the cat. Science 168, 271–273 (1970).

    Article  CAS  PubMed  Google Scholar 

  69. Sawamura, H., Shima, K. & Tanji, J. Numerical representation for action in the parietal cortex of the monkey. Nature 415, 918–922 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Nieder, A. & Miller, E. K. A parieto-frontal network for visual numerical information in the monkey. Proc. Natl Acad. Sci. USA 101, 7457–7462 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nieder, A. Counting on neurons: the neurobiology of numerical competence. Nature Rev. Neurosci. 6, 177–190 (2005).

    Article  CAS  Google Scholar 

  72. Feigenson, L., Dehaene, S. & Spelke, E. Core systems of number. Trends Cogn. Sci. 8, 307–314 (2004).

    Article  PubMed  Google Scholar 

  73. Gallistel, C. R. & Gelman, I. I. Non-verbal numerical cognition: from reals to integers. Trends Cogn. Sci. 4, 59–65 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Nieder, A., Freedman, D. J. & Miller, E. K. Representation of the quantity of visual items in the primate prefrontal cortex. Science 297, 1708–1711 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Nieder, A. & Miller, E. K. Coding of cognitive magnitude: compressed scaling of numerical information in the primate prefrontal cortex. Neuron 37, 149–157 (2003). Using single-unit physiology, the authors showed that numerical information is represented in the macaque parietal and pre-frontal cortex, that this information is represented earlier in the parietal cortex than in the frontal cortex, and that the neural response properties are logarithmically compressed.

    Article  CAS  PubMed  Google Scholar 

  76. Shuman, M. & Kanwisher, N. Numerical magnitude in the human parietal lobe; tests of representational generality and domain specificity. Neuron 44, 557–569 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Piazza, M., Izard, V., Pinel, P., Le Bihan, D. & Dehaene, S. Tuning curves for approximate numerosity in the human intraparietal sulcus. Neuron 44, 547–555 (2004). A human fMRI study that shows a similar equivalence between neural response functions in the human IPS and those observed in monkey physiology studies.

    Article  CAS  PubMed  Google Scholar 

  78. Miller, E. K., Li, L. & Desimone, R. A neural mechanism for working and recognition memory in inferior temporal cortex. Science 254, 1377–1379 (1991).

    Article  CAS  PubMed  Google Scholar 

  79. Dehaene, S. & Changeux, J. -P. Development of elementary numerical abilities: a neuronal model. J. Cognit. Neurosci. 5, 390–407 (1993).

    Article  CAS  Google Scholar 

  80. Verguts, T. & Fias, W. Representation of number in animals and humans: a neural model. J. Cogn. Neurosci. 16, 1493–1504 (2004).

    Article  PubMed  Google Scholar 

  81. Dehaene, S. Neuroscience. Single-neuron arithmetic. Science 297, 1652–1653 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Dehaene, S. & Mehler, J. Cross-linguistic regularities in the frequency of number words. Cognition 43, 1–29 (1992).

    Article  CAS  PubMed  Google Scholar 

  83. Duncan, J. & Owen, A. M. Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci. 23, 475–483 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Lewis, J. W. & Van Essen, D. C. Mapping of architectonic subdivisions in the macaque monkey, with emphasis on parieto-occipital cortex. J. Comp. Neurol. 428, 79–111 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Lewis, J. W. & Van Essen, D. C. Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. J. Comp. Neurol. 428, 112–137 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Felleman, D. J. & Van Essen, D. C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).

    Article  CAS  PubMed  Google Scholar 

  87. Colby, C. L. & Goldberg, M. E. Space and attention in parietal cortex. Annu. Rev. Neurosci. 22, 319–349 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Cohen, Y. E. & Andersen, R. A. A common reference frame for movement plans in the posterior parietal cortex. Nature Rev. Neurosci. 3, 553–562 (2002).

    Article  CAS  Google Scholar 

  89. Colby, C. L., Duhamel, J. R. & Goldberg, M. E. Oculocentric spatial representation in parietal cortex. Cereb. Cortex 5, 470–481 (1995).

    Article  CAS  PubMed  Google Scholar 

  90. Colby, C. L., Duhamel, J. R. & Goldberg, M. E. The analysis of visual space by the lateral intraparietal area of the monkey: the role of extraretinal signals. Prog. Brain Res. 95, 307–316 (1993).

