Key Points
-
Numbers can be used most flexibly to quantify, rank and identify. 'Cardinal' number refers to quantitative number assignments assessing set size (numerosity), whereas 'ordinal' number applies to numerical rank, which concerns serial order. Finally, nominal number identifies objects.
-
The development of a full-blown, systematic number concept is only possible through language. However, animals and humans are nonetheless able to non-verbally grasp the cardinality of objects in order to judge numerical quantity, as well as serial order to allow them to assess numerical rank. So, numerical competence did not emerge de novo in linguistic humans, but built up on biological precursor systems.
-
Behavioural studies have shown that non-linguistic animals have the capacity to assess numerical quantity and rank. Animals have been trained to discriminate numerosities in a controlled laboratory setting, and animals in the wild have been shown to spontaneously use numerical information to allow them to make informed choices in their natural environment. List learning, which is the ability to encode and then retrieve an arbitrary list of items in their correct order, opened a window for studying how the ordinal rank of objects is learned and stored by animals. Moreover, pre-verbal human infants of several months of age already have the capacity to represent cardinality. Finally, some indigenous human cultures that lack number words or have a restricted concept of verbal counting can only estimate the number of items in a set by means of a non-verbal quantification system.
-
Single-cell recordings in monkeys and functional imaging studies in humans have helped to identify the neural basis of numerical competence. Quantity information is represented in the posterior parietal cortex in close association with the prefrontal cortex. The response properties of numerosity-selective cortical cells can explain basic psychophysical phenomena, such as the numerical distance effect and the numerical size effect. In humans, the intraparietal sulcus of the parietal lobe is specifically activated by non-verbal and verbal quantity information, independently of sensory modality, symbolic notation or cognitive status.
-
In monkeys, numerical rank, irrespective of the sensory properties of the objects involved, is encoded by neurons in the lateral prefrontal cortex. Neurons that encode the ordinal position of task-related hand or eye movements have been found in a variety of motor-related cortical areas in trained monkeys. In addition, in functional imaging studies in humans, the prefrontal and parietal cortices have also been found to be more strongly activated for order information.
-
Together, neural data on numerosity and serial order indicate that numerical quantity and rank order information are likely to share the same neural system, with the prefrontal cortex and the intra-parietal sulcus as key structures.
Abstract
Numbers are an integral part of our everyday life — we use them to quantify, rank and identify objects. The verbal number concept allows humans to develop superior mathematical and logic skills that define technologically advanced cultures. However, basic numerical competence is rooted in biological primitives that can be explored in animals, infants and human adults alike. We are now beginning to unravel its anatomical basis and neuronal mechanisms on many levels, down to its single neuron correlate. Neural representations of numerical information can engage extensive cerebral networks, but the posterior parietal cortex and the prefrontal cortex are the key structures in primates.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Frege, G. The Foundations of Arithmetic. A Logic-Mathematical Enquiry into the Concept of Number. (trans. Austin, J. L.) (Blackwell, Oxford, 1884).
Danzig, T. Number, the Language of Science (Free, New York, 1954).
Dehaene, S. The Number Sense (Oxford Univ. Press, New York, 1997).
Gallistel, C. R. & Gelman, R. Non-verbal numerical cognition: from reals to integers. Trends Cogn. Sci. 4, 59–65 (2000).
Henschen, S. E. Über Sprach-, Musik und Rechenmechanismen und ihre Lokalisation im Grobhirn. Z. ges. Neurologie und Psychiatrie 52, 273–298 (1919).
Gerstmann, J. Syndrome of finger agnosia, disorientation for right and left agraphia and acalculia. Arch. Neurol. Psychiatry 44, 398–408 (1940).
Luria, A. R. The Higher Cortical Functions in Man (Basic Books, New York, 1966).
Fuson, K. C. & Hall, J. W. in The Development of Mathematical Thinking (ed. Ginsburg, H. P.) 49–107 (Academic, New York, 1983).
Wiese, H. Numbers, Language, and the Human Mind (Cambridge Univ. Press, Cambridge, UK, 2003). A book that describes the human number faculty, merging verbal and non-verbal psychological findings into a major linguistic–philosophical concept.
Wiese, H. Iconic and non-iconic stages in number development: the role of language. Trends Cogn. Sci. 7, 385–390 (2003).
