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R E S E A R C H  H I G H L I G H T S

Epidemiological studies have in-
dicated that cholesterol-lowering
drugs, such as the statins, can reduce
the risk of developing Alzheimer’s
disease (AD). Paradoxically, how-
ever, reducing cholesterol levels in
the rodent brain seems to promote
neurodegeneration. To try to resolve
this apparent contradiction, Abad-
Rodriguez and colleagues carried
out a more direct investigation of
the effects of neuronal membrane
cholesterol levels on the production
of the amyloid-β (Aβ) peptide —
the main constituent of the amyloid
plaques that form in the brains of
patients with AD.

Cleavage of amyloid precursor
protein (APP) to generate Aβ was
previously thought to occur predom-
inantly in cholesterol-rich micro-
domains of the neuronal membrane,
known as rafts or detergent-resistant
membrane (DRM) microdomains.
However, the evidence for this model
came largely from experiments that

involved overexpression of amyloid
precursor protein (APP) and the
APP-cleaving secretase enzymes.

Abad-Rodriguez et al. showed
that when APP and the β-secretase
BACE1 were expressed at physiologi-
cal levels in the membranes of
human and rodent hippocampal
neurons, APP was almost entirely
excluded from the DRMs, whereas
BACE1 was present in both DRM
and non-DRM fractions. If the
membrane fluidity was increased by
reducing the cholesterol level, APP
and BACE1 were co-localized more
frequently, and this led to a rise in Aβ
production.

These findings contradict the idea
that Aβ synthesis takes place in the
DRM domains — in fact, the choles-
terol in these domains seems to func-
tion as a barrier to the interaction
between APP and BACE1. Loss of
cholesterol from the membrane
probably releases BACE1 from the
DRMs, making it more likely to

It has been proposed that addictive drugs
and reinforcement learning might
influence the same neurophysiological
pathways. In a recent paper in Science,
Redish uses this hypothesis to generate 
a computational model of addiction.

One of the effects of many drugs of abuse
is an increase in dopamine levels in the
brain, which is thought to contribute to the
addictive quality of these drugs. Natural
rewards are also accompanied by an
increase in dopamine, although with
learning this increase shifts from the time
of reward to the time of the cuing stimulus.

Reinforcement learning occurs as a result
of an individual’s interaction with the
environment — that is, in response to
experience rather than explicit teaching.
This process can be modelled using
temporal-difference reinforcement
learning (TDRL), a reinforcement learning
algorithm that relies on an error–reward
signal. TDRL models aim to attain
maximum future reward, and learn, by
means of various calculations, to function
accordingly. In these models, learning only
occurs when the reward is incorrectly

predicted. With correctly predicted reward,
there is no error signal, and therefore no
learning.

Using dopamine as the error–reward
signal, the computational model
established by Redish shows what happens
when a positive signal, much like the
dopamine surge that would accompany the
use of a drug such as cocaine, is introduced
neuropharmacologically rather than
occurring as a result of an unexpected
natural reward or cue stimulus. This
overrides the reward predictions of the
TDRL model and, because the positive
signal does not relate to the other factors
included in the model’s calculations, the
model is unable to predict such rewards.
This means that the likelihood of the
model selecting a pathway that would lead
to drug reward depends on its number of
experiences.

With learning, TDRL models usually
achieve a stable response to natural
rewards. This response depends on the 
time to and level of a reward and any
discounting factors, which decrease the
expected value of the reward. This

sensitivity between natural reward and cost
is called elasticity. In Redish’s modified
TDRL, the demand for drug reward
increases disproportionately, so that
although the process still shows some
elasticity, it is inelastic when compared
with natural reward. However, this does
not necessarily mean that a drug reward
would always be selected over a non-drug
reward, as selection would depend on the
size of the non-drug reward relative to that
of the drug reward.

It is hoped that computational models of
addiction such as this one will help us to
understand the mechanisms and factors
that are involved in addiction. Such models
could be used to help explain and confirm
observations, and to make further
predictions that can be tested in the future.

Sarah Archibald
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