    Article  CAS  PubMed  Google Scholar 

  91. Colby, C. L., Duhamel, J. R. & Goldberg, M. E. Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area. J. Neurophysiol. 76, 2841–2852 (1996).

    Article  CAS  PubMed  Google Scholar 

  92. Duhamel, J. R., Colby, C. L. & Goldberg, M. E. The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255, 90–92 (1992).

    Article  CAS  PubMed  Google Scholar 

  93. Snyder, L. H., Batista, A. P. & Andersen, R. A. Coding of intention in the posterior parietal cortex. Nature 386, 167–170 (1997).

    Article  CAS  PubMed  Google Scholar 

  94. Snyder, L. H., Batista, A. P. & Andersen, R. A. Intention-related activity in the posterior parietal cortex: a review. Vision Res. 40, 1433–1441 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Snyder, L. H., Batista, A. P. & Andersen, R. A. Saccade-related activity in the parietal reach region. J. Neurophysiol. 83, 1099–1102 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Duhamel, J. R., Bremmer, F., Benhamed, S. & Graf, W. Spatial invariance of visual receptive fields in parietal cortex neurons. Nature 389, 845–858 (1997).

    Article  CAS  PubMed  Google Scholar 

  97. Duhamel, J. R., Colby, C. L. & Goldberg, M. E. Ventral intraparietal area of the macaque: congruent visual and somatic response properties. J. Neurophysiol. 79, 126–136 (1998). Two physiology papers showing that area LIP in the monkey IPS represents the target of a saccadic eye movement, even before the eye movement is performed, and even in the absence of a target stimulus. These data indicate that area LIP responses represent memory traces or attention to a specific target location, rather than simple stimulus-driven responses.

    Article  CAS  PubMed  Google Scholar 

  98. Bremmer, F., Duhamel, J. R., Ben Hamed, S. & Graf, W. Heading encoding in the macaque ventral intraparietal area (VIP). Eur. J. Neurosci. 16, 1554–1568 (2002).

    Article  PubMed  Google Scholar 

  99. Zhang, T., Heuer, H. W. & Britten, K. H. Parietal area VIP neuronal responses to heading stimuli are encoded in head-centered coordinates. Neuron 42, 993–1001 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Colby, C. L., Duhamel, J. R. & Goldberg, M. E. Ventral intraparietal area of the macaque: anatomic location and visual response properties. J. Neurophysiol. 69, 902–914 (1993).

    Article  CAS  PubMed  Google Scholar 

  101. Taira, M., Mine, S., Georgopoulos, A. P., Murata, A. & Sakata, H. Parietal cortex neurons of the monkey related to the visual guidance of hand movement. Exp. Brain Res. 83, 29–36 (1990).

    Article  CAS  PubMed  Google Scholar 

  102. Iwamura, Y., Iriki, A. & Tanaka, M. Bilateral hand representation in the postcentral somatosensory cortex. Nature 369, 554–556 (1994).

    Article  CAS  PubMed  Google Scholar 

  103. Murata, A., Gallese, V., Luppino, G., Kaseda, M. & Sakata, H. Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. J. Neurophysiol. 83, 2580–2601 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Saito, D. N., Okada, T., Morita, Y., Yonekura, Y. & Sadato, N. Tactile-visual cross-modal shape matching: a functional MRI study. Brain Res. Cogn. Brain Res. 17, 14–25 (2003).

    Article  PubMed  Google Scholar 

  105. Sakata, H. et al. Neural representation of three-dimensional features of manipulation objects with stereopsis. Exp. Brain Res. 128, 160–169 (1999).

    Article  CAS  PubMed  Google Scholar 

  106. Shikata, E. et al. Surface orientation discrimination activates caudal and anterior intraparietal sulcus in humans: an event-related fMRI study. J. Neurophysiol. 85, 1309–1314 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Hihara, S., Obayashi, S., Tanaka, M. & Iriki, A. Rapid learning of sequential tool use by macaque monkeys. Physiol. Behav. 78, 427–434 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Obayashi, S. et al. Functional brain mapping of monkey tool use. Neuroimage 14, 853–861 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Iriki, A., Tanaka, M. & Iwamura, Y. Coding of modified body schema during tool use by macaque postcentral neurones. Neuroreport 7, 2325–2330 (1996).