Hauser, M. D., Chomsky, N. & Fitch, W. T. The faculty of language: what is it, who has it, and how did it evolve? Science 298, 1569–1579 (2002).
Davis, H. & Perusse, R. Numerical competence in animals: definitional issues, current evidence, and a new research agenda. Behav. Brain Sci. 11, 561–615 (1988).
Brannon, E. M. & Terrace, H. S. Ordering of the numerosities 1 to 9 by monkeys. Science 282, 746–749 (1998). A pioneering behavioural study showing that monkeys are able to understand the ordinal relationship of numerosities.
Hauser, M. D., MacNeilage, P. & Ware, M. Numerical representations in primates. Proc. Natl Acad. Sci. USA 93, 1514–1517 (1996).
Sulkowski, G. M. & Hauser, M. D. Can rhesus monkeys spontaneously subtract? Cognition 79, 239–262 (2001).
Flombaum, J., Junge, J. & Hauser, M. D. Rhesus monkeys (Macaca mulatta) spontaneously compute addition operations over large numbers. Cognition (in the press).
Feigenson, L., Dehaene, S. & Spelke, E. Core systems of number. Trends Cogn. Sci. 8, 307–314 (2004).
Wynn, K. Addition and subtraction by human infants. Nature 358, 749–750 (1992).
Whalen, J., Gallistel, C. R. & Gelman, R. Nonverbal counting in humans: the psychophysics of number representations. Psychol. Sci. 10, 130–137 (1999).
Cordes, S., Gelman, R., Gallistel, C. R. & Whalen, J. Variability signatures distinguish verbal from nonverbal counting for both large and small numbers. Psychon. Bull. Rev. 8, 698–707 (2001).
Barth, H., Kanwisher, N. & Spelke, E. The construction of large number representations in adults. Cognition 86, 201–221 (2003).
Blake, B. Australian Aboriginal Languages: a General Introduction 2nd edn (Univ. Queensland Press, St Lucia, Queensland, 1991).
Pica, P., Lemer, C., Izard, V. & Dehaene, S. Exact and approximate arithmetic in an Amazonian indigene group. Science 306, 499–503 (2004). Humans that lack number words for larger numerosities perform approximate numerical computations.
Gordon, P. Numerical cognition without words: evidence from Amazonia. Science 306, 496–499 (2004). Cardinality judgments in humans without a verbal number concept are astonishingly poor and reminiscent of the discrimination performances of animals.
Hauser, M. D. & Spelke, E. S. in The Cognitive Neurosciences III (ed. Gazzaniga, M.) (MIT Press, Cambridge, Massachusetts, 2004).
Meck, W. H. & Church, R. M. A mode control model of counting and timing processes. J. Exp. Psychol. Anim. Behav. Proc. 9, 320–334 (1983).
Nieder, A. & Miller, E. K. Coding of cognitive magnitude: compressed scaling of numerical information in the primate prefrontal cortex. Neuron 37, 149–157 (2003).
Nieder, A. & Miller, E. K. Analog numerical representations in rhesus monkeys: evidence for parallel processing. J. Cogn. Neurosci. 16, 889–901 (2004).
Mechner, F. Probability relations within response sequences under ratio reinforcement. J. Exp. Anal. Behav. 1, 109–121 (1958).
Van Oeffelen, M. P. & Vos, P. G. A probabilistic model for the discrimination of visual number. Percept. Psychophys. 32, 163–170 (1982).
Brannon, E. M. & Terrace, H. S. Representation of the numerosities 1–9 by rhesus macaques (Macaca mulatta). J. Exp. Psychol. Anim. Behav. Process. 26, 31–49 (2000).
Kaufman, E. L., Lord, M. W., Reese, T. W. & Volkmann, J. The discrimination of visual number. Am. J. Psychol. 62, 498–525 (1949).
Mandler, G. & Shebo, B. J. Subitizing: an analysis of its component processes. J. Exp. Psychol. Gen. 111, 1–22 (1982).
Kahneman, D., Treisman, A. & Gibbs, B. The reviewing of object files: object-specific integration of information. Cognit. Psychol. 24, 175–219 (1992).
Feigenson, L. & Carey, S. Tracking individuals via object-files: evidence from infants' manual search. Dev. Sci. 6, 568–584 (2003).
Xu, F. & Spelke, E. S. Large number discrimination in 6-month old infants. Cognition 74, B1–B11 (2000).
McCrink, K. & Wynn, K. Large-number addition and subtraction by 9-month-old infants. Psychol. Sci. 15, 776–781 (2004).
Hauser, M. D., Carey, S. & Hauser, L. B. Spontaneous number representation in semi-free-ranging rhesus monkeys. Proc. R. Soc. Lond. B 267, 829–833 (2000).
Uller, C., Hauser, M. D. & Carey, S. Spontaneous representation of number in cotton-top tamarins (Saguinus oedipus). J. Comp. Psychol. 115, 248–257 (2001).
Hauser, M. D., Tsao, F., Garcia, P. & Spelke, E. S. Evolutionary foundations of number: spontaneous representation of numerical magnitudes by cotton-top tamarins. Proc. R. Soc. Lond. B 270, 1441–1446 (2003).
Beran, M. J. & Beran, M. M. Chimpanzees remember the results of one-by-one addition of food items to sets over extended time periods. Psychol. Sci. 15, 94–99 (2004).
Balakrishnan, J. D. & Ashby, F. G. Subitizing: magical numbers or mere superstition. Psychol. Res. 54, 80–90 (1992).
Pylyshyn, Z. W. Seeing and Visualizing: It's Not What You Think (Bradford Books, MIT Press, Massachusetts, 2003).
Sathian, K. et al. Neural evidence linking visual object enumeration and attention. J. Cogn. Neurosci. 11, 36–51 (1999).
Piazza, M., Mechelli, A., Butterworth, B. & Price, C. J. Are subitizing and counting implemented as separate or functionally overlapping processes? Neuroimage 15, 435–446 (2002).
Piazza, M., Giacomini, E., Le Bihan, D. & Dehaene, S. Single-trial classification of parallel pre-attentive and serial attentive processes using functional magnetic resonance imaging. Proc. R. Soc. Lond. B 270, 1237–1245 (2003).
Nieder, A., Freedman, D. J. & Miller, E. K. Representation of the quantity of visual items in the primate prefrontal cortex. Science 297, 1708–1711 (2002). The authors taught monkeys to judge whether two successively presented visual displays contained the same number of items. Neurons in the prefrontal cortex were maximally activated by a specific number of items, but were unaffected by changes in the exact appearance of the stimuli.
Nieder, A. & Miller, E. K. A parieto-frontal network for visual numerical information in the monkey. Proc. Natl Acad. Sci. USA 101, 7457–7462 (2004). A comparison of numerosity-selective neurons recorded in three areas (prefrontal, posterior parietal and anterior temporal) of the same monkeys. Quantity information was first represented in the posterior parietal cortex, but the prefrontal cortex showed the highest proportion of numerosity-selective neurons.
Sawamura, H., Shima, K. & Tanji, J. Numerical representation for action in the parietal cortex of the monkey. Nature 415, 918–922 (2002).
Romo, R., Brody, C. D., Hernandez, A. & Lemus, L. Neuronal correlates of parametric working memory in the prefrontal cortex. Nature 399, 470–473 (1999).
Brody, C. D., Hernandez, A., Zainos, A. & Romo, R. Timing and neural encoding of somatosensory parametric working memory in macaque prefrontal cortex. Cereb. Cortex 13, 1196–1207 (2003).
Petrides, M. & Pandya, D. N. in Principles of Frontal Lobe Function (eds Stuss, D. T. & Knight, R. T.) 31–50 (Oxford Univ. Press, Oxford, 2002).
Miller, E. K. & Cohen, J. D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001).
Green, D. M. & Swets, J. A. Signal Detection Theory and Psychophysics (Wiley, New York, 1966).
Piazza, M., Izard, V., Pinel, P., Le Bihan, D. & Dehaene, S. Tuning curves for approximate numerosity in the human intraparietal sulcus. Neuron 44, 547–555 (2004). Shows that visual numerosities automatically activate the intraparietal sulcus of humans. Using an fMRI adaptation protocol, the authors were able to reconstruct numerosity activation profiles reminiscent to single-neuron numerosity tuning curves.
Shuman, M. & Kanwisher, N. Numerical magnitude in the human parietal lobe: tests of representational generality and domain specificity. Neuron 44, 557–569 (2004).
Gibbon, J. Scalar expectancy theory and Weber's Law in animal timing. Psychol. Rev. 84, 279–335 (1977).