    Article  CAS  PubMed  Google Scholar 

  110. Orban, G. A., Van Essen, D. & Vanduffel, W. Comparative mapping of higher visual areas in monkeys and humans. Trends Cogn. Sci. 8, 315–324 (2004).

    Article  PubMed  Google Scholar 

  111. Van Essen, D. C. et al. Mapping visual cortex in monkeys and humans using surface-based atlases. Vision Res. 41, 1359–1378 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Orban, G. A. et al. Similarities and differences in motion processing between the human and macaque brain: evidence from fMRI. Neuropsychologia 41, 1757–1768 (2003).

    Article  PubMed  Google Scholar 

  113. Vanduffel, W. et al. Extracting 3D from motion: differences in human and monkey intraparietal cortex. Science 298, 413–415 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Culham, J. C. & Kanwisher, N. G. Neuroimaging of cognitive functions in human parietal cortex. Curr. Opin. Neurobiol. 11, 157–163 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Grefkes, C., Ritzl, A., Zilles, K. & Fink, G. R. Human medial intraparietal cortex subserves visuomotor coordinate transformation. Neuroimage 23, 1494–1506 (2004).

    Article  PubMed  Google Scholar 

  116. Shikata, E. et al. Functional properties and interaction of the anterior and posterior intraparietal areas in humans. Eur. J. Neurosci. 17, 1105–1110 (2003).

    Article  PubMed  Google Scholar 

  117. Connolly, J. D., Andersen, R. A. & Goodale, M. A. fMRI evidence for a 'parietal reach region' in the human brain. Exp. Brain Res. 153, 140–145 (2003).

    Article  PubMed  Google Scholar 

  118. Sereno, M. I., Pitzalis, S. & Martinez, A. Mapping of contralateral space in retinotopic coordinates by a parietal cortical area in humans. Science 294, 1350–1354 (2001). This fMRI study used delayed saccades to map out the eye-centred attention and memory responses in the IPS, which indicates a clear homology between monkey and human area LIP, which is involved in eye movements and attention.

    Article  CAS  PubMed  Google Scholar 

  119. Ben Hamed, S., Duhamel, J. R., Bremmer, F. & Graf, W. Representation of the visual field in the lateral intraparietal area of macaque monkeys: a quantitative receptive field analysis. Exp. Brain Res. 140, 127–144 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Astafiev, S. V. et al. Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing. J. Neurosci. 23, 4689–4699 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Medendorp, W. P., Goltz, H. C., Crawford, J. D. & Villis, T. Integration of target and effector information in human posterior parietal cortex for the planning of action. J. Neurophysiol. 93, 954–962 (2005).

    Article  PubMed  Google Scholar 

  122. Logothetis, N. K. & Wandell, B. A. Interpreting the BOLD signal. Annu. Rev. Physiol. 66, 735–769 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Logothetis, N. K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157 (2001).

    Article  CAS  PubMed  Google Scholar 

  124. Medendorp, W. P., Goltz, H. C., Villis, T. & Crawford, J. D. Gaze-centered updating of visual space in human parietal cortex. J. Neurosci. 23, 6209–6214 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Merriam, E. P., Genovese, G. R. & Colby, C. L. Spatial updating in human parietal cortex. Neuron 39, 361–373 (2003). These two papers used fMRI to show spatial updating in the human parietal cortex, similar to that observed in the monkey. Combined with anatomical and functional criteria, these papers strongly indicate that the human posterior IPS is the equivalent of macaque area LIP.

    Article  CAS  PubMed  Google Scholar 

  126. Bremmer, F. et al. Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. Neuron 29, 287–296 (2001).

    Article  CAS  PubMed  Google Scholar 

  127. Culham, J. C. et al. Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas. Exp. Brain Res. 153, 180–189 (2003).

    Article  PubMed  Google Scholar 

  128. Bonda, E., Petrides, M., Frey, S. & Evans, A. Neural correlates of mental transformations of the body-in-space. Proc. Natl Acad. Sci. USA 92, 11180–11184 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Grefkes, C., Weiss, P. H., Zilles, K. & Fink, G. R. Crossmodal processing of object features in human anterior intraparietal cortex: an fMRI study implies equivalencies between humans and monkeys. Neuron 35, 173–184 (2002).

    Article  CAS  PubMed  Google Scholar 

  130. Chao, L. L. & Martin, A. Representation of manipulable man-made objects in the dorsal stream. Neuroimage 12, 478–484 (2000).

    Article  CAS  PubMed  Google Scholar 

  131. Binkofski, R. et al. Human anterior intraparietal area subserves prehension. Neurology 50, 1253–1259 (1998).

    Article  CAS  PubMed  Google Scholar 

  132. Buccino, G. et al. Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. Eur. J. Neurosci. 13, 400–404 (2001).

    CAS  PubMed  Google Scholar 

  133. Muhlau, M. et al. Left inferior parietal dominance in gesture imitation: an fMRI study. Neuropsychologia 43, 1086–1098 (2005).

    Article  PubMed  Google Scholar 

  134. Walsh, V. A theory of magnitude: common cortical metrics of time, space and quantity. Trends Cogn. Sci. 7, 483–488 (2003).

    Article  PubMed  Google Scholar 

  135. Halligan, P. W. & Marshall, J. C. Visuospatial neglect: the ultimate deconstruction? Brain Cogn. 37, 419–438 (1998).

    Article  CAS  PubMed  Google Scholar 

  136. Karnath, H. O., Fruhmann Berger, M., Kuker, W. & Rorden, C. The anatomy of spatial neglect based on voxelwise statistical analysis: a study of 140 patients. Cereb. Cortex 14, 1164–1172 (2004).

    Article  PubMed  Google Scholar 

  137. Mort, D. J. et al. The anatomy of visual neglect. Brain 126, 1986–1997 (2003).

    Article  PubMed  Google Scholar 

  138. Malhotra, P., Mannan, S., Driver, J. & Husain, M. Impaired spatial working memory: one component of the visual neglect syndrome? Cortex 40, 667–676 (2004).

    Article  PubMed  Google Scholar 

  139. Ellison, A., Schindler, I., Pattison, L. L. & Milner, A. D. An exploration of the role of the superior temporal gyrus in visual search and spatial perception using TMS. Brain 127, 2307–2315 (2004).

    Article  PubMed  Google Scholar 

  140. Wardak, C., Olivier, E. & Duhamel, J. R. Saccadic target selection deficits after lateral intraparietal area inactivation in monkeys. J. Neurosci. 22, 9877–9884 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wardak, C., Olivier, E. & Duhamel, J. R. A deficit in covert attention after parietal cortex inactivation in the monkey. Neuron 42, 501–508 (2004).

    Article  CAS  PubMed  Google Scholar 

  142. Iriki, A. in From Monkey Brain to Human Brain (eds Dehaene, S., Duhamel, J. R., Rizzolatti, G. & Hauser, M. D.) (MIT Press, Cambridge, Massachusetts, in the press).

  143. Gobel, S. M., Johansen-Berg, H., Behrens, T. & Rushworth, M. F. Response-selection-related parietal activation during number comparison. J. Cogn. Neurosci. 16, 1536–1551 (2004).

    Article  PubMed  Google Scholar 

  144. Deneve, S. & Pouget, A. Bayesian multisensory integration and cross-modal spatial links. J. Physiol. (Paris) 98, 249–258 (2004).

    Article  Google Scholar 

  145. Pouget, A., Deneve, S. & Duhamel, J. R. A computational perspective on the neural basis of multisensory spatial representations. Nature Rev. Neurosci. 3, 741–747 (2002). Computational models that show how a necessity for cross-modal integration and coordination between sensory modalities can give rise to partially shifting receptive fields, like those observed in area VIP. Formally equivalent computations might underlie arithmetical operations in the parietal lobe.

    Article  CAS  Google Scholar 

  146. Galton, F. Visualised numerals. Nature 21, 252–256 (1880).

    Article  Google Scholar 

  147. Galton, F. Visualised numerals. Nature 22, 494–495 (1880).

    Article  Google Scholar 

  148. Ramachandran, V. S. & Hubbard, E. M. Synaesthesia: a window into perception, thought and language. J. Consciousness Stud. 8, 3–34 (2001).