Brannon, E. M., Wusthoff, C. J., Gallistel, C. R. & Gibbon, J. Numerical subtraction in the pigeon: evidence for a linear subjective number scale. Psychol. Sci. 12, 238–243 (2001).
Dehaene, S. & Mehler, J. Cross-linguistic regularities in the frequency of number words. Cognition 43, 1–29 (1992).
Dehaene, S. Subtracting pigeons: logarithmic or linear? Psychol. Sci. 12, 244–246 (2001).
Dehaene, S. & Changeux, J. P. Development of elementary numerical abilities: a neuronal model. J. Cogn. Neurosci. 5, 390–407 (1993).
Verguts, T. & Fias, W. Representation of number in animals and humans: a neural model. J. Cogn. Neurosci. 16, 1493–1504 (2004).
Dehaene, S. The neural basis of the Weber–Fechner law: a logarithmic mental number line. Trends Cogn. Sci. 7, 145–147 (2003).
Xia, L., Emmerton, J., Siemann, M. & Delius, J. D. Pigeons (Columba livia) learn to link numerosities with symbols. J. Comp. Psychol. 115, 83–91 (2001).
Pepperberg, I. M. Evidence for conceptual quantitative abilities in the African parrot: labeling of cardinal sets. Ethology 75, 37–61 (1987).
Washburn, D. A. & Rumbaugh, D. M. Ordinal judgements of numerical symbols by macaques (Macaca mulatta). Psychol. Sci. 2, 190–193 (1991).
Matsuzawa, T. Use of numbers by a chimpanzee. Nature 315, 57–59 (1985).
Boysen, S. T. & Bernston, G. G. Numerical competence in a chimpanzee. J. Comp. Psychol. 103, 23–31 (1989).
Eger, E., Sterzer, P., Russ, M. O., Giraud, A. L. & Kleinschmidt, A. A supramodal number representation in human intraparietal cortex. Neuron 37, 719–725 (2003). Functional imaging study showing that both spoken and written numerals can specifically activate the human intraparietal sulcus automatically and task-independently.
Naccache, L. & Dehaene, S. The priming method: imaging unconscious repetition priming reveals an abstract representation of number in the parietal lobe. Cereb. Cortex 11, 966–974 (2001).
Pinel, P., Piazza M., Le Bihan, D. & Dehaene, S. Distributed and overlapping cerebral representations of number, size, and luminance during comparative judgments. Neuron 41, 983–993 (2004). Using fMRI, the authors report that different types of magnitude (luminance, size and numerical value) activate overlapping parietal regions in humans.
Fias, W., Lammertyn, J., Reynvoet, B., Dupont, P. & Orban, G. A. Parietal representation of symbolic and nonsymbolic magnitude. J. Cogn. Neurosci. 15, 47–56 (2003).
Kleinschmidt, A. Thinking big; many modules or much cortex? Neuron 41, 842–844 (2004).
Nieder, A. The number domain — can we count on parietal cortex? Neuron 44, 407–409 (2004).
Dehaene, S., Piazza, M., Pinel, P. & Cohen, L. Three parietal circuits for number processing. Cogn. Neuropsychol. 20, 487–506 (2003).
Dehaene, S., Spelke, E., Pinel, P., Stanescu, R. & Tsivkin, S. Sources of mathematical thinking: behavioural and brain imaging evidence. Science 284, 970–974 (1999).
Menon, V. et al. Functional optimization of arithmetic processing in perfect performers. Cogn. Brain Res. 9, 343–345 (2000).
Lee, K. M. Cortical areas differentially involved in multiplication and subtraction: a functional magnetic resonance imaging study and correlation with a case of selective acalculia. Ann. Neurol. 48, 657–661 (2000).
Gruber, O., Indefrey, P., Steinmetz, H. & Kleinschmidt, A. Dissociating neural correlates of cognitive components in mental calculation. Cereb. Cortex 11, 350–359 (2001).
Simon, O., Mangin, J. F., Cohen, L., Le Bihan, D. & Dehaene, S. Topographical layout of hand, eye, calculation, and language-related areas in the human parietal lobe. Neuron 33, 475–487 (2002).
Isaacs, E. B., Edmonds, C. J., Lucas, A. & Gadian, D. G. Calculation difficulties in children of very low birthweight: a neural correlate. Brain 124, 1701–1707 (2001).
Landerl, K., Bevan, A. & Butterworth, B. Developmental dyscalculia and basic numerical capacities: a study of 8–9-year-old students. Cognition 93, 99–125 (2004).
Molko, N. et al. Functional and structural alterations of the intraparietal sulcus in a developmental dyscalculia of genetic origin. Neuron 40, 847–858 (2003).
Molko, N. et al. Brain anatomy in Turner syndrome: evidence for impaired social and spatial–numerical networks. Cereb. Cortex 14, 840–850 (2004).
Rivera, S. M., Menon, V., White, C. D., Glaser, B. & Reiss, A. L. Functional brain activation during arithmetic processing in females with fragile X syndrome is related to FMR1 protein expression. Hum. Brain Mapp. 16, 206–218 (2002).
Eliez, S. et al. Functional brain imaging study of mathematical reasoning abilities in velocardiofacial syndrome (del22q11.2). Genet. Med. 3, 49–55 (2001).
Swartz, K. B., Chen, S. & Terrace, H. S. Serial learning by Rhesus monkeys. I. Acquisition and retention of multiple four-item lists. J. Exp. Psychol. Anim. Behav. Process. 17, 396–410 (1991).
Straub, R. O., Seidenberg, M. S., Bever, T. G. & Terrace, H. S. Serial learning in the pigeon. J. Exp. Anal. Behav. 32, 137–148 (1979).
Terrace, H. S., Son, L. & Brannon, E. Serial expertise by rhesus macaques. Psychol. Sci. 14, 66–73 (2003).
Ebbinghaus, H. Memory: a Contribution to Experimental Psychology (Dover, New York, 1964).
Ebenholtz, S. M. Serial learning: position learning and sequential associations. J. Exp. Psychol. 66, 353–362 (1963).
Chen, S., Swartz, K. B. & Terrace, H. S. Knowledge of the ordinal position of list items in rhesus monkeys. Psychol. Sci. 8, 80–86 (1997). Shows that monkeys understand and use numerical rank information.
Orlov, T., Yakovlev, V., Hochstein, S. & Zohary, E. Macaque monkeys categorize images by their ordinal number. Nature 404, 77–80 (2000).
Orlov, T., Yakovlev, V., Amit, D., Hochstein, S. & Zohary, E. Serial memory strategies in macaque monkeys: behavioral and theoretical aspects. Cereb. Cortex 12, 306–317 (2002).
Milner B. Interhemispheric differences in the localization of psychological processes in man. Br. Med. Bull. 27, 272–277 (1971).
McAndrews, M. P. & Milner, B. The frontal cortex and memory for temporal order. Neuropsychologia 29, 849–859 (1991).
Petrides, M. & Milner, B. Deficits on subject-ordered tasks after frontal- and temporal-lobe lesions in man. Neuropsychologia 20, 249–262 (1982).
Milner, B., Corsi, P. & Leonard, G. Frontal-lobe contribution to recency judgments. Neuropsychologia 29, 601–618 (1991).
Shimamura, A. P., Janowsky, J. S. & Squire, L. R. Memory for the temporal order of events in patients with frontal lobe lesions and amnesic patients. Neuropsychologia 28, 803–813 (1990).
Petrides, M. Impairments on nonspatial self-ordered and externally ordered working memory tasks after lesions of the mid-dorsal part of the lateral frontal cortex in the monkey. J. Neurosci. 15, 359–375 (1995).
Cabeza, R. et al. Brain regions differentially involved in remembering what and when: a PET study. Neuron 19, 863–870 (1997).
Cabeza, R., Anderson, N. D., Houle, S., Mangels, J. A. & Nyberg, L. Age-related differences in neural activity during item and temporal-order memory retrieval: a positron emission tomography study. J. Cogn. Neurosci. 12, 197–206 (2000).
Konishi, S. et al. Neural correlates of recency judgment. J. Neurosci. 22, 9549–9555 (2002).
Marshuetz, C., Smith, E. E., Jonides, J., DeGutis, J. & Chenevert, T. L. Order information in working memory: fMRI evidence for parietal and prefrontal mechanisms. J. Cogn. Neurosci. 12 Suppl. 2, 130–144 (2000).
Bengtsson S. L., Ehrsson, H. H., Forssberg, H. & Ullen, F. Dissociating brain regions controlling the temporal and ordinal structure of learned movement sequences. Eur. J. Neurosci. 19, 2591–2602 (2004).
Ninokura, Y., Mushiake, H. & Tanji, J. Representation of the temporal order of visual objects in the primate lateral prefrontal cortex. J. Neurophysiol. 89, 2868–2873 (2003).
Ninokura, Y., Mushiake, H. & Tanji, J. Integration of temporal order and object information in the monkey lateral prefrontal cortex. J. Neurophysiol. 91, 555–560 (2004). Single-cell study showing that neurons in the prefrontal cortex of macaques encode the numerical rank of successively-displayed objects.
Funahashi, S., Inoue, M. & Kubota, K. Delay-period activity in the primate prefrontal cortex encoding multiple spatial positions and their order of presentation. Behav. Brain Res. 84, 203–223 (1997).
Barone, P. & Joseph, J. P. Prefrontal cortex and spatial sequencing in macaque monkey. Exp. Brain Res. 78, 447–464 (1989).
Kermadi, I. & Joseph, J. P. Activity in the caudate nucleus of monkey during spatial sequencing. J. Neurophysiol. 74, 911–933 (1995).
Procyk, E. & Joseph, J. P. Characterization of serial order encoding in the monkey anterior cingulate sulcus. Eur. J. Neurosci. 14, 1041–1046 (2001).
Procyk, E., Tanaka, Y. L. & Joseph, J. P. Anterior cingulate activity during routine and non-routine sequential behaviors in macaques Nature Neurosci. 3, 502–508 (2000).
Clower, W. T. & Alexander, G. E. Movement sequence-related activity reflecting numerical order of components in supplementary and presupplementary motor areas. J. Neurophysiol. 80, 1562–1566 (1998).
Tanji, J. & Shima, K. Role for supplementary motor area cells in planning several movements ahead. Nature 371, 413–416 (1994).
Shima, K. & Tanji, J. Neuronal activity in the supplementary and presupplementary motor areas for temporal organization of multiple movements. J. Neurophysiol. 84, 2148–2160 (2000).
Isoda, M. & Tanji, J. Participation of the primate presupplementary motor area in sequencing multiple saccades. J. Neurophysiol. 92, 653–659 (2004).
Isoda, M. & Tanji, J. Contrasting neuronal activity in the supplementary and frontal eye fields during temporal organization of multiple saccades. J. Neurophysiol. 90, 3054–3065 (2003).
Carpenter, A. F., Georgopoulos, A. P. & Pellizzer, G. Motor cortical encoding of serial order in a context-recall task. Science 283, 1752–1757 (1999).
Gevers, W., Reynvoet, B. & Fias, W. The mental representation of ordinal sequences is spatially organized. Cognition 87, B87–B95 (2003).
Cipolotti, L., Butterworth, B. & Denes, G. A specific deficit for numbers in a case of dense acalculia. Brain 114, 2619–2637 (1991).
Delazer, M. & Butterworth, B. A dissociation of number meanings. Cogn. Neuropsychol. 14, 613–636 (1997).
Turconi, E. & Seron, X. Dissociation between order and quantity meanings in a patient with Gerstmann syndrome. Cortex 38, 911–914 (2002).
Turconi, E., Jemel, B., Rossion, B. & Seron, X. Electrophysiological evidence for differential processing of numerical quantity and order in humans. Brain Res. Cogn. Brain Res. 21, 22–38 (2004).
Houde, O. & Tzourio-Mazoyer, N. Neural foundations of logical and mathematical cognition. Nature Rev. Neurosci. 4, 507–514 (2003).
Hassenstein, B. Otto Koehler — his life and his work. Z. Tierpsychol. 35, 449–464 (1974).
Koehler, O. Vom Erlernen unbenannter Anzahlen bei Vögeln. Naturwissenschaften 29, 201–218 (1941).
Koehler, O. The ability of birds to “count”. Bull. Anim. Behav. 9, 41–45 (1951).
Hassmann, M. Vom Erlernen unbenannter Anzahlen beim Eichhörnchen. Z. Tierpsychol. 9, 294–321 (1952).
McComb, K., Packer, C. & Pusey, A. Roaring and numerical assessment in contests between groups of female lions, Panthera leo. Anim. Behav. 47, 379–387 (1994).
Wilson, M. L., Hauser, M. D. & Wrangham, R. W. Does participation in intergroup conflict depend on numerical assessment, range location, or rank for wild chimpanzees? Anim. Behav. 61, 1203–1216 (2001).
Wilson, M. L., Britton, N. F. & Franks, N. R. Chimpanzees and the mathematics of battle. Proc. R. Soc. Lond. B 269, 1107–1112 (2002).
Hauser, M. D., Carey, S. & Hauser, L. B. Spontaneous number representation in semi-free-ranging rhesus monkeys. Proc. R. Soc. Lond. B 267, 829–833 (2000).
Lyon, B. E. Egg recognition and counting reduce costs of avian conspecific brood parasitism. Nature 422, 495–499 (2003).
Bergman, T. J., Beehner, J. C., Cheney, D. L. & Seyfarth, R. M. Hierarchical classification by rank and kinship in baboons. Science 302, 1234–1236 (2003).
Weber, E. H. De Pulsu, Resorptione, Auditu et Tactu: Annotationes Anatomicae et Physiologicae (Koehler, Leipzig, Germany, 1834).
Fechner, G. T. Elemente der Psychophysik (Breitkopf & Härtel, Leipzig, Germany, 1860).
Randall, D., Burggren, W. & French, K. Eckert Animal Physiology 5th edn (W. H. Freeman & Co., New York, 2002).
Dayan, P. & Abbott, L. F. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems (MIT Press, Cambridge, Massachusetts, 2001).
Seron, X., Pesenti, M., Noel, M. P., Deloche, G. & Cornet, J. A. Images of numbers, or 'when 98 is upper left and 6 sky blue'. Cognition 44, 159–196 (1992).
Rickmeyer, K. 'Die Zwölf liegt hinter der nächsten Kurve und die Sieben ist pinkrot': Zahlenraumbilder und bunte Zahlen. J. Mathematik-Didaktik 22, 51–71 (2001).
Galton, F. Visualised numerals. Nature 21, 252–256 (1880).
Restle, F. Speed of adding and comparing numbers. J. Exp. Psychol. 91, 191–205 (1970).
Dehaene, S., Bossini, S. & Giraux, P. The mental representation of parity and number magnitude. J. Exp. Psychol. Gen. 122, 371–396 (1993).
Fischer, M. H., Castel, A. D., Dodd, M. D. & Pratt, J. Perceiving numbers causes spatial shifts of attention. Nature Neurosci. 6, 555–556 (2003).
Moyer, R. S. & Landauer, T. K. Time required for judgments of numerical inequality. Nature 215, 1519–1520 (1967).
Zorzi, M., Priftis, K. & Umilta, C. Brain damage: neglect disrupts the mental number line. Nature 417, 138–139 (2002). A lesion study in humans showing that spatial neglect patients misplace the midpoint of a numerical interval when asked to bisect it.
Vuilleumier, P., Ortigue, S. & Brugger, P. The number space and neglect. Cortex 40, 399–410 (2004).
Acknowledgements
I thank I. Diester, O. Tudusciuc and K. Seymour for valuable comments on the manuscript. I. Diester provided figure 3a. My work is supported by a research group grant of the German Research Foundation and a career development award of the Human Frontier Science Program. Dedicated to Philipp.
Author information
Authors and Affiliations
Ethics declarations
Competing interests
The author declares no competing financial interests.
Related links
Related links
databases
OMIM
FURTHER INFORMATION
Glossary
- HABITUATION–DISHABITUATION PROTOCOL
-
When repeatedly confronted with displays of a given number of visual objects (for example, two), infants will habituate to this numerosity and their looking time to the displays will decrease, but they will regain interest (dishabituate) if they are then presented with a display containing a different numerosity (for example, three).
- DYSCALCULIA
-
Calculation deficits that are a result of developmental defects in the brain.
Rights and permissions
About this article
Cite this article
Nieder, A. Counting on neurons: the neurobiology of numerical competence. Nat Rev Neurosci 6, 177–190 (2005). https://doi.org/10.1038/nrn1626
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrn1626
This article is cited by
-
A neural theory for counting memories
Nature Communications (2022)
-
Quantitative abilities of invertebrates: a methodological review
Animal Cognition (2022)
-
A biophysical counting mechanism for keeping time
Biological Cybernetics (2022)
-
Developmental brain dynamics of numerical and arithmetic abilities
npj Science of Learning (2021)
-
Perceiving numerosity does not cause automatic shifts of spatial attention
Experimental Brain Research (2021)