    Google Scholar 

  149. Rich, A. N. & Mattingley, J. B. Anomalous perception in synaesthesia: a cognitive neuroscience perspective. Nature Rev. Neurosci. 3, 43–52 (2002).

    Article  CAS  Google Scholar 

  150. Paulesu, E. et al. The physiology of coloured hearing: a PET activation study of colour-word synaesthesia. Brain 118, 661–676 (1995).

    Article  PubMed  Google Scholar 

  151. Nunn, J. A. et al. Functional magnetic resonance imaging of synesthesia: activation of V4/V8 by spoken words. Nature Neurosci. 5, 371–375 (2002).

    Article  CAS  PubMed  Google Scholar 

  152. Hubbard, E. M., Arman, A. C., Ramachandran, V. S. & Boynton, G. M. Individual differences among grapheme-color synesthetes: brain-behavior correlations. Neuron 45, 975–985 (2005).

    Article  CAS  PubMed  Google Scholar 

  153. Blakemore, S. J., Bristow, D., Bird, G., Frith, C. & Ward, J. Somatosensory activations during the observation of touch and a case of vision–touch synaesthesia. Brain 7 Apr 2005 (10.1093/brain/awh500).

  154. Van Essen, D. C. in The Visual Neurosciences (eds Chalupa, L. & Werner, J. S.) 507–521 (MIT Press, Cambridge, Massachusetts, USA, 2004).

    Google Scholar 

  155. Van Essen, D. C. et al. An integrated software system for surface-based analyses of cerebral cortex. J. Am. Med. Inform. Assn. 41, 1359–1378 (2001).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank M. Sigman, L. E. Williams, A. J. Wilson and three anonymous reviewers for valuable comments on earlier versions of this manuscript. This research was supported by the Institut National de la Santé et de la Recherche Médicale (S.D. and P.P.), a James S. McDonnell Centennial Fellowship (S.D.), a Numeracy and Brain Development (NUMBRA) postdoctoral fellowship (E.M.H.) and a Marie-Curie individual fellowship (M.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward M. Hubbard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

INSERM Cognitive Neuroimaging Unit

INSERM Number Neuroimaging Database

Sums Database

Caret software

BrainVisa/Anatomist software

Glossary

INTRAPARIETAL SULCUS (IPS).

A long, deep fissure that cuts through the parietal lobe, dividing the superior and inferior parietal lobules. This sulcus is present in both humans and non-human primates, and accumulating data indicate that its organization might be partially conserved in evolution.

LATERAL INTRAPARIETAL (LIP).

A region of the lateral bank of the IPS that is involved in visual representations of space in an eye-centred coordinate frame. This region is crucial for attention, intention to make saccadic eye movements and spatial updating.

VENTRAL INTRAPARIETAL (VIP).

A region in the ventral portion of the IPS that is responsive to motion in visual, auditory and tactile modalities with head-centred receptive fields. Recent studies indicate that number-selective neurons are located in or near this region.

SPATIAL–NUMERICAL ASSOCIATION OF RESPONSE CODES EFFECT (SNARC effect).

The finding that subjects respond more quickly to larger numbers if the response is on the right side of space, and to the left for smaller numbers, which indicates automatic spatial–numerical associations.

ANTERIOR INTRAPARIETAL (AIP).

A region in the anterior portion of the IPS that is involved in fine grasping behaviours. Neurons in this area respond to both visual and tactile stimuli, with receptive fields that move with the hand.

CAUDAL INTRAPARIETAL (CIP).

A region at the posterior end of the IPS that is involved in the analysis of three-dimensional shapes. Signals from area CIP are sent to area AIP, where they are integrated to plan the grasping of three-dimensional objects.

MEDIAL INTRAPARIETAL (MIP).

A region in the medial bank of the IPS that is involved in visuomotor transformations. Along with area V6A, this region comprises the PRR, which is active in tasks that require reaching to specific locations.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hubbard, E., Piazza, M., Pinel, P. et al. Interactions between number and space in parietal cortex. Nat Rev Neurosci 6, 435–448 (2005). https://doi.org/10.1038/nrn1684

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1684

